Citation: | XU Min, DI Huizhe, ZHOU Zhiyuan, LI Haiyong, LIN Jian. Interaction between hydrosphere and lithosphere in subduction zones[J]. Marine Geology & Quaternary Geology, 2019, 39(5): 58-70. doi: 10.16562/j.cnki.0256-1492.2019063001 |
The Subduction system is a natural laboratory to investigate the interaction between the Earth’s hydrosphere and lithosphere. Water carried in by down-going slabs significantly affects the tectono-dynamic processes in the subduction zones, for examples the mantle serpentinization of the subducting slab, formation of magmas and active volcanic arcs, and the seismogenic behaviors of the subduction zone. Along the circum-Pacific subduction zones, the regional seismic phenomena can be well explained by the water content estimated from active source seismic experiments, and the low-velocity anomalies of the upper mantle detected by passive source seismic surveys are consistent with the fault development on the subduction slabs. Both the multichannel seismic reflection exploration and numerical simulation reveal that normal faults exist widely on subduction slabs, which may penetrate the Moho and reach a depth as deep as 20 km at least below the seafloor. Those normal faults can provide channels for fluid to enter the crust and upper mantle, resulting in serpentinization up to 1.4 wt% or even higher of the upper mantle. As the temperature and pressure increase during the subduction process, fluids with different characters may be released from dehydration and interact with the mantle at different depths. The water-rock interaction exists extensively at subduction zones as revealed by studies of fluid inclusions and metasomatic minerals. This paper highlights the recent research progress on water content detection and water-rock interaction of subduction slabs and discusses implications for future researches on hydrosphere-lithosphere interaction.
[1] | 毕思文. 地球系统科学发展方向与趋势[J]. 地球科学进展, 2004, 19(S1):35-40 BI Siwen. Development direction and trend of earth system science [J]. Advance in Earth Sciences, 2004, 19(S1): 35-40. |
[2] | Demouchy S, Bolfan-Casanova N. Distribution and transport of hydrogen in the lithospheric mantle: a review [J]. Lithos, 2016, 240-243: 402-425. doi: 10.1016/j.lithos.2015.11.012 |
[3] | 郑永飞, 陈仁旭, 徐峥, 等. 俯冲带中的水迁移[J]. 中国科学: 地球科学, 2016, 59(4):651-682 doi: 10.1007/s11430-015-5258-4 ZHENG Yongfei, CHEN Renxu, XU Zheng, et al. The transport of water in subduction zones [J]. Science China Earth Sciences, 2016, 59(4): 651-682. doi: 10.1007/s11430-015-5258-4 |
[4] | Litasov K D, Ohtani E. Effect of water on the phase relations in earth’s mantle and deep water cycle[M]//Ohtani E. Advances in High-pressure Mineralogy. Boulder: Geological Society of America, 2007: 115-156. |
[5] | Unsworth M, Rondenay S. Mapping the distribution of fluids in the crust and lithospheric mantle utilizing geophysical methods[M]//Harlov D E, Austrheim H. Metasomatism and the Chemical Transformation of Rock. Berlin, Heidelberg: Springer, 2013: 535-598. |
[6] | 倪怀玮, 张力, 郭璇. 水与地幔的部分熔融[J]. 中国科学: 地球科学, 2016, 59(4):720-730 doi: 10.1007/s11430-015-5254-8 NI Huaiwei, ZHANG Li, GUO Xuan. Water and partial melting of Earth’s mantle [J]. Science China Earth Sciences, 2016, 59(4): 720-730. doi: 10.1007/s11430-015-5254-8 |
[7] | Ranero C R, Morgan J P, McIntosh K, et al. Bending-related faulting and mantle serpentinization at the Middle America trench [J]. Nature, 2003, 425(6956): 367-373. doi: 10.1038/nature01961 |
[8] | Ranero C R, Villaseñor A, Morgan J P, et al. Relationship between bend-faulting at trenches and intermediate-depth seismicity [J]. Geochemistry, Geophysics, Geosystems, 2005, 6(12): Q12002. |
[9] | Lefeldt M, Ranero C R, Grevemeyer I. Seismic evidence of tectonic control on the depth of water influx into incoming oceanic plates at subduction trenches [J]. Geochemistry, Geophysics, Geosystems, 2012, 13(5): Q05013. |
[10] | Grevemeyer I, Ranero C R, Flueh E R, et al. Passive and active seismological study of bending-related faulting and mantle serpentinization at the Middle America trench [J]. Earth and Planetary Science Letters, 2007, 258(3-4): 528-542. doi: 10.1016/j.jpgl.2007.04.013 |
[11] | Key K, Constable S, Matsuno T, et al. Electromagnetic detection of plate hydration due to bending faults at the Middle America Trench [J]. Earth and Planetary Science Letters, 2012, 351-352: 45-53. doi: 10.1016/j.jpgl.2012.07.020 |
[12] | Faccenda M. Water in the slab: a trilogy [J]. Tectonophysics, 2014, 614: 1-30. doi: 10.1016/j.tecto.2013.12.020 |
[13] | Plank T, Langmuir C H. The chemical composition of subducting sediment and its consequences for the crust and mantle [J]. Chemical Geology, 1998, 145(3-4): 325-394. doi: 10.1016/S0009-2541(97)00150-2 |
[14] | Tatsumi Y. The subduction factory: how it operates in the evolving earth [J]. GSA Today, 2005, 15(7): 4-10. doi: 10.1130/1052-5173(2005)015[4:TSFHIO]2.0.CO;2 |
[15] | Comte D, Dorbath L, Pardo M, et al. A double‐layered seismic zone in Arica, northern Chile [J]. Geophysical Research Letters, 1999, 26(13): 1965-1968. doi: 10.1029/1999GL900447 |
[16] | Arredondo K M, Billen M I. Rapid weakening of subducting plates from trench-parallel estimates of flexural rigidity [J]. Physics of the Earth and Planetary Interiors, 2012, 196-197: 1-13. doi: 10.1016/j.pepi.2012.02.007 |
[17] | Zhou Z Y, Lin J. Elasto-plastic deformation and plate weakening due to normal faulting in the subducting plate along the Mariana Trench [J]. Tectonophysics, 2018, 734-735: 59-68. doi: 10.1016/j.tecto.2018.04.008 |
[18] | Escartín J, Hirth G, Evans B. Strength of slightly serpentinized peridotites: Implications for the tectonics of oceanic lithosphere [J]. Geology, 2001, 29(11): 1023-1026. doi: 10.1130/0091-7613(2001)029<1023:SOSSPI>2.0.CO;2 |
[19] | Billen M I, Gurnis M. A low viscosity wedge in subduction zones [J]. Earth and Planetary Science Letters, 2001, 193(1-2): 227-236. doi: 10.1016/S0012-821X(01)00482-4 |
[20] | Obara K. Nonvolcanic deep tremor associated with subduction in southwest Japan [J]. Science, 2002, 296(5573): 1679-1681. doi: 10.1126/science.1070378 |
[21] | Rogers G, Dragert H. Episodic tremor and slip on the Cascadia subduction zone: the chatter of silent slip [J]. Science, 2003, 300(5627): 1942-1943. doi: 10.1126/science.1084783 |
[22] | Hacker B R, Peacock S M, Abers G A, et al. Subduction factory 2. Are intermediate‐depth earthquakes in subducting slabs linked to metamorphic dehydration reactions? [J]. Journal of Geophysical Research, 2003, 108(B1): 2030. |
[23] | Tatsumi Y. Migration of fluid phases and genesis of basalt magmas in subduction zones [J]. Journal of Geophysical Research, 1989, 94(B4): 4697-4707. doi: 10.1029/JB094iB04p04697 |
[24] | Zheng Y F, Hermann J. Geochemistry of continental subduction-zone fluids [J]. Earth, Planets and Space, 2014, 66: 93. doi: 10.1186/1880-5981-66-93 |
[25] | Ni H W, Zhang L, Xiong X L, et al. Supercritical fluids at subduction zones: evidence, formation condition, and physicochemical properties [J]. Earth-Science Reviews, 2017, 167: 62-71. doi: 10.1016/j.earscirev.2017.02.006 |
[26] | Kawamoto T, Hervig R L, Holloway J R. Experimental evidence for a hydrous transition zone in the early Earth’s mantle [J]. Earth and Planetary Science Letters, 1996, 142(3-4): 587-592. doi: 10.1016/0012-821X(96)00113-6 |
[27] | Smyth J R, Kawamoto T. Wadsleyite II: a new high pressure hydrous phase in the peridotite-H2O system [J]. Earth and Planetary Science Letters, 1997, 146(1-2): E9-E16. doi: 10.1016/S0012-821X(96)00230-0 |
[28] | Koyama T, Shimizu H, Utada H, et al. Water content in the mantle transition zone beneath the North Pacific derived from the electrical conductivity anomaly[M]//Jacobsen S D, van der Lee S. Earth’s Deep Water Cycle. Washington: American Geophysical Union, 2006: 171-180. |
[29] | Utada H, Koyama T, Obayashi M, et al. A joint interpretation of electromagnetic and seismic tomography models suggests the mantle transition zone below Europe is dry [J]. Earth and Planetary Science Letters, 2009, 281(3-4): 249-257. doi: 10.1016/j.jpgl.2009.02.027 |
[30] | Ohtani E, Yuan L, Ohira I, et al. Fate of water transported into the deep mantle by slab subduction [J]. Journal of Asian Earth Sciences, 2018, 167: 2-10. doi: 10.1016/j.jseaes.2018.04.024 |
[31] | Peslier A H. A review of water contents of nominally anhydrous natural minerals in the mantles of Earth, Mars and the Moon [J]. Journal of Volcanology and Geothermal Research, 2010, 197(1-4): 239-258. doi: 10.1016/j.jvolgeores.2009.10.006 |
[32] | Wada I, Behn M D, Shaw A M. Effects of heterogeneous hydration in the incoming plate, slab rehydration, and mantle wedge hydration on slab-derived H2O flux in subduction zones [J]. Earth and Planetary Science Letters, 2012, 353-354: 60-71. doi: 10.1016/j.jpgl.2012.07.025 |
[33] | Li H Y, Chen R X, Zheng Y F, et al. Water in garnet pyroxenite from the Sulu orogen: implications for crust-mantle interaction in continental subduction zone [J]. Chemical Geology, 2018, 478: 18-38. doi: 10.1016/j.chemgeo.2017.09.025 |
[34] | Rüpke L H, Morgan J P, Hort M, et al. Serpentine and the subduction zone water cycle [J]. Earth and Planetary Science Letters, 2004, 223(1-2): 17-34. doi: 10.1016/j.jpgl.2004.04.018 |
[35] | Hacker B R. H2O subduction beyond arcs [J]. Geochemistry, Geophysics, Geosystems, 2008, 9(3): Q03001. |
[36] | Canales J P, Carbotte S M, Nedimović M R, et al. Dry Juan de Fuca slab revealed by quantification of water entering Cascadia subduction zone [J]. Nature Geoscience, 2017, 10(11): 864-870. doi: 10.1038/ngeo3050 |
[37] | Carlson R L, Miller D J. Mantle wedge water contents estimated from seismic velocities in partially serpentinized peridotites [J]. Geophysical Research Letters, 2003, 30(5): 1250. |
[38] | McCollom T M, Shock E L. Fluid-rock interactions in the lower oceanic crust: thermodynamic models of hydrothermal alteration [J]. Journal of Geophysical Research, 1998, 103(B1): 547-575. doi: 10.1029/97JB02603 |
[39] | Contreras-Reyes E, Grevemeyer I, Flueh E R, et al. Alteration of the subducting oceanic lithosphere at the southern central Chile trench-outer rise [J]. Geochemistry, Geophysics, Geosystems, 2007, 8(7): Q07003. |
[40] | Ivandic M, Grevemeyer I, Berhorst A, et al. Impact of bending related faulting on the seismic properties of the incoming oceanic plate offshore of Nicaragua [J]. Journal of Geophysical Research, 2008, 113(B5): B05410. |
[41] | van Avendonk H J A, Holbrook W S, Lizarralde D, et al. Structure and serpentinization of the subducting Cocos plate offshore Nicaragua and Costa Rica [J]. Geochemistry, Geophysics, Geosystems, 2011, 12(6): Q06009. |
[42] | Gou F J, Kodaira S, Kaiho Y, et al. Controlling factor of incoming plate hydration at the north-western Pacific margin [J]. Nature Communications, 2018, 9(1): 3844. doi: 10.1038/s41467-018-06320-z |
[43] | Cai C, Wiens D A, Shen W S, et al. Water input into the Mariana subduction zone estimated from ocean-bottom seismic data [J]. Nature, 2018, 563(7731): 389-392. doi: 10.1038/s41586-018-0655-4 |
[44] | Wan K Y, Lin J, Xia S H, et al. Deep seismic structure across the southernmost Mariana Trench: implications for arc rifting and plate hydration [J]. Journal of Geophysical Research, 2019, 124(5): 4710-4727. |
[45] | Contreras-Reyes E, Grevemeyer I, Flueh E R, et al. Upper lithospheric structure of the subduction zone offshore of southern Arauco peninsula, Chile, at ~38°S [J]. Journal of Geophysical Research, 2008, 113(B7): B07303. |
[46] | Gou F J, Kodaira S, Yamashita M, et al. Systematic changes in the incoming plate structure at the Kuril trench [J]. Geophysical Research Letters, 2013, 40(1): 88-93. doi: 10.1029/2012GL054340 |
[47] | Gou F J, Kodaira S, Sato T, et al. Along-trench variations in the seismic structure of the incoming Pacific plate at the outer rise of the northern Japan Trench [J]. Geophysical Research Letters, 2016, 43(2): 666-673. doi: 10.1002/2015GL067363 |
[48] | Masson D G. Fault patterns at outer trench walls [J]. Marine Geophysical Researches, 1991, 13(3): 209-225. doi: 10.1007/BF00369150 |
[49] | Ranero C R, Sallarés V. Geophysical evidence for hydration of the crust and mantle of the Nazca plate during bending at the north Chile trench [J]. Geology, 2004, 32(7): 549-552. doi: 10.1130/G20379.1 |
[50] | Han S S, Carbotte S M, Canales J P, et al. Seismic reflection imaging of the Juan de Fuca plate from ridge to trench: new constraints on the distribution of faulting and evolution of the crust prior to subduction [J]. Journal of Geophysical Research, 2016, 121(3): 1849-1872. |
[51] | Supak S, Bohnenstiehl D R, Buck W R. Flexing is not stretching: an analogue study of flexure-induced fault populations [J]. Earth and Planetary Science Letters, 2006, 246(1-2): 125-137. doi: 10.1016/j.jpgl.2006.03.028 |
[52] | Naliboff J B, Billen M I, Gerya T, et al. Dynamics of outer-rise faulting in oceanic‐continental subduction systems [J]. Geochemistry, Geophysics, Geosystems, 2013, 14(7): 2310-2327. doi: 10.1002/ggge.20155 |
[53] | Zhou Z Y, Lin J, Behn M D, et al. Mechanism for normal faulting in the subducting plate at the Mariana Trench [J]. Geophysical Research Letters, 2015, 42(11): 4309-4317. doi: 10.1002/2015GL063917 |
[54] | van Keken P E, Hacker B R, Syracuse E M, et al. Subduction factory: 4. Depth-dependent flux of H2O from subducting slabs worldwide [J]. Journal of Geophysical Research, 2011, 116(B1): B01401. |
[55] | Magni V, Faccenna C, van Hunen J, et al. How collision triggers backarc extension: insight into Mediterranean style of extension from 3-D numerical models [J]. Geology, 2014, 42(6): 511-514. doi: 10.1130/G35446.1 |
[56] | Tatsumi Y, Eggins S. Subduction Zone Magmatism[M]. Oxford: Blackwell, 1995: 211. |
[57] | Anderson D L. Speculations on the nature and cause of mantle heterogeneity [J]. Tectonophysics, 2006, 416(1-5): 7-22. |
[58] | Zindler A, Hart S. Chemical geodynamics [J]. Annual Review of Earth and Planetary Sciences, 1986, 14: 493-571. doi: 10.1146/annurev.ea.14.050186.002425 |
[59] | Hofmann A W. Mantle geochemistry: the message from oceanic volcanism [J]. Nature, 1997, 385(6613): 219-229. doi: 10.1038/385219a0 |
[60] | Chauvel C, Hofmann A W, Vidal P. HIMU-EM: the French Polynesian connection [J]. Earth and Planetary Science Letters, 1992, 110(1-4): 99-119. doi: 10.1016/0012-821X(92)90042-T |
[61] | Brenan J M, Shaw H F, Ryerson F J, et al. Mineral-aqueous fluid partitioning of trace elements at 900 ℃ and 2.0 GPa: constraints on the trace element chemistry of mantle and deep crustal fluids [J]. Geochimica et Cosmochimica Acta, 1995, 59(16): 3331-3350. doi: 10.1016/0016-7037(95)00215-L |
[62] | Kogiso T, Hirschmann M M, Frost D J. High-pressure partial melting of garnet pyroxenite: possible mafic lithologies in the source of ocean island basalts [J]. Earth and Planetary Science Letters, 2003, 216(4): 603-617. doi: 10.1016/S0012-821X(03)00538-7 |
[63] | Aizawa Y, Tatsumi Y, Yamada H. Element transport by dehydration of subducted sediments: implication for arc and ocean island magmatism [J]. Island Arc, 1999, 8(1): 38-46. doi: 10.1046/j.1440-1738.1999.00217.x |
[64] | Tatsumi Y, Kogiso T. The subduction factory: its role in the evolution of the Earth's crust and mantle[M]//Larter R D, Leat P T. Intra-oceanic Subduction Systems: Tectonic and Magmatic Processes. London: Geological Society of America, 2003: 55-80. |
Schematic model of water cycle in a subduction zone
Schematic model of subduction factory (modified from ref.[14])
Conceptual model of the tectonic structure and metamorphic evolution of a subducting lithosphere (modified from ref.[8])
Histograms of water content of peridotite and pyroxenite from different tectonic settings (modified from ref.[33])
Seismic detection of water content at the subduction zones around the Pacific
Transformation relationship between seismic velocity, lithological association and water content
Comparison of simulated and seismically detected faults at western Pacific subduction slabs (modified from ref.[17])
(a) Water transportation in oceanic subduction zone; (b) Metamorphic phases and stability regions of hydrated minerals at subduction zone (modified from ref.[3])
Isotopic compositions of depleted materials from the subduction factory (modified from ref.[14])