2019 Vol. 39, No. 5
Article Contents

GONG Wei, JIANG Xiaodian, XING Junhui, LI Deyong, XU Chong. Subduction dynamics of the New-Guinea-Solomon arc system: Constraints from the subduction initiation of the plate[J]. Marine Geology & Quaternary Geology, 2019, 39(5): 115-130. doi: 10.16562/j.cnki.0256-1492.2019062801
Citation: GONG Wei, JIANG Xiaodian, XING Junhui, LI Deyong, XU Chong. Subduction dynamics of the New-Guinea-Solomon arc system: Constraints from the subduction initiation of the plate[J]. Marine Geology & Quaternary Geology, 2019, 39(5): 115-130. doi: 10.16562/j.cnki.0256-1492.2019062801

Subduction dynamics of the New-Guinea-Solomon arc system: Constraints from the subduction initiation of the plate

More Information
  • A complicated subduction system, the New-Guinea-Solomon arc (PN-SL), exists in the convergent boundary between the Indo-Australian and Pacific plates at the eastern end of the Neo-Tethyan tectonic domain. Since late Cretaceous, the PN-SL system has gradually become a complex trench-arc-basin-oceanic plateau system suffered various stages of subduction. Constrained by the multi-stages and multi-types of plate subduction initiation, the deep structure of the PN-SL subduction system varies dramatically in space. Among the subduction zones within the PN-SL subduction system, the extension depth of the subducting plate changes from over 500 km to nearly 100 km and the dip angle of the plate decreases from over 70° to 30°. The Ontong Java Plateau, the largest oceanic plateau in the world, is located in the east of the PN-SL subduction system. Owing to the large crustal bulge and associated low-density structure, the tectonic framework of the PN-SL subduction system is reconstructed. Driven by the subduction of the Ontong Java Plateau, the Solomon Sea back-arc basin has subducted beneath the Pacific ocean towards northwest, northeast and southwest directions since Miocene, sharply contrasted with the classical binary model of the subduction polarity reversal and transference or trench jump induced by the subduction of the buoyant lithosphere. This indicates that the convergent deformation process between the Ontong Java Plateau and the PN-SL subduction system cannot just be interpreted as the change in plate density. Complex tectonic environment and various tectonic elements must be considered in the studies on the subduction and convergent deformation of the oceanic plateau. In particular, as an important influence factor of the strength of the lithosphere, the fluid activity of the subduction system, which may induce the strength weakening and decrease in the melting point of the lithosphere, must be carefully considered. Moreover, the fluid may be transported into the deep part of the Earth together with the subduction of plate and make contributions to the dehydration of plate and the hydro-metasomatism within the mantle wedge, which changes the composition and rheological properties of the crust and mantle and induces partial melting of the mantle wedge and island magmatism. Therefore, it is concluded that fluid plays an important role in the subduction initiation and evolution as a key entry point for understanding the subduction tectonic dynamics of the plate.

  • 加载中
  • [1] Wessel P, Kroenke L W. Ontong Java Plateau and late Neogene changes in Pacific plate motion [J]. Journal of Geophysical Research: Solid Earth, 2000, 105(B12): 28255-28277. doi: 10.1029/2000JB900290

    CrossRef Google Scholar

    [2] Stotz I L, Iaffaldano G, Davies D R. Late Miocene Pacific plate kinematic change explained with coupled global models of mantle and lithosphere dynamics [J]. Geophysical Research Letters, 2017, 44(14): 7177-7186. doi: 10.1002/2017GL073920

    CrossRef Google Scholar

    [3] Schellart W P, Lister G S, Toy V G. A Late Cretaceous and Cenozoic reconstruction of the Southwest Pacific region: Tectonics controlled by subduction and slab rollback processes [J]. Earth-Science Reviews, 2006, 76(3-4): 191-233. doi: 10.1016/j.earscirev.2006.01.002

    CrossRef Google Scholar

    [4] Holm R J, Rosenbaum G, Richards S W. Post 8 Ma reconstruction of Papua New Guinea and Solomon Islands: Microplate tectonics in a convergent plate boundary setting [J]. Earth-Science Reviews, 2016, 156: 66-81. doi: 10.1016/j.earscirev.2016.03.005

    CrossRef Google Scholar

    [5] Both R, Crook K, Taylor B, et al. Hydrothermal chimneys and associated fauna in the Manus Back-Arc Basin, Papua New Guinea [J]. Eos, Transactions American Geophysical Union, 1986, 67(21): 489-490. doi: 10.1029/EO067i021p00489

    CrossRef Google Scholar

    [6] Cooper P A, Taylor B. Polarity reversal in the Solomon Islands arc [J]. Nature, 1985, 314(6010): 428-430. doi: 10.1038/314428a0

    CrossRef Google Scholar

    [7] Petterson M G, Babbs T, Neal C R, et al. Geological-tectonic framework of Solomon Islands, SW Pacific: Crustal accretion and growth within an intra-oceanic setting [J]. Tectonophysics, 1999, 301(1-2): 35-60. doi: 10.1016/S0040-1951(98)00214-5

    CrossRef Google Scholar

    [8] Chadwick J, Perfit M, McInnes B, et al. Arc lavas on both sides of a trench: Slab window effects at the Solomon Islands triple junction, SW Pacific [J]. Earth and Planetary Science Letters, 2009, 279(3-4): 293-302. doi: 10.1016/j.jpgl.2009.01.001

    CrossRef Google Scholar

    [9] Schuth S, König S, Münker C. Subduction zone dynamics in the SW Pacific plate boundary region constrained from high-precision Pb isotope data [J]. Earth and Planetary Science Letters, 2011, 311(3-4): 328-338. doi: 10.1016/j.jpgl.2011.09.006

    CrossRef Google Scholar

    [10] Taylor B. Bismarck Sea: Evolution of a back-arc basin [J]. Geology, 1979, 7(4): 171-174. doi: 10.1130/0091-7613(1979)7<171:BSEOAB>2.0.CO;2

    CrossRef Google Scholar

    [11] Wallace L M, Stevens C, Silver E, et al. GPS and seismological constraints on active tectonics and arc-continent collision in Papua New Guinea: Implications for mechanics of microplate rotations in a plate boundary zone [J]. Journal of Geophysical Research: Solid Earth, 2004, 109(B5): B05404.

    Google Scholar

    [12] Cooper P, Taylor B. Seismotectonics of New Guinea: A model for arc reversal following arc-continent collision [J]. Tectonics, 1987, 6(1): 53-67. doi: 10.1029/TC006i001p00053

    CrossRef Google Scholar

    [13] Holm R J, Richards S W. A re-evaluation of arc-continent collision and along-arc variation in the Bismarck Sea region, Papua New Guinea [J]. Australian Journal of Earth Sciences, 2013, 60(5): 605-619. doi: 10.1080/08120099.2013.824505

    CrossRef Google Scholar

    [14] Westaway R. Active low-angle normal faulting in the Woodlark extensional province, Papua New Guinea: A physical model [J]. Tectonics, 2005, 24(6): TC6003.

    Google Scholar

    [15] Phinney E J, Mann P, Coffin M F, et al. Sequence stratigraphy, structural style, and age of deformation of the Malaita accretionary prism (Solomon arc-Ontong Java Plateau convergent zone) [J]. Tectonophysics, 2004, 389(3-4): 221-246. doi: 10.1016/j.tecto.2003.10.025

    CrossRef Google Scholar

    [16] Inoue H, Coffin M F, Nakamura Y, et al. Intrabasement reflections of the Ontong Java Plateau: Implications for plateau construction [J]. Geochemistry, Geophysics, Geosystems, 2008, 9(4): Q04014.

    Google Scholar

    [17] Baldwin S L, Fitzgerald P G, Webb L E. Tectonics of the New Guinea region [J]. Annual Review of Earth and Planetary Sciences, 2012, 40(1): 495-520. doi: 10.1146/annurev-earth-040809-152540

    CrossRef Google Scholar

    [18] Holm R J, Spandler C, Richards S W. Melanesian arc far-field response to collision of the Ontong Java Plateau: Geochronology and petrogenesis of the Simuku Igneous Complex, New Britain, Papua New Guinea [J]. Tectonophysics, 2013, 603: 189-212. doi: 10.1016/j.tecto.2013.05.029

    CrossRef Google Scholar

    [19] McInnes B I A, Gregoire M, Binns R A, et al. Hydrous metasomatism of oceanic sub-arc mantle, Lihir, Papua New Guinea: petrology and geochemistry of fluid-metasomatised mantle wedge xenoliths [J]. Earth and Planetary Science Letters, 2001, 188(1-2): 169-183. doi: 10.1016/S0012-821X(01)00306-5

    CrossRef Google Scholar

    [20] Bénard A, Woodland A B, Arculus R J, et al. Variation in sub-arc mantle oxygen fugacity during partial melting recorded in refractory peridotite xenoliths from the West Bismarck Arc [J]. Chemical Geology, 2018, 486: 16-30. doi: 10.1016/j.chemgeo.2018.03.004

    CrossRef Google Scholar

    [21] Eguchi T, Fujinawa Y, Ukawa M, et al. Earthquakes associated with the back-arc opening in the eastern Bismarck Sea: activity, mechanisms, and tectonics [J]. Physics of the Earth and Planetary Interiors, 1989, 56(3-4): 189-209. doi: 10.1016/0031-9201(89)90157-X

    CrossRef Google Scholar

    [22] Bird P. An updated digital model of plate boundaries [J]. Geochemistry, Geophysics, Geosystems, 2003, 4(3): 1027.

    Google Scholar

    [23] Binns R A, Scott S D. Actively forming polymetallic sulfide deposits associated with felsic volcanic rocks in the Eastern Manus Back-arc basin, Papua New Guinea [J]. Economic Geology, 1993, 88(8): 2226-2236. doi: 10.2113/gsecongeo.88.8.2226

    CrossRef Google Scholar

    [24] Crook K A W, Taylor B. Structure and Quaternary tectonic history of the Woodlark triple junction region, Solomon islands [J]. Marine Geophysical Researches, 1994, 16(1): 65-89. doi: 10.1007/BF01812446

    CrossRef Google Scholar

    [25] Taylor B, Goodliffe A, Martinez F, et al. Continental rifting and initial sea-floor spreading in the Woodlark basin [J]. Nature, 1995, 374(6522): 534-537. doi: 10.1038/374534a0

    CrossRef Google Scholar

    [26] Abers G A, Mutter C Z, Fang J. Shallow dips of normal faults during rapid extension: Earthquakes in the Woodlark-D’Entrecasteaux rift system, Papua New Guinea [J]. Journal of Geophysical Research: Solid Earth, 1997, 102(B7): 15301-15317. doi: 10.1029/97JB00787

    CrossRef Google Scholar

    [27] Abers G A, Ferris A, Craig M, et al. Mantle compensation of active metamorphic core complexes at Woodlark rift in Papua New Guinea [J]. Nature, 2002, 418(6900): 862-865. doi: 10.1038/nature00990

    CrossRef Google Scholar

    [28] Bruns T R, Vedder J G, Cooper A K. Geology of the Shortland basin region, central Solomons Trough, Solomon Islands-review and new findings[C]//Vedder J G, Bruns T R. Geology and offshore resources of Pacific island arcs-Solomon Islands and Bougainville, Papua New Guinea Regions, Earth Science Series. Houston, Texas: Circum-Pacific Council for Energy and Mineral Resources, 1989: 125-144.

    Google Scholar

    [29] Mann P, Taira A. Global tectonic significance of the Solomon Islands and Ontong Java Plateau convergent zone [J]. Tectonophysics, 2004, 389(3-4): 137-190. doi: 10.1016/j.tecto.2003.10.024

    CrossRef Google Scholar

    [30] Zhang Z, Li S Z, Tian J W, et al. Formation mechanism of the moniliform seamounts outside the West Melanesian Trench [J]. Geological Journal, 2018, 53(4): 1604-1610. doi: 10.1002/gj.2979

    CrossRef Google Scholar

    [31] Hall R, Spakman W. Subducted slabs beneath the eastern Indonesia-Tonga region: insights from tomography [J]. Earth and Planetary Science Letters, 2002, 201(2): 321-336. doi: 10.1016/S0012-821X(02)00705-7

    CrossRef Google Scholar

    [32] Abers G A, Roecker S W. Deep structure of an Arc-Continent collision: Earthquake relocation and inversion for upper mantle P and S wave velocities beneath Papua New Guinea [J]. Journal of Geophysical Research: Solid Earth, 1991, 96(B4): 6379-6401. doi: 10.1029/91JB00145

    CrossRef Google Scholar

    [33] Woodhead J, Hergt J, Sandiford M, et al. The big crunch: Physical and chemical expressions of arc/continent collision in the Western Bismarck arc [J]. Journal of Volcanology and Geothermal Research, 2010, 190(1-2): 11-24. doi: 10.1016/j.jvolgeores.2009.03.003

    CrossRef Google Scholar

    [34] Mohiuddin A, Long M D, Lynner C. Mid-mantle seismic anisotropy beneath southwestern Pacific subduction systems and implications for mid-mantle deformation [J]. Physics of the Earth and Planetary Interiors, 2015, 245: 1-14. doi: 10.1016/j.pepi.2015.05.003

    CrossRef Google Scholar

    [35] 张培震, 张会平, 郑文俊, 等. 东亚大陆新生代构造演化[J]. 地震地质, 2014, 36(3):574-585 doi: 10.3969/j.issn.0253-4967.2014.03.003

    CrossRef Google Scholar

    ZHANG Peizhen, ZHANG Huiping, ZHENG Wenjun, et al. Cenozoic tectonic evolution of continental Eastern Asia [J]. Seismology and Geology, 2014, 36(3): 574-585. doi: 10.3969/j.issn.0253-4967.2014.03.003

    CrossRef Google Scholar

    [36] Seton M, Müller R D, Zahirovic S, et al. Global continental and ocean basin reconstructions since 200 Ma [J]. Earth-Science Reviews, 2012, 113(3-4): 212-270. doi: 10.1016/j.earscirev.2012.03.002

    CrossRef Google Scholar

    [37] Schellart W P, Spakman W. Australian plate motion and topography linked to fossil New Guinea slab below Lake Eyre [J]. Earth and Planetary Science Letters, 2015, 421: 107-116. doi: 10.1016/j.jpgl.2015.03.036

    CrossRef Google Scholar

    [38] Zahirovic S, Matthews K J, Flament N, et al. Tectonic evolution and deep mantle structure of the eastern Tethys since the latest Jurassic [J]. Earth-Science Reviews, 2016, 162: 293-337. doi: 10.1016/j.earscirev.2016.09.005

    CrossRef Google Scholar

    [39] Crawford A J, Meffre S, Symonds P A. 120 to 0 Ma tectonic evolution of the southwest Pacific and analogous geological evolution of the 600 to 220 Ma Tasman Fold Belt System[C]//Evolution and Dynamics of the Australian Plate. Geological Society of Australia Special Publication, 2003, 22: 377-397.

    Google Scholar

    [40] Petterson M G, Neal C R, Mahoney J J, et al. Structure and deformation of north and central Malaita, Solomon Islands: tectonic implications for the Ontong Java Plateau-Solomon arc collision, and for the fate of oceanic plateaus [J]. Tectonophysics, 1997, 283(1-4): 1-33. doi: 10.1016/S0040-1951(97)00206-0

    CrossRef Google Scholar

    [41] Davies H L. The geology of New Guinea - the cordilleran margin of the Australian continent [J]. Episodes, 2012, 35(1): 87-102.

    Google Scholar

    [42] Sun W D, Arculus R J, Kamenetsky V S, et al. Release of gold-bearing fluids in convergent margin magmas prompted by magnetite crystallization [J]. Nature, 2004, 431(7011): 975-978. doi: 10.1038/nature02972

    CrossRef Google Scholar

    [43] Sun W D, Bennett V C, Eggins S M, et al. Enhanced mantle-to-crust rhenium transfer in undegassed arc magmas [J]. Nature, 2003, 422(6929): 294-297. doi: 10.1038/nature01482

    CrossRef Google Scholar

    [44] Sun W D, Ding X, Hu Y H, et al. The golden transformation of the Cretaceous plate subduction in the west Pacific [J]. Earth and Planetary Science Letters, 2007, 262(3-4): 533-542. doi: 10.1016/j.jpgl.2007.08.021

    CrossRef Google Scholar

    [45] Holm R J, Spandler C, Richards S W. Continental collision, orogenesis and arc magmatism of the Miocene Maramuni arc, Papua New Guinea [J]. Gondwana Research, 2015, 28(3): 1117-1136. doi: 10.1016/j.gr.2014.09.011

    CrossRef Google Scholar

    [46] Petterson M G, Haldane M I, Smith D J, et al. Geochemistry and petrogenesis of the Gallego Volcanic Field, Solomon Islands, SW Pacific and geotectonic implications [J]. Lithos, 2011, 125(3-4): 915-927. doi: 10.1016/j.lithos.2011.05.008

    CrossRef Google Scholar

    [47] Soustelle V, Tommasi A, Demouchy S, et al. Melt-rock interactions, deformation, hydration and seismic properties in the sub-arc lithospheric mantle inferred from xenoliths from seamounts near Lihir, Papua New Guinea [J]. Tectonophysics, 2013, 608: 330-345. doi: 10.1016/j.tecto.2013.09.024

    CrossRef Google Scholar

    [48] 崔华伟, 万永革, 黄骥超, 等. 2015年3月新不列颠Ms7.4地震震源及邻区构造应力场特征[J]. 地球物理学报, 2017, 60(3):985-998 doi: 10.6038/cjg20170313

    CrossRef Google Scholar

    CUI Huawei, WAN Yongge, HUANG Jichao, et al. The tectonic stress field in the source of the New Britain Ms 7.4 earthquake of March 2015 and adjacent areas [J]. Chinese Journal of Geophysics, 2017, 60(3): 985-998. doi: 10.6038/cjg20170313

    CrossRef Google Scholar

    [49] Chen T, Luo H P, Furlong K P. A Bayesian rupture model of the 2007 Mw 8.1 Solomon Islands earthquake in Southwest Pacific with coral reef displacement measurements [J]. Journal of Asian Earth Sciences, 2017, 139: 92-97.

    Google Scholar

    [50] Yang G L, Shen C Y, Wang J P, et al. Isostatic anomaly characteristics and tectonism of the New Britain Trench and neighboring Papua New Guinea [J]. Geodesy and Geodynamics, 2018, 9(5): 404-410. doi: 10.1016/j.geog.2018.04.006

    CrossRef Google Scholar

    [51] Mahoney J J, Storey M, Duncan R A, et al. Geochemistry and age of the Ontong Java Plateau[C]//Pringle M S, Sager W W, Sliter W V, et al. The Mesozoic Pacific: Geology, Tectonics, and Volcanism: A Volume in Memory of Sy Schlanger. Washington, D.C.: AGU, 1993, 77: 233-261.

    Google Scholar

    [52] Taylor B. The single largest oceanic plateau: Ontong Java-Manihiki-Hikurangi [J]. Earth and Planetary Science Letters, 2006, 241(3-4): 372-380. doi: 10.1016/j.jpgl.2005.11.049

    CrossRef Google Scholar

    [53] Hanyu T, Tejada M L G, Shimizu K, et al. Collision-induced post-plateau volcanism: Evidence from a seamount on Ontong Java Plateau [J]. Lithos, 2017, 294-295: 87-96. doi: 10.1016/j.lithos.2017.09.029

    CrossRef Google Scholar

    [54] Chandler M T, Wessel P, Sager W W. Analysis of Ontong Java Plateau palaeolatitudes: evidence for large-scale rotation since 123 Ma? [J]. Geophysical Journal International, 2013, 194(1): 18-29. doi: 10.1093/gji/ggt075

    CrossRef Google Scholar

    [55] Chandler M T, Wessel P, Taylor B, et al. Reconstructing Ontong Java Nui: Implications for Pacific absolute plate motion, hotspot drift and true polar wander [J]. Earth and Planetary Science Letters, 2012, 331-332: 140-151. doi: 10.1016/j.jpgl.2012.03.017

    CrossRef Google Scholar

    [56] Hall S, Riisager P. Palaeomagnetic palaeolatitudes of the Ontong Java Plateau from 120 to 55 Ma: implications for the apparent polar wander path of the Pacific Plate [J]. Geophysical Journal International, 2007, 169(2): 455-470. doi: 10.1111/j.1365-246X.2007.03338.x

    CrossRef Google Scholar

    [57] Gladczenko T P, Coffin M F, Eldholm O. Crustal structure of the Ontong Java Plateau: Modeling of new gravity and existing seismic data [J]. Journal of Geophysical Research: Solid Earth, 1997, 102(B10): 22711-22729. doi: 10.1029/97JB01636

    CrossRef Google Scholar

    [58] Klosko E R, Russo R M, Okal E A, et al. Evidence for a rheologically strong chemical mantle root beneath the Ontong-Java Plateau [J]. Earth and Planetary Science Letters, 2001, 186(3-4): 347-361. doi: 10.1016/S0012-821X(01)00235-7

    CrossRef Google Scholar

    [59] Taira A, Mann P, Rahardiawan R. Incipient subduction of the Ontong Java Plateau along the North Solomon trench [J]. Tectonophysics, 2004, 389(3-4): 247-266. doi: 10.1016/j.tecto.2004.07.052

    CrossRef Google Scholar

    [60] Tommasi A, Ishikawa A. Microstructures, composition, and seismic properties of the Ontong Java Plateau mantle root [J]. Geochemistry, Geophysics, Geosystems, 2014, 15(11): 4547-4569. doi: 10.1002/2014GC005452

    CrossRef Google Scholar

    [61] Covellone B M, Savage B, Shen Y. Seismic wave speed structure of the Ontong Java Plateau [J]. Earth and Planetary Science Letters, 2015, 420: 140-150. doi: 10.1016/j.jpgl.2015.03.033

    CrossRef Google Scholar

    [62] Tharimena S, Rychert C A, Harmon N. Seismic imaging of a mid-lithospheric discontinuity beneath Ontong Java Plateau [J]. Earth and Planetary Science Letters, 2016, 450: 62-70. doi: 10.1016/j.jpgl.2016.06.026

    CrossRef Google Scholar

    [63] Ely J C, Neal C R. Using platinum-group elements to investigate the origin of the Ontong Java Plateau, SW Pacific [J]. Chemical Geology, 2003, 196(1-4): 235-257. doi: 10.1016/S0009-2541(02)00415-1

    CrossRef Google Scholar

    [64] Fitton J G, Godard M. Origin and evolution of magmas on the Ontong Java Plateau [J]. Geological Society, London, Special Publications, 2004, 229(1): 151-178. doi: 10.1144/GSL.SP.2004.229.01.10

    CrossRef Google Scholar

    [65] Ishikawa A, Kuritani T, Makishima A, et al. Ancient recycled crust beneath the Ontong Java Plateau: Isotopic evidence from the garnet clinopyroxenite xenoliths, Malaita, Solomon Islands [J]. Earth and Planetary Science Letters, 2007, 259(1-2): 134-148. doi: 10.1016/j.jpgl.2007.04.034

    CrossRef Google Scholar

    [66] Ishikawa A, Pearson D G, Dale C W. Ancient Os isotope signatures from the Ontong Java Plateau lithosphere: Tracing lithospheric accretion history [J]. Earth and Planetary Science Letters, 2011, 301(1-2): 159-170. doi: 10.1016/j.jpgl.2010.10.034

    CrossRef Google Scholar

    [67] Tejada M L G, Suzuki K, Hanyu T, et al. Cryptic lower crustal signature in the source of the Ontong Java Plateau revealed by Os and Hf isotopes [J]. Earth and Planetary Science Letters, 2013, 377-378: 84-96. doi: 10.1016/j.jpgl.2013.07.022

    CrossRef Google Scholar

    [68] Demouchy S, Ishikawa A, Tommasi A, et al. Characterization of hydration in the mantle lithosphere: Peridotite xenoliths from the Ontong Java Plateau as an example [J]. Lithos, 2015, 212-215: 189-201. doi: 10.1016/j.lithos.2014.11.005

    CrossRef Google Scholar

    [69] Knesel K M, Cohen B E, Vasconcelos P M, et al. Rapid change in drift of the Australian plate records collision with Ontong Java plateau [J]. Nature, 2008, 454(7205): 754-757. doi: 10.1038/nature07138

    CrossRef Google Scholar

    [70] Korenaga J. Why did not the Ontong Java Plateau form subaerially? [J]. Earth and Planetary Science Letters, 2005, 234(3-4): 385-399. doi: 10.1016/j.jpgl.2005.03.011

    CrossRef Google Scholar

    [71] Ingle S, Coffin M F. Impact origin for the greater Ontong Java Plateau? [J]. Earth and Planetary Science Letters, 2004, 218(1-2): 123-134. doi: 10.1016/S0012-821X(03)00629-0

    CrossRef Google Scholar

    [72] Roberge J, Wallace P J, White R V, et al. Anomalous uplift and subsidence of the Ontong Java Plateau inferred from CO2 contents of submarine basaltic glasses [J]. Geology, 2005, 33(6): 501-504. doi: 10.1130/G21142.1

    CrossRef Google Scholar

    [73] Ito G, van Keken P E. Hot spots and melting anomalies [J]. Treatise on Geophysics, 2007, 7: 371-435. doi: 10.1016/B978-044452748-6/00123-1

    CrossRef Google Scholar

    [74] Neal C R, Mahoney J J, Kroenke L W, et al. The Ontong Java Plateau[C]//Mahoney J J, Coffin M F. Large Igneous Provinces: Continental, Oceanic, and Planetary Flood Volcanism. American Geophysical Union Geophysical Monograph Series, 1997, 100: 183-216.

    Google Scholar

    [75] Ito G, Clift P D. Subsidence and growth of Pacific Cretaceous plateaus [J]. Earth and Planetary Science Letters, 1998, 161(1-4): 85-100. doi: 10.1016/S0012-821X(98)00139-3

    CrossRef Google Scholar

    [76] Tejada M L G, Mahoney J J, Neal C R, et al. Basement geochemistry and geochronology of central Malaita, Solomon Islands, with implications for the origin and evolution of the Ontong Java Plateau [J]. Journal of Petrology, 2002, 43(3): 449-484. doi: 10.1093/petrology/43.3.449

    CrossRef Google Scholar

    [77] Richardson W P, Okal E A, Van der Lee S. Rayleigh-wave tomography of the Ontong-Java Plateau [J]. Physics of the Earth and Planetary Interiors, 2000, 118(1-2): 29-51. doi: 10.1016/S0031-9201(99)00122-3

    CrossRef Google Scholar

    [78] Miura S, Suyehiro K, Shinohara M, et al. Seismological structure and implications of collision between the Ontong Java Plateau and Solomon Island Arc from ocean bottom seismometer-airgun data [J]. Tectonophysics, 2004, 389(3-4): 191-220. doi: 10.1016/j.tecto.2003.09.029

    CrossRef Google Scholar

    [79] Smart K A, Tappe S, Ishikawa A, et al. K-rich hydrous mantle lithosphere beneath the Ontong Java Plateau: Significance for the genesis of oceanic basalts and Archean continents [J]. Geochimica et Cosmochimica Acta, 2019, 248: 311-342. doi: 10.1016/j.gca.2019.01.013

    CrossRef Google Scholar

    [80] Stern R J. Subduction initiation: spontaneous and induced [J]. Earth and Planetary Science Letters, 2004, 226(3-4): 275-292. doi: 10.1016/S0012-821X(04)00498-4

    CrossRef Google Scholar

    [81] Stern R J, Gerya T. Subduction initiation in nature and models: A review [J]. Tectonophysics, 2018, 746: 173-198. doi: 10.1016/j.tecto.2017.10.014

    CrossRef Google Scholar

    [82] Maruyama S, Utsunomiya A, Ishikawa A. Ontong-Java Plateau, the World's largest Oceanic Plateau, has Been subducted 50%, with the Remaining 50% on the Surface, and with a < 1% accretion on the hanging wall of the Solomon Islands [J]. Journal of Geography, 2011, 120(6): 1035-1044. doi: 10.5026/jgeography.120.1035

    CrossRef Google Scholar

    [83] Stern R J. 板块构造启动的时间和机制: 理论和经验探索[J]. 科学通报, 2007, 52(5):578-591 doi: 10.3321/j.issn:0023-074X.2007.05.014

    CrossRef Google Scholar

    STERN R J. When and how did plate tectonics begin? Theoretical and empirical considerations [J]. Chinese Science Bulletin, 2007, 52(5): 578-591. doi: 10.3321/j.issn:0023-074X.2007.05.014

    CrossRef Google Scholar

    [84] Niu Y L, O'Hara M J, Pearce J A. Initiation of subduction zones as a consequence of lateral compositional buoyancy contrast within the lithosphere: a petrological perspective [J]. Journal of Petrology, 2003, 44(5): 851-866. doi: 10.1093/petrology/44.5.851

    CrossRef Google Scholar

    [85] Hall C E, Gurnis M, Sdrolias M, et al. Catastrophic initiation of subduction following forced convergence across fracture zones [J]. Earth and Planetary Science Letters, 2003, 212(1-2): 15-30. doi: 10.1016/S0012-821X(03)00242-5

    CrossRef Google Scholar

    [86] Gurnis M, Hall C, Lavier L. Evolving force balance during incipient subduction [J]. Geochemistry, Geophysics, Geosystems, 2004, 5(7): Q07001.

    Google Scholar

    [87] Nikolaeva K, Gerya T V, Marques F O. Subduction initiation at passive margins: Numerical modeling [J]. Journal of Geophysical Research, 2010, 115(B3): B03406.

    Google Scholar

    [88] Ishizuka O, Tani K, Reagan M K, et al. The timescales of subduction initiation and subsequent evolution of an oceanic island arc [J]. Earth and Planetary Science Letters, 2011, 306(3-4): 229-240. doi: 10.1016/j.jpgl.2011.04.006

    CrossRef Google Scholar

    [89] Musgrave R J. Paleomagnetism and tectonics of Malaita, Solomon islands [J]. Tectonics, 1990, 9(4): 735-759. doi: 10.1029/TC009i004p00735

    CrossRef Google Scholar

    [90] Honza E, Davies H L, Keene J B, et al. Plate boundaries and evolution of the Solomon Sea region [J]. Geo-Marine Letters, 1987, 7(3): 161-168. doi: 10.1007/BF02238046

    CrossRef Google Scholar

    [91] Hall R. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations [J]. Journal of Asian Earth Sciences, 2002, 20(4): 353-431. doi: 10.1016/S1367-9120(01)00069-4

    CrossRef Google Scholar

    [92] 李忠海, 刘明启, GERYA T. 俯冲隧道中物质运移和流体-熔体活动的动力学数值模拟[J]. 中国科学: 地球科学, 2015, 58(8):1251-1268

    Google Scholar

    LI Zhonghai, LIU Mingqi, GERYA T. Material transportation and fluid-melt activity in the subduction channel: numerical modeling [J]. Science China: Earth Sciences, 2015, 58(8): 1251-1268.

    Google Scholar

    [93] Hacker B R, Peacock S M, Abers G A, et al. Subduction factory 2. Are intermediate-depth earthquakes in subducting slabs linked to metamorphic dehydration reactions? [J]. Journal of Geophysical Research, 2003, 108(b1): 2030.

    Google Scholar

    [94] 郑永飞, 陈仁旭, 徐峥, 等. 俯冲带中的水迁移[J]. 中国科学: 地球科学, 2016, 59(4):651-682

    Google Scholar

    ZHENG Yongfei, CHEN Renxu, XU Zheng, et al. The transport of water in subduction zones [J]. Science China: Earth Sciences, 2016, 59(4): 651-682.

    Google Scholar

    [95] Sumino H, Burgess R, Mizukami T, et al. Seawater-derived noble gases and halogens preserved in exhumed mantle wedge peridotite [J]. Earth and Planetary Science Letters, 2010, 294(1-2): 163-172. doi: 10.1016/j.jpgl.2010.03.029

    CrossRef Google Scholar

    [96] Alt J C, Garrido C J, Shanks W C III, et al. Recycling of water, carbon, and sulfur during subduction of serpentinites: A stable isotope study of Cerro del Almirez, Spain [J]. Earth and Planetary Science Letters, 2012, 327-328: 50-60. doi: 10.1016/j.jpgl.2012.01.029

    CrossRef Google Scholar

    [97] Stern R J. Subduction zones [J]. Reviews of Geophysics, 2002, 40(4): 1012. doi: 10.1029/2001RG000108

    CrossRef Google Scholar

    [98] van der Lee S, Regenauer-Lieb K, Yuen D A. The role of water in connecting past and future episodes of subduction [J]. Earth and Planetary Science Letters, 2008, 273(1-2): 15-27. doi: 10.1016/j.jpgl.2008.04.041

    CrossRef Google Scholar

    [99] 孙卫东, 凌明星, 杨晓勇, 等. 洋脊俯冲与斑岩铜金矿成矿[J]. 中国科学: 地球科学, 2010, 53(4):475-484

    Google Scholar

    SUN Weidong, LING Mingxing, YANG Xiaoyong, et al. Ridge subduction and porphyry copper-gold mineralization: An overview [J]. Science China: Earth Sciences, 2010, 53(4): 475-484.

    Google Scholar

    [100] Ribeiro J M, Lee C T A. An imbalance in the deep water cycle at subduction zones: The potential importance of the fore-arc mantle [J]. Earth and Planetary Science Letters, 2017, 479: 298-309. doi: 10.1016/j.jpgl.2017.09.018

    CrossRef Google Scholar

    [101] Rüpke L H, Morgan J P, Hort M, et al. Serpentine and the subduction zone water cycle [J]. Earth and Planetary Science Letters, 2004, 223(1-2): 17-34. doi: 10.1016/j.jpgl.2004.04.018

    CrossRef Google Scholar

    [102] Gerya T V, Stern R J, Baes M, et al. Plate tectonics on the Earth triggered by plume-induced subduction initiation [J]. Nature, 2015, 527(7577): 221-225. doi: 10.1038/nature15752

    CrossRef Google Scholar

    [103] Shao W Y, Chung S L, Chen W S, et al. Old continental zircons from a young oceanic arc, Eastern Taiwan: Implications for Luzon subduction initiation and Asian accretionary orogeny [J]. Geology, 2015, 43(6): 479-482. doi: 10.1130/G36499.1

    CrossRef Google Scholar

    [104] MacKenzie L S, Abers G A, Rondenay S, et al. Imaging a steeply dipping subducting slab in Southern Central America [J]. Earth and Planetary Science Letters, 2010, 296(3-4): 459-468. doi: 10.1016/j.jpgl.2010.05.033

    CrossRef Google Scholar

    [105] Zhao D P. Big mantle wedge, anisotropy, slabs and earthquakes beneath the Japan Sea [J]. Physics of the Earth and Planetary Interiors, 2017, 270: 9-28. doi: 10.1016/j.pepi.2017.06.009

    CrossRef Google Scholar

    [106] Dymkova D, Gerya T. Porous fluid flow enables oceanic subduction initiation on Earth [J]. Geophysical Research Letters, 2013, 40(21): 5671-5676. doi: 10.1002/2013GL057798

    CrossRef Google Scholar

    [107] Leng W, Gurnis M. Subduction initiation at relic arcs [J]. Geophysical Research Letters, 2015, 42(17): 7014-7021. doi: 10.1002/2015GL064985

    CrossRef Google Scholar

    [108] Nair R, Chacko T. Role of oceanic plateaus in the initiation of subduction and origin of continental crust [J]. Geology, 2008, 36(7): 583-586. doi: 10.1130/G24773A.1

    CrossRef Google Scholar

    [109] Korenaga J. Thermal cracking and the deep hydration of oceanic lithosphere: A key to the generation of plate tectonics? [J]. Journal of Geophysical Research, 2007, 112(B5): B05408.

    Google Scholar

    [110] 李忠海. 大陆俯冲-碰撞-折返的动力学数值模拟研究综述[J]. 中国科学: 地球科学, 2014, 57(1):47-69

    Google Scholar

    LI Zhonghai. A review on the numerical geodynamic modeling of continental subduction, collision and exhumation [J]. Science China: Earth Sciences, 2014, 57(1): 47-69.

    Google Scholar

    [111] 冷伟, 毛伟. 俯冲带热结构的动力学模型研究[J]. 中国科学: 地球科学, 2015, 58(7):1070-1083

    Google Scholar

    LENG Wei, MAO Wei. Geodynamic modeling of thermal structure of subduction zones [J]. Science China: Earth Sciences, 2015, 58(7): 1070-1083.

    Google Scholar

    [112] Nakao A, Iwamori H, Nakakuki T. Effects of water transportation on subduction dynamics: Roles of viscosity and density reduction [J]. Earth and Planetary Science Letters, 2016, 454: 178-191. doi: 10.1016/j.jpgl.2016.08.016

    CrossRef Google Scholar

    [113] Arcay D, Tric E, Doin M P. Numerical simulations of subduction zones: Effect of slab dehydration on the mantle wedge dynamics [J]. Physics of the Earth and Planetary Interiors, 2005, 149(1-2): 133-153. doi: 10.1016/j.pepi.2004.08.020

    CrossRef Google Scholar

    [114] Baes M, Gerya T, Sobolev S V. 3-D thermo-mechanical modeling of plume-induced subduction initiation [J]. Earth and Planetary Science Letters, 2016, 453: 193-203. doi: 10.1016/j.jpgl.2016.08.023

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Article Metrics

Article views(4081) PDF downloads(177) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint