2020 Vol. 40, No. 2
Article Contents

JIANG Gaolei, LIU Linjing, MAO Xin. Trace elements in non-marine Ostracods and their application to paleoenvironment reconstruction[J]. Marine Geology & Quaternary Geology, 2020, 40(2): 192-199. doi: 10.16562/j.cnki.0256-1492.2019041601
Citation: JIANG Gaolei, LIU Linjing, MAO Xin. Trace elements in non-marine Ostracods and their application to paleoenvironment reconstruction[J]. Marine Geology & Quaternary Geology, 2020, 40(2): 192-199. doi: 10.16562/j.cnki.0256-1492.2019041601

Trace elements in non-marine Ostracods and their application to paleoenvironment reconstruction

  • The trace elements (Mg and Sr in this paper) in non-marine Ostracoda could be used as proxies to reconstruct the paleoenvironment of paleo-lake qualitatively or quantitatively. Since their first application to paleoenvironmental reconstruction in the 1980s, great progress has been made in the past 30 years. There are two factors which influence the proxies. One is the changes in M/Ca ratio of the host water (M refers to Mg plus Sr in this paper), including seasonal changes, microenvironmental differentiation and lake evolution process. This type of factors affects the M/Ca ratio in Ostracoda shells through the changes in M/Ca ratio in the host water,and may lead to the increase in error or decrease in reliability of the reconstruction results. The other is the partition coefficient of Ostracoda shells, including M/Ca of host water, temperature, alkalinity and so on, which can directly affect the bio-chemical process of shell secretion and calcification. This type of influencing factors may severely influence the quantitative reconstruction of paleoenvironment. For improving the accuracy and reliability of the results of paleoenvironmental reconstruction, living habits of modern Ostracoda and their trace elements composition in different environments should be carefully studied as reference cases.

  • 加载中
  • [1] 郝诒纯, 茅绍智. 微体古生物学教程[M]. 2版. 武汉: 中国地质大学出版社, 1993: 44-67.

    Google Scholar

    HAO Yichun, MAO Shaozhi. A Course in Micropalaeontology[M]. 2md ed. Wuhan: China University of Geosciences Press, 1993: 44-67.

    Google Scholar

    [2] 禹娜. 中国非海水介形类[M]. 上海: 上海教育出版社, 2014: 1-25.

    Google Scholar

    YU Na. Non-marine Ostracoda from China[M]. Shanghai: Shanghai Education Publishing House, 2014: 1-25.

    Google Scholar

    [3] Meisch C. Freshwater Ostracoda of western and Central Europe[M]//Schwoerbel J, Zwick P. Süßwasserfauna von Mitteleuropa 8/3. Heidelberg, Berlin, 2000: 522.

    Google Scholar

    [4] Zhai D Y, Xiao J L, Fan J W, et al. Spatial heterogeneity of the population age structure of the ostracode Limnocythere inopinata in Hulun Lake, Inner Mongolia and its implications [J]. Hydrobiologia, 2013, 716(1): 29-46. doi: 10.1007/s10750-013-1541-6

    CrossRef Google Scholar

    [5] Turpen J B, Angell R W. Aspects of molting and calcification in the ostracod Heterocypris [J]. Biological Bulletin, 1971, 140(2): 331-338. doi: 10.2307/1540077

    CrossRef Google Scholar

    [6] Roca J R, Wansard G. Temperature influence on development and calcification of Herpetocypris brevicaudata Kaufmann, 1900(Crustacea: Ostracoda) under experimental conditions [J]. Hydrobiologia, 1997, 347(1-3): 91-95.

    Google Scholar

    [7] De Deckker P, Chivas A R, Shelley J M G. Uptake of Mg and Sr in the euryhaline ostracod Cyprideis determined from in vitro experiments [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1999, 148(1-3): 105-116. doi: 10.1016/S0031-0182(98)00178-3

    CrossRef Google Scholar

    [8] Holmes J A, De Deckker P. Chapter 8-The chemical composition of ostracod shells: Applications in quaternary palaeoclimatology [J]. Developments in Quaternary Sciences, 2012, 17: 131-143. doi: 10.1016/B978-0-444-53636-5.00008-1

    CrossRef Google Scholar

    [9] Dettman D L, Dwyer G S. Chapter 9- The calibration of environmental controls on elemental ratios in ostracod shell calcite: A critical assessment [J]. Developments in Quaternary Sciences, 2012, 17: 145-163. doi: 10.1016/B978-0-444-53636-5.00009-3

    CrossRef Google Scholar

    [10] Börner N, De Baere B, Yang Q C, et al. Ostracod shell chemistry as proxy for paleoenvironmental change [J]. Quaternary International, 2013, 313-314: 17-37. doi: 10.1016/j.quaint.2013.09.041

    CrossRef Google Scholar

    [11] 沈吉, 王苏民, Matsumoto R, 等. 内蒙古岱海古盐度定量复原初探[J]. 科学通报, 2000, 45(17):1885-1889 doi: 10.3321/j.issn:0023-074X.2000.17.017

    CrossRef Google Scholar

    SHEN Ji, WANG Sumin, Matsumoto R, et al. A preliminary study on palaeosalinity recovery in Daihai, Inner Mongolia [J]. Chinese Science Bulletin, 2000, 45(17): 1885-1889. doi: 10.3321/j.issn:0023-074X.2000.17.017

    CrossRef Google Scholar

    [12] 张恩楼, 沈吉, 王苏民, 等. 近0.9 ka来青海湖湖水盐度的定量恢复[J]. 科学通报, 2004, 49(7):730-734 doi: 10.1007/BF03184273

    CrossRef Google Scholar

    ZHANG Enlou, SHEN Ji, WANG Sumin, et al. Quantitative reconstruction of the paleosalinity at Qinghai Lake in the past 900 years [J]. Chinese Science Bulletin, 2004, 49(7): 730-734. doi: 10.1007/BF03184273

    CrossRef Google Scholar

    [13] 杨红梅. 青藏高原通天河盆地五道梁组介形虫壳体Mg/Ca和Sr/Ca地球化学特征及古环境意义[J]. 成都理工大学学报: 自然科学版, 2009, 36(3):311-319

    Google Scholar

    YANG Hongmei. The Palaeolimnological record from Northern Tibet based on trace element chemistry of ostracod shells and the paleoenvironment implication in Tongtianhe basin, Tibet, China [J]. Journal of Chengdu University of Technology: Science & Technology Edition, 2009, 36(3): 311-319.

    Google Scholar

    [14] Kober B, Schwalb A, Schettler G, et al. Constraints on paleowater dissolved loads and on catchment weathering over the past 16 ka from 87Sr/86Sr ratios and Ca/Mg/Sr chemistry of freshwater ostracode tests in sediments of Lake Constance, Central Europe [J]. Chemical Geology, 2007, 240(3-4): 361-376. doi: 10.1016/j.chemgeo.2007.03.005

    CrossRef Google Scholar

    [15] Zhai D Y, Xiao J L, Zhou L, et al. Holocene East Asian monsoon variation inferred from species assemblage and shell chemistry of the ostracodes from Hulun Lake, Inner Mongolia [J]. Quaternary Research, 2011, 75(3): 512-522. doi: 10.1016/j.yqres.2011.02.008

    CrossRef Google Scholar

    [16] Holmes J A. Trace-element and stable-isotope geochemistry of non-marine ostracod shells in Quaternary palaeoenvironmental reconstruction [J]. Journal of Paleolimnology, 1996, 15(3): 223-235. doi: 10.1007/BF00213042

    CrossRef Google Scholar

    [17] Curry B, Henne P D, Mezquita-Joanes F, et al. Holocene paleoclimate inferred from salinity histories of adjacent lakes in southwestern Sicily (Italy) [J]. Quaternary Science Reviews, 2016, 150: 67-83. doi: 10.1016/j.quascirev.2016.08.013

    CrossRef Google Scholar

    [18] Lev L, Stein M, Ito E, et al. Sedimentary, geochemical and hydrological history of Lake Kinneret during the past 28 000 years [J]. Quaternary Science Reviews, 2019, 209: 114-128. doi: 10.1016/j.quascirev.2019.02.015

    CrossRef Google Scholar

    [19] Jin Z D, Bickle M J, Chapman H J, et al. Ostracod Mg/Sr/Ca and 87Sr/86Sr geochemistry from Tibetan lake sediments: Implications for early to mid-Pleistocene Indian monsoon and catchment weathering [J]. Boreas, 2011, 40(2): 320-331. doi: 10.1111/j.1502-3885.2010.00184.x

    CrossRef Google Scholar

    [20] Chivas A R, De Deckker P, Shelly J M G. Magnesium, Strontium and barium partitioning in nonmarine ostracode shells and their use in paleoenvironmental reconstructions - a preliminary study[M]//Maddocks R F. Applications of Ostracoda. Houston: University Houston Geosciences, 1983: 238-249.

    Google Scholar

    [21] Chivas A R, De Dekker P, Shelley J M G. Strontium content of ostracods indicates lacustrine palaeosalinity [J]. Nature, 1985, 316(6025): 251-253. doi: 10.1038/316251a0

    CrossRef Google Scholar

    [22] Chivas A R, De Deckker P, Shelley J M G. Magnesium and strontium in non-marine ostracod shells as indicators of palaeosalinity and palaeotemperature [J]. Hydrobiologia, 1986, 143(1): 135-142. doi: 10.1007/BF00026656

    CrossRef Google Scholar

    [23] Chivas A R, De Deckker P, Shelley J M G. Magnesium content of non-marine ostracod shells: A new palaeosalinometer and palaeothermometer [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1986, 54(1-4): 43-61. doi: 10.1016/0031-0182(86)90117-3

    CrossRef Google Scholar

    [24] De Deckker P, Chivas A R, Shelley J M G, et al. Ostracod shell chemistry: A new palaeoenvironmental indicator applied to a regressive/transgressive record from the gulf of Carpentaria, Australia [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1988, 66(3-4): 231-241. doi: 10.1016/0031-0182(88)90201-5

    CrossRef Google Scholar

    [25] Engstrom D R, Nelson S R. Paleosalinity from trace metals in fossil ostracodes compared with observational records at Devils Lake, North Dakota, USA [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1991, 83(4): 295-312. doi: 10.1016/0031-0182(91)90057-X

    CrossRef Google Scholar

    [26] Xia J, Ito E, Engstrom D R. Geochemistry of ostracode calcite: Part 1. An experimental determination of oxygen isotope fractionation [J]. Geochimica Et Cosmochimica Acta, 1997, 61(2): 377-382. doi: 10.1016/S0016-7037(96)00351-1

    CrossRef Google Scholar

    [27] Palacios-Fest M R, Dettman D L. Temperature controls monthly variation in Ostracode valve Mg/Ca: Cypridopsis vidua from a small lake in Sonora, Mexico [J]. Geochimica et Cosmochimica Acta, 2001, 65(15): 2499-2507. doi: 10.1016/S0016-7037(01)00602-0

    CrossRef Google Scholar

    [28] 夏娟娟. 湖相介形虫壳的稳定同位素和微量元素在古气候研究中的应用[J]. 第四纪研究, 1997, 16(4):345-352

    Google Scholar

    XIA Juanjuan. Sable-isotope and trace-element composition on ostracode shells and their application to paleoclimatic reconstruction [J]. Quaternary Sciences, 1997, 16(4): 345-352.

    Google Scholar

    [29] Wansard G. Quantification of paleotemperature changes during isotopic stage 2 in the La Draga continental sequence (NE Spain) based on the Mg/Ca ratio of freshwater ostracods [J]. Quaternary Science Reviews, 1996, 15(2-3): 237-245. doi: 10.1016/0277-3791(95)00044-5

    CrossRef Google Scholar

    [30] Dwyer G S, Cronin T M, Baker P A, et al. North Atlantic deepwater temperature change during Late Pliocene and Late Quaternary climatic cycles [J]. Science, 1995, 270(5240): 1347-1351. doi: 10.1126/science.270.5240.1347

    CrossRef Google Scholar

    [31] Cronin T M, Dwyer G S, Baker P A, et al. Orbital and suborbital variability in North Atlantic bottom water temperature obtained from deep-sea ostracod Mg/Ca ratios [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2000, 162(1-2): 45-57. doi: 10.1016/S0031-0182(00)00104-8

    CrossRef Google Scholar

    [32] Holmes J A, Street-Perrott F A, Ivanovich M, et al. A late Quaternary palaeolimnological record from Jamaica based on trace-element chemistry of ostracod shells [J]. Chemical Geology, 1995, 124(1-2): 143-160. doi: 10.1016/0009-2541(95)00032-H

    CrossRef Google Scholar

    [33] De Deckker P, Magee J W, Shelley J M G. Late Quaternary palaeohydrological changes in the large playa Lake Frome in central Australia, recorded from the Mg/Ca and Sr/Ca in ostracod valves and biotic remains [J]. Journal of Arid Environments, 2011, 75(1): 38-50. doi: 10.1016/j.jaridenv.2010.08.004

    CrossRef Google Scholar

    [34] Mischke S, Wünnemann B. The Holocene salinity history of Bosten Lake (Xinjiang, China) inferred from ostracod species assemblages and shell chemistry: Possible palaeoclimatic implications [J]. Quaternary International, 2006, 154-155: 100-112. doi: 10.1016/j.quaint.2006.02.014

    CrossRef Google Scholar

    [35] 胡广, 金章东, 张飞. 利用介形类壳体Sr, Mg重建古环境受自生碳酸盐矿物的限制及机理探讨[J]. 中国科学: 地球科学, 2008, 51(5):654-664 doi: 10.1007/s11430-008-0043-2

    CrossRef Google Scholar

    HU Guang, JIN Zhangdong, ZHANG Fei. Constraints of authigenic carbonates on trace elements (Sr, Mg) of lacustrine ostracod shells in paleoenvironment reconstruction and its mechanism [J]. Science in China Series D: Earth Science, 2008, 51(5): 654-664. doi: 10.1007/s11430-008-0043-2

    CrossRef Google Scholar

    [36] Zhang J W, Holmes J A, Chen F H, et al. An 850-year ostracod-shell trace-element record from Sugan Lake, northern Tibetan Plateau, China: Implications for interpreting the shell chemistry in high-Mg/Ca waters [J]. Quaternary International, 2009, 194(1-2): 119-133. doi: 10.1016/j.quaint.2008.05.003

    CrossRef Google Scholar

    [37] Xia J, Engstrom D R, Ito E. Geochemistry of ostracode calcite: Part 2. The effects of water chemistry and seasonal temperature variation on Candona rawsoni [J]. Geochimica Et Cosmochimica Acta, 1997, 61(2): 383-391. doi: 10.1016/S0016-7037(96)00354-7

    CrossRef Google Scholar

    [38] Wansard G, Mezquita F. The response of ostracod shell chemistry to seasonal change in a Mediterranean freshwater spring environment [J]. Journal of Paleolimnology, 2001, 25(1): 9-16. doi: 10.1023/A:1008121029324

    CrossRef Google Scholar

    [39] De Deckker P. Trace elemental distribution in ostracod valves. From solution ICPMS and laser ablation ICPMS to microprobe mapping: a tribute to Rick Forester [J]. Hydrobiologia, 2017, 786(1): 23-39. doi: 10.1007/s10750-015-2534-4

    CrossRef Google Scholar

    [40] Yang Q C, Jochum K P, Stoll B, et al. Trace element variability in single ostracod valves as a proxy for hydrochemical change in Nam Co, central Tibet, during the Holocene [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 399: 225-235. doi: 10.1016/j.palaeo.2014.01.014

    CrossRef Google Scholar

    [41] Ito E, Forester R M. Changes in continental ostracode shell chemistry; uncertainty of cause [J]. Hydrobiologia, 2009, 620(1): 1-15. doi: 10.1007/s10750-008-9622-7

    CrossRef Google Scholar

    [42] Van der Meeren T, Ito E, Verschuren D, et al. Valve chemistry of Limnocythere inopinata (Ostracoda) in a cold arid environment - Implications for paleolimnological interpretation [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 306(3-4): 116-126. doi: 10.1016/j.palaeo.2011.04.006

    CrossRef Google Scholar

    [43] Eugster H P, Jones B F. Behavior of major solutes during closed-basin brine evolution [J]. American Journal of Science, 1979, 279(6): 609-631. doi: 10.2475/ajs.279.6.609

    CrossRef Google Scholar

    [44] 李军, 余俊清. 湖相介形类壳体地球化学在环境变化研究中的应用与进展[J]. 湖泊科学, 2001, 13(4):367-375 doi: 10.3321/j.issn:1003-5427.2001.04.012

    CrossRef Google Scholar

    LI Jun, YU Junqing. Lacustrine ostracodes as environmental change indicators: application and advance [J]. Journal of Lake Sciences, 2001, 13(4): 367-375. doi: 10.3321/j.issn:1003-5427.2001.04.012

    CrossRef Google Scholar

    [45] Gouramanis C, De Deckker P. Alkalinity control on the partition coefficients in lacustrine ostracodes from Australia [J]. Geology, 2010, 38(4): 359-362. doi: 10.1130/G30235.1

    CrossRef Google Scholar

    [46] Wansard G, De Deckker P, Julià R. Variability in ostracod partition coefficients D(Sr) and D(Mg): Implications for lacustrine palaeoenvironmental reconstructions [J]. Chemical Geology, 1998, 146(1-2): 39-54. doi: 10.1016/S0009-2541(97)00165-4

    CrossRef Google Scholar

    [47] Decrouy L, Vennemann T W, Ariztegui D. Mg/Ca and Sr/Ca of ostracod valves from living species of Lake Geneva [J]. Chemical Geology, 2012, 314-317: 45-56. doi: 10.1016/j.chemgeo.2012.04.007

    CrossRef Google Scholar

    [48] 赵泉鸿, 戴中宁, 任炽刚, 等. 活介形虫壳体中Mg/Ca比值与温度和盐度关系的试验[J]. 科学通报, 1994, 39(15):1409-1412 doi: 10.1360/csb1994-39-15-1409

    CrossRef Google Scholar

    ZHAO Quanhong, DAI Zhongning, REN Chigang, et al. The experiment about relations between Mg/Ca ratios and temperature or salinity in the ostracode shell [J]. Chinese Science Bulletin, 1994, 39(15): 1409-1412. doi: 10.1360/csb1994-39-15-1409

    CrossRef Google Scholar

    [49] Wansard G, Roca J R, Mezquita F. Experimental determination of strontium and magnesium partitioning in calcite of the freshwater ostracod Herpetocypris intermedia [J]. Fundamental and Applied Limnology, 1999, 145(2): 237-253. doi: 10.1127/archiv-hydrobiol/145/1999/237

    CrossRef Google Scholar

    [50] 杨藩, 董宁, 乔子真, 等. 青海柴达木盆地与青海湖第四纪介形类Limnocythere的分类与生境[J]. 微体古生物学报, 2008, 25(4):316-332 doi: 10.3969/j.issn.1000-0674.2008.04.002

    CrossRef Google Scholar

    YANG Fan, DONG Ning, QIAO Zhizhen, et al. Taxonomy and habitat of Quaternary Limnocythere (ostracoda) from the Qaidam Basin and the Qinghaihu Lake, Qinghai [J]. Acta Micropalaeontologica Sinica, 2008, 25(4): 316-332. doi: 10.3969/j.issn.1000-0674.2008.04.002

    CrossRef Google Scholar

    [51] 庞其清, 翟大有, 赵筑簾, 等. 泥河湾盆地晚新生代微体古生物地层及环境演化的探讨[J]. 地质学报, 2015, 89(5):817-842 doi: 10.3969/j.issn.0001-5717.2015.05.001

    CrossRef Google Scholar

    PANG Qiqing, ZHAI Dayou, ZHAO Zhulian, et al. Late Cenozoic micropalaeontology in the Nihewan Basin and its implications for environmental evolution [J]. Acta Geologica Sinica, 2015, 89(5): 817-842. doi: 10.3969/j.issn.0001-5717.2015.05.001

    CrossRef Google Scholar

    [52] Li X Z, Liu W G, Zhang L, et al. Distribution of Recent ostracod species in the Lake Qinghai area in northwestern China and its ecological significance [J]. Ecological Indicators, 2010, 10(4): 880-890. doi: 10.1016/j.ecolind.2010.01.012

    CrossRef Google Scholar

    [53] Zhai D Y, Xiao J L, Fan J W, et al. Differential transport and preservation of the instars of Limnocythere inopinata (Crustacea, Ostracoda) in three large brackish lakes in northern China [J]. Hydrobiologia, 2015, 747(1): 1-18. doi: 10.1007/s10750-014-2118-8

    CrossRef Google Scholar

    [54] Zhang W Y, Mischke S, Zhang C J, et al. Ostracod distribution and habitat relationships in the Kunlun Mountains, northern Tibetan Plateau [J]. Quaternary International, 2013, 313-314: 38-46. doi: 10.1016/j.quaint.2013.06.020

    CrossRef Google Scholar

    [55] 李燕, 金章东. 青海湖介形虫壳体丰度与氧碳同位素的季节和年际变化及其控制因素——来自沉积物捕获器的研究[J]. 地球环境学报, 2013, 4(3):1328-1337 doi: 10.7515/JEE201303005

    CrossRef Google Scholar

    LI Yan, JIN Zhangdong. Seasonal and interannual variations in abundance and oxygen-carbon isotopic compositions of ostracod shells from Lake Qinghai and their controlling factors: A case study on the sediment trap [J]. Journal of Earth Environment, 2013, 4(3): 1328-1337. doi: 10.7515/JEE201303005

    CrossRef Google Scholar

    [56] von Grafenstein U, Erlernkeuser H, Trimborn P. Oxygen and carbon isotopes in modern fresh-water ostracod valves: assessing vital offsets and autecological effects of interest for palaeoclimate studies [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1999, 148(1-3): 133-152. doi: 10.1016/S0031-0182(98)00180-1

    CrossRef Google Scholar

    [57] Davis K J, Dove P M, De Yoreo J J. The role of Mg2+ as an impurity in calcite growth [J]. Science, 2000, 290(5494): 1134-1137. doi: 10.1126/science.290.5494.1134

    CrossRef Google Scholar

    [58] Stephenson A E, De Yoreo J J, Wu L, et al. Peptides enhance magnesium signature in calcite: insights into origins of vital effects [J]. Science, 2008, 322(5902): 724-727. doi: 10.1126/science.1159417

    CrossRef Google Scholar

    [59] Teeter J W, Quick T J. Magnesium-salinity relation in the saline lake ostracode Cyprideis americana [J]. Geology, 1990, 18(3): 220-222. doi: 10.1130/0091-7613(1990)018<0220:MSRITS>2.3.CO;2

    CrossRef Google Scholar

    [60] 朱正杰, 李航, 任世聪, 等. 青海湖近800年来沉积物介形虫Li/Ca比值的古环境指示意义[J]. 海洋地质与第四纪地质, 2010, 30(4):115-121

    Google Scholar

    ZHU Zhengjie, LI Hang, REN Shicong, et al. Palaeoenvironmental implications of Li/Ca ratios of ostracod shells from Lake Qinghai During the past 800 years [J]. Marine Geology & Quaternary Geology, 2010, 30(4): 115-121.

    Google Scholar

    [61] Zhu Z J, Xiang Y, Li Y J. A 1000-year record of Mg/Li and Li/Ca ratios of ostracod shells in Lake Qinghai, NE Tibetan Plateau [J]. Acta Geologica Sinica, 2014, 88(S1): 39-40. doi: 10.1111/1755-6724.12265_16

    CrossRef Google Scholar

    [62] Gouramanis C, Wilkins D, De Deckker P. 6000 years of environmental changes recorded in Blue Lake, South Australia, based on ostracod ecology and valve chemistry [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 297(1): 223-237. doi: 10.1016/j.palaeo.2010.08.005

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Article Metrics

Article views(1428) PDF downloads(118) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint