Citation: | WANG Shuling, BAI Fenglong, HUANG Wenxing, SUN Zhangtao. Current status and problems of exploration and development of world ocean metal mineral resources[J]. Marine Geology & Quaternary Geology, 2020, 40(3): 160-170. doi: 10.16562/j.cnki.0256-1492.2019032101 |
The world seabed holds abundant metal mineral resources. The minerals on the seafloor such as cobalt, nickel, rare earth, and other minerals, are tens or even hundreds of times higher than those on land. Therefore, they are considered the ideally alternatives for future mineral explorations. This paper introduces the current status, distribution and potential of these resources in the world’s ocean, including polymetallic nodules, Cobalt-rich crusts, polymetallic sulfides and deep-sea REEs. This review analyzes and summarizes the cases of metal mineral exploration contracts in the international subsea area since the 21st century, and discusses the advances in the mining tests of polymetallic nodules and polymetallic sulfides in the Exclusive Economic Zones of Russia, Papua New Guinea, Japan, China and other countries. Considering that the world's ocean metal mineral resources are abundant and have great potential, their exploration and mining are increasingly emphasized by governments all around the world. International seabed exploration contracts have been continuously increased, and commercial exploitation has been put on the agenda, but the mining of metal mineral resources in the international seabed areas still faces many constraints and challenges in terms of technology, regulations and environmental protection.
[1] | Андреев С И, Аникеева Л И, Казакова В Е. Минерально-сырьевые ресурсы мирового океана и перспективы их освоения//Минеральные ресурсы России[Z]. Экономика и управление, 2011, (6): 7-18. |
[2] | Lusty P A J, Murton B J. Deep-ocean mineral deposits: metal resources and windows into earth processes [J]. Elements, 2018, 14(5): 301-306. doi: 10.2138/gselements.14.5.301 |
[3] | Минералого-геохимические методы изучения железомарганцевых руд Мирового океана / Тр. Совещания"Совершенствование минералого-геохимических методов изучения и подготовки к освоению железомарганцевых руд Мирового океана". 2009: 1-321. |
[4] | Hein J R, Koschinsky A. Deep-ocean ferromanganese crusts and nodules[M]//Holland D, Turekian KK. Treatise on Geochemistry. 2nd ed. Oxford: Elsevier, 2014, 13: 273-291. |
[5] | Petersen S, Krätschell A, Augustin N, et al. News from the seabed – geological characteristics and resource potential of deep-sea mineral resources [J]. Marine Policy, 2016, 70: 175-187. doi: 10.1016/j.marpol.2016.03.012 |
[6] | Hein J R. Cobaltrich ferromanganese crusts in the Pacific[M]//Cronan DS. Handbook of Marine Mineral Deposits. Florida: CRC Press, 2000: 239-279. |
[7] | Hein J R, Conrad T A, Dunham R E. Seamount characteristics and mine-site model applied to exploration- and mining-lease-block selection for cobalt-rich ferromanganese crusts [J]. Marine Georesources & Geotechnology, 2009, 27(2): 160-176. |
[8] | Lusty P A J, Hein J R, Josso P. Formation and occurrence of ferromanganese crusts: earth’s storehouse for critical metals [J]. Elements, 2018, 14(5): 313-318. doi: 10.2138/gselements.14.5.313 |
[9] | U.S. Geological Survey. Mineral Commodity Summaries 2018[M]. Reston, Virginia: U.S. Geological Survey, 2018: 1-200. |
[10] | Cailteux J L H, Kampunzu A B, Lerouge C, et al. Genesis of sediment-hosted stratiform copper–cobalt deposits, central African Copperbelt [J]. Journal of African Earth Sciences, 2005, 42(1-5): 134-158. doi: 10.1016/j.jafrearsci.2005.08.001 |
[11] | Petersen S, Lehrmann B, Murton B J. Modern seafloor hydrothermal systems: new perspectives on ancient ore-forming processes [J]. Elements, 2018, 14(5): 307-312. doi: 10.2138/gselements.14.5.307 |
[12] | Beaulieu S E, Baker E T, German C R. Where are the undiscovered hydrothermal vents on oceanic spreading ridges? [J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2015, 121: 202-212. doi: 10.1016/j.dsr2.2015.05.001 |
[13] | Cathles L M. What processes at mid-ocean ridges tell us about volcanogenic massive sulfide deposits [J]. Mineralium Deposita, 2011, 46(5-6): 639-657. doi: 10.1007/s00126-010-0292-9 |
[14] | Hannington M, Jamieson J, Monecke T, et al. The abundance of seafloor massive sulfide deposits [J]. Geology, 2011, 39(12): 1155-1158. doi: 10.1130/G32468.1 |
[15] | 加藤泰浩. 太平洋で発見されたレアアース泥の特長と開発可能性[J]. 建設の施工企画, 2012, 752:59-64. |
[16] | 方明山, 石学法, 肖仪武, 等. 太平洋深海沉积物中稀土矿物的分布特征研究[J]. 矿冶, 2016, 25(5):81-84 doi: 10.3969/j.issn.1005-7854.2016.05.019 FANG Mingshan, SHI Xuefa, XIAO Yiwu, et al. Research on distribution characteristics of rare Erath mineral of deep sea sediments in the pacific ocean [J]. Mining & Metallurgy, 2016, 25(5): 81-84. doi: 10.3969/j.issn.1005-7854.2016.05.019 |
[17] | 王汾连, 何高文, 姚会强, 等. 深海沉积物中的稀土矿产资源研究进展[J]. 中国地质, 2017, 44(3):449-459 WANG Fenlian, HE Gaowen, YAO Huiqiang, et al. The progress in the study of REE-rich deep-sea sediments [J]. Geology in China, 2017, 44(3): 449-459. |
[18] | 张涛, 蒋成竹. 深海矿产资源潜力与全球治理探析[J]. 中国矿业, 2017, 26(11):14-18 ZHANG Tao, JIANG Chengzhu. Analysis of the potential of deep-sea mineral resources and global governance [J]. China Mining Magazine, 2017, 26(11): 14-18. |
[19] | 刘永刚, 姚会强, 于淼, 等. 国际海底矿产资源勘查与研究进展[J]. 海洋信息, 2017(3):10-16 LIU Yonggang, YAO Huiqiang, YU Miao, et al. International exploration and research progress of seafloor mineral resources [J]. Marine Information, 2017(3): 10-16. |
[20] | 経済産業省資源エネルギー庁, 独立行政法人石油天然ガス·金属鉱物資源機構. レアアース堆積物の資源ポテンシャル評価報告書[R]. 平成28年7月6日, 1-57. |
[21] | 王淑玲, 吴西顺, 孙张涛, 等. 日本对南鸟礁周边海域海洋稀土资源潜力的评价[J]. 中国矿业, 2017, 26(12):28-35 WANG Shuling, WU Xishun, SUN Zhangtao, et al. Potential assessment on ocean rare earth resources around Minamitorishima island [J]. China Mining Magazine, 2017, 26(12): 28-35. |
[22] | 杨胜雄. 深海矿产资源勘探开发及其战略意义(学术报告)[R]. 广州: 中国地质调查局广州海洋地质调查局, 2018: 6. YANG Shengxiong. Exploration and development of deep sea mineral resources and its strategic implications (academic report)[R]. Guangzhou: China Geological Survey Guangzhou Marine Geological Survey, 2018: 6. |
[23] | 杨胜雄, 何高文. 深海矿产资源勘探开发新阶段: 开发规章制订及勘探加速进展(学术报告)[R]. 广州: 中国地质调查局广州海洋地质调查局, 2018: 11. YANG Shengxiong, HE Gaowen. New stage of exploration and development of deep sea mineral resources: Establishment of development regulations and acceleration of exploration (Academic Report)[R]. Guangzhou: China Geological Survey Guangzhou Marine Geological Survey, 2018: 11. |
[24] | 刘芳明, 刘大海. 国际海底区域的全球治理和中国参与策略[J]. 海洋开发与管理, 2017, 34(12):56-60 doi: 10.3969/j.issn.1005-9857.2017.12.010 LIU Fangming, LIU Dahai. The global governance in international seabed area and strategies for China's participation [J]. Ocean Development and Management, 2017, 34(12): 56-60. doi: 10.3969/j.issn.1005-9857.2017.12.010 |
[25] | 邵明娟, 王淑玲, 张炜, 等. 国际海底区域内勘探合同现状[J]. 中国矿业, 2016, 25(S2):54-57, 96 SHAO Mingjuan, WANG Shuling, ZHANG Wei, et al. Status of exploration contract in the "area" [J]. China Mining Magazine, 2016, 25(S2): 54-57, 96. |
[26] | 于淼, 邓希光, 姚会强, 等. 世界海底多金属结核调查与研究进展[J]. 中国地质, 2018, 45(1):29-38 YU Miao, DENG Xiguang, YAO Huiqiang, et al. The progress in the investigation and study of global deep-sea polumetallic nodules [J]. Geology in China, 2018, 45(1): 29-38. |
[27] | Cluster of Excellence the Future Ocean, lnternationsl Ocean lnstitute, mare. world ovean review 3 Living with the oceans. Marine Resources-Opportunities and Risks[R]. Maribus gGmbH, 2014: 1-161. |
[28] | 张丹. 关于国际海底区域法律制度的研究——以保留区及平行开发制为中心[J]. 太平洋学报, 2014, 22(3):11-18 doi: 10.3969/j.issn.1004-8049.2014.03.002 ZHANG Dan. Study on legal regime of the international seabed area——centered for reserved area and parallel system [J]. Pacific Journal, 2014, 22(3): 11-18. doi: 10.3969/j.issn.1004-8049.2014.03.002 |
[29] | International Seabed Authority[EB/OL]. https://www.isa.org.jm/. |
[30] | Глумов И Ф, Глумов А И, Казмин Ю В, et al. Минеральные ресурсы международного районаМОРСКОГО дна Мирового океана[J]. Разведка и охрана недр, 2016(10):33-36. |
[31] | Lodge M W, Verlaan P A. Deep-sea mining: international regulatory challenges and responses [J]. Elements, 2018, 14(5): 331-336. doi: 10.2138/gselements.14.5.331 |
[32] | 王淑玲, 项仁杰, 刘吉成, 等. 俄罗斯海洋地质调查现状与前景[M]. 北京: 地质出版社, 2018. WANG Shuling, XIANG Renjie, LIU Jicheng, et al. Status and Prospects of Russian Marine Geological Survey[M]. Beijing: Geological Publishing House, 2018. |
[33] | 中国深海采矿单体工程技术首次海试成功[EB/OL]. (2016-06-24). http://news.cctv.com/2016/06/24/ARTIDtXBPpfajpp4r4KlIyfh160624.shtml. China's first successful seatrial of single engineering technology for deep seamining[EB/OL]. (2016-06-24). http://news.cctv.com/2016/06/24/ARTIDtXBPpfajpp4r4KlIyfh160624.shtml. |
[34] | 【新闻】鲲龙500!我国自主研发500米级海底集矿车完成首次海试[EB/OL]. (2018-09-29). http://www.sohu.com/a/257037059_99914671. [News]!The first seatrial by China's self-developed 500-metersub seamining truck Kunlong 500[EB/OL]. (2018-09-29). http://www.sohu.com/a/257037059_99914671. |
[35] | Рогов В С, Фролов В В, Никольская Н С, et al. Опыт добычи и промышленного использования железомарганцевых конкреций[J]. Горный Журнал, 2012, 3:50-55. |
[36] | AMC Consultants. Preliminary economic assessment of the solwara project Bismarck Sea, PNG for nautilus minerals Niugini Ltd[R]. Technical Report AMC Project 317045. AMC, 2018: 1-274. |
[37] | 阳宁, 陈光国. 深海矿产资源开采技术的现状与发展趋势[J]. 凿岩机械气动工具, 2010(1):12-18 YANG Ning, CHEN Guangguo. Current situation and development trend of mining technology of deep sea mineral resources [J]. Pneumatic Tools for Rock Drilling Machinery, 2010(1): 12-18. |
[38] | 肖业祥, 杨凌波, 曹蕾, 等. 海洋矿产资源分布及深海扬矿研究进展[J]. 排灌机械工程学报, 2014, 32(4):319-326 doi: 10.3969/j.issn.1674-8530.13.1064 XIAO Yexiang, YΑNG Lingbo, CΑO Lei', et al. Distribution of marine mineral resource and advances of deep-sea lifting pump technology [J]. Journal of Drainage and Irrigation Machinery Engineering, 2014, 32(4): 319-326. doi: 10.3969/j.issn.1674-8530.13.1064 |
[39] | 首个海底采矿者鹦鹉螺公司折戟沉沙[EB/OL]. (2019-08-14). http://geoglobal.mnr.gov.cn/zx/kcykf/kfjs/201908/t20190814_7218333.htm. The world’s first seafloor miner Nautilus Mineral sofficiall ysinks[EB/OL]. (2019-08-14). http://geoglobal.mnr.gov.cn/zx/kcykf/kfjs/201908/t20190814_7218333.htm. |
[40] | 世界で初めて海底熱水鉱床の連続揚鉱に成功しました~沖縄近海で海底熱水鉱床の採鉱·揚鉱パイロット試験を実施~. http://www.meti.go.jp/press/2017/09/20170926001/257037059_99914671. |
[41] | Wynn R B, Huvenne V A I, Le Bas T P, et al. Autonomous Underwater Vehicles (AUVs): their past, present and future contributions to the advancement of marine geoscience [J]. Marine Geology, 2014, 352: 451-468. doi: 10.1016/j.margeo.2014.03.012 |
[42] | Volkmann S E, Lehnen F. Production key figures for planning the mining of manganese nodules [J]. Marine Georesources & Geotechnology, 2017, 36(3): 360-375. |
[43] | Zubkov M V, Plucinski P K, Dartiguelongue A C Y, et al. Metal extraction from deep-ocean mineral deposits [J]. Elements, 2018, 14(5): 319-324. doi: 10.2138/gselements.14.5.319 |
[44] | Jones D O B, Amon D J, Chapman A S A. Mining deep-ocean mineral deposits: what are the ecological risks? [J]. Elements, 2018, 14(5): 325-330. doi: 10.2138/gselements.14.5.325 |
[45] | 深海采矿将成新前沿? 绿色和平警告: 会带来不可逆伤害[EB/OL]. (2019-07-03). http://finance.sina.com.cn/roll/2019-07-03/doc-ihytcerm1122946.shtml. Will deep seamining become the next frontier? Greenpeace warns of ‘irreversibleharm’[EB/OL]. (2019-07-03). http://finance.sina.com.cn/roll/2019-07-03/doc-ihytcerm1122946.shtml. |
Global distribution of the three primary classes of metal-rich deep-ocean mineral deposits: polymetallic nodules, Cobalt-rich crusts, polymetallic sulfides[2]
Metal grade, global resource distribution and estimated metal tonnages for Cobalt-rich crusts and land-based reserves[11]
Global distribution of active (red) and inactive (yellow) seafloor massive sulfide sites[11]
Distribution of rare earth deposits in deep sea sediments on the international seabed [19]
29 International Seabed Mineral Exploration Contracts approved by the International Seabed Authority from 2001 to 2018[23]
Exploration contracts of the Clarion–Clipperton Fracture Zone in the northeast Equatorial Pacific Ocean[31]
Pilot production of seafloor massive sulfides (SMS) in Japan in 2017[40]
Deep-ocean exploration and mining equipment[42]
Concept for a deep-ocean ferromanganese nodule mining operation[44]