Citation: | YANG Ying, TIAN Jun, HUANG Enqing. Herbaceous vegetation expansion on the north equatorial Sundaland during the last glacial maximum[J]. Marine Geology & Quaternary Geology, 2020, 40(1): 85-93. doi: 10.16562/j.cnki.0256-1492.2019031301 |
Vegetation types on the exposed Sunda Shelf are important to understand the evolution of regional biodiversity and to assess the global terrestrial carbon storage during glacial periods. There are two conflicting opinions on glacial vegetation distribution over the exposed Sundaland, one considers that savannah occupied most of the exposed shelves while rainforest contracted into a ‘refugia’ condition; and the other believes that tropical rainforest prevailed over the most glacial Sundaland. So far well-dated paleo-vegetation reconstructions from the northern Sundaland are still lacking, which impedes the unveiling of this mystery. In this study, changes in the distribution of plant wax-derived n-alkanes of a marine sediment core from the southern South China Sea, close to the northern Sundaland paleo-river mouths, are used to reconstruct the vegetation changes over the northern Sundaland since LGM. The Average Chain Length(ACL)of n-alkanes is as high as 30.0 between 22 and 14.5 kaBP, indicating that herbaceous vegetation expanded on the northern Sundaland during the LGM compared to the Holocene. Previous modelling results suggest that a fell down of sea-level during the LGM can induce a weakened Walker circulation and the prevailing of El Niño-like conditions. This may further result in overall drought and increased dry-season water stress conditions on the glacial Sundaland, which may have contributed to the flourish of herbaceous vegetation.
[1] | Myers N, Mittermeier R A, Mittermeier C G, et al. Biodiversity hotspots for conservation priorities [J]. Nature, 2000, 403(6772): 853-858. doi: 10.1038/35002501 |
[2] | Woodruff D S. Biogeography and conservation in Southeast Asia: how 2.7 million years of repeated environmental fluctuations affect today’s patterns and the future of the remaining refugial-phase biodiversity [J]. Biodiversity and Conservation, 2010, 19(4): 919-941. doi: 10.1007/s10531-010-9783-3 |
[3] | Petit J R, Jouzel J, Raynaud D, et al. Climate and atmospheric history of the past 420, 000 years from the Vostok ice core, Antarctica [J]. Nature, 1999, 399(6735): 429-436. doi: 10.1038/20859 |
[4] | Sigman D M, Boyle E A. Glacial/interglacial variations in atmospheric carbon dioxide [J]. Nature, 2000, 407(6806): 859-869. doi: 10.1038/35038000 |
[5] | Montenegro A, Eby M, Kaplan J O, et al. Carbon storage on exposed continental shelves during the glacial‐interglacial transition [J]. Geophysical Research Letters, 2006, 33(8): L08703. |
[6] | Otto D, Rasse D, Kaplan J, et al. Biospheric carbon stocks reconstructed at the Last Glacial Maximum: comparison between general circulation models using prescribed and computed sea surface temperatures [J]. Global and Planetary Change, 2002, 33(1-2): 117-138. doi: 10.1016/S0921-8181(02)00066-8 |
[7] | Hoogakker B A A, Smith R S, Singarayer J S, et al. Terrestrial biosphere changes over the last 120 kyr [J]. Climate of the Past Discussions, 2015, 11(2): 1031-1091. doi: 10.5194/cpd-11-1031-2015 |
[8] | Heaney L R. A synopsis of climatic and vegetational change in Southeast Asia [J]. Climatic Change, 1991, 19(1-2): 53-61. doi: 10.1007/BF00142213 |
[9] | Gathorne-Hardy F J, Syaukani, Davies R G, et al. Quaternary rainforest refugia in South-East Asia: using termites (Isoptera) as indicators [J]. Biological Journal of the Linnean Society, 2002, 75(4): 453-466. doi: 10.1046/j.1095-8312.2002.00031.x |
[10] | Wurster C M, Bird M I, Bull I D, et al. Forest contraction in north equatorial Southeast Asia during the Last Glacial Period [J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(35): 15508-15511. doi: 10.1073/pnas.1005507107 |
[11] | Sun X J, Li X, Luo Y L, et al. The vegetation and climate at the last glaciation on the emerged continental shelf of the South China Sea [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2000, 160(3-4): 301-316. doi: 10.1016/S0031-0182(00)00078-X |
[12] | Hope G, Kershaw A P, van der Kaars S, et al. History of vegetation and habitat change in the Austral-Asian region [J]. Quaternary International, 2004, 118-119: 103-126. doi: 10.1016/S1040-6182(03)00133-2 |
[13] | Wang X M, Sun X J, Wang P X, et al. Vegetation on the Sunda shelf, South China Sea, during the last glacial maximum [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 278(1-4): 88-97. doi: 10.1016/j.palaeo.2009.04.008 |
[14] | Cannon C H, Morley R J, Bush A B G. The current refugial rainforests of Sundaland are unrepresentative of their biogeographic past and highly vulnerable to disturbance [J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(27): 11188-11193. doi: 10.1073/pnas.0809865106 |
[15] | Raes N, Cannon C H, Hijmans R J, et al. Historical distribution of Sundaland's Dipterocarp rainforests at Quaternary glacial maxima [J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(47): 16790-16795. doi: 10.1073/pnas.1403053111 |
[16] | Eglinton G, Hamilton R J. Leaf epicuticular waxes [J]. Science, 1967, 156(3780): 1322-1335. doi: 10.1126/science.156.3780.1322 |
[17] | Schwark L, Zink K, Lechterbeck J. Reconstruction of postglacial to early Holocene vegetation history in terrestrial Central Europe via cuticular lipid biomarkers and pollen records from lake sediments [J]. Geology, 2002, 30(5): 463-466. doi: 10.1130/0091-7613(2002)030<0463:ROPTEH>2.0.CO;2 |
[18] | Schefuß E, Schouten S, Schneider R R. Climatic controls on central African hydrology during the past 20, 000?years [J]. Nature, 2005, 437(7061): 1003-1006. doi: 10.1038/nature03945 |
[19] | Rommerskirchen F, Eglinton G, Dupont L, et al. A north to south transect of Holocene southeast Atlantic continental margin sediments: relationship between aerosol transport and compound-specific δ13C land plant biomarker and pollen records [J]. Geochemistry, Geophysics, Geosystems, 2013, 4(12): 1101. |
[20] | Cranwell P A. Diagenesis of free and bound lipids in terrestrial detritus deposited in a lacustrine sediment [J]. Organic Geochemistry, 1981, 3(3): 79-89. doi: 10.1016/0146-6380(81)90002-4 |
[21] | Yan X H, Ho C R, Zheng Q A, et al. Temperature and size variabilities of the Western pacific warm pool [J]. Science, 1992, 258(5088): 1643-1645. doi: 10.1126/science.258.5088.1643 |
[22] | Moerman J W, Cobb K M, Adkins J F, et al. Diurnal to interannual rainfall δ18O variations in northern Borneo driven by regional hydrology [J]. Earth and Planetary Science Letters, 2013, 369-370: 108-119. doi: 10.1016/j.jpgl.2013.03.014 |
[23] | Lea D W, Pak D K, Spero H J. Climate impact of late quaternary equatorial pacific sea surface temperature variations [J]. Science, 2000, 289(5485): 1719-1724. doi: 10.1126/science.289.5485.1719 |
[24] | Hanebuth T J J, Voris H K, Yokoyama Y, et al. Formation and fate of sedimentary depocentres on Southeast Asia’s Sunda Shelf over the past sea-level cycle and biogeographic implications [J]. Earth-Science Reviews, 2011, 104(1-3): 92-110. doi: 10.1016/j.earscirev.2010.09.006 |
[25] | Molengraaff G A F. Modern deep-sea research in the East Indian archipelago [J]. The Geographical Journal, 1921, 57(2): 95-118. doi: 10.2307/1781559 |
[26] | Solihuddin T. A drowning Sunda shelf model during Last Glacial Maximum (LGM) and Holocene: a review [J]. Indonesian Journal on Geoscience, 2014, 1(2): 99-107. |
[27] | Voris H K. Maps of Pleistocene sea levels in Southeast Asia: shorelines, river systems and time durations [J]. Journal of Biogeography, 2000, 27(5): 1153-1167. doi: 10.1046/j.1365-2699.2000.00489.x |
[28] | Laj C, Wang P, Balut Y. MD147-Marco Polo IMAGES XII Cruise Report[R]. France: Institut Paul-Emile Victor, 2005: 36-38. |
[29] | 安阳, 翦知湣. 末次冰消期南海南部的普林虫低值事件[J]. 科学通报, 2009, 54(17):2527-2532. |
[30] | Reimer P J, Baillie M G L, Bard E, et al. IntCal09 and Marine09 radiocarbon age calibration curves, 0-50 000 Years cal BP [J]. Radiocarbon, 2009, 51(4): 1111-1150. doi: 10.1017/S0033822200034202 |
[31] | Marzi R, Torkelson B E, Olson R K. A revised carbon preference index [J]. Organic Geochemistry, 1993, 20(8): 1303-1306. doi: 10.1016/0146-6380(93)90016-5 |
[32] | Collister J W, Rieley G, Stern B, et al. Compound-specific δ 13C analyses of leaf lipids from plants with differing carbon dioxide metabolisms [J]. Organic Geochemistry, 1994, 21(6-7): 619-627. doi: 10.1016/0146-6380(94)90008-6 |
[33] | Cranwell P A. Chain-length distribution of n-alkanes from lake sediments in relation to post-glacial environmental change [J]. Freshwater Biology, 1973, 3(3): 259-265. doi: 10.1111/j.1365-2427.1973.tb00921.x |
[34] | Zech M, Zech R, Morrás H, et al. Late Quaternary environmental changes in Misiones, subtropical NE Argentina, deduced from multi-proxy geochemical analyses in a palaeosol-sediment sequence [J]. Quaternary International, 2009, 196(1-2): 121-136. doi: 10.1016/j.quaint.2008.06.006 |
[35] | Vogts A, Schefuß E, Badewien T, et al. n-Alkane parameters from a deep sea sediment transect off southwest Africa reflect continental vegetation and climate conditions [J]. Organic Geochemistry, 2012, 47: 109-119. doi: 10.1016/j.orggeochem.2012.03.011 |
[36] | Vogts A, Moossen H, Rommerskirchen F, et al. Distribution patterns and stable carbon isotopic composition of alkanes and alkan-1-ols from plant waxes of African rain forest and savanna C3 species [J]. Organic Geochemistry, 2009, 40(10): 1037-1054. doi: 10.1016/j.orggeochem.2009.07.011 |
[37] | Pelejero C. Terrigenous n-alkane input in the South China Sea: high-resolution records and surface sediments [J]. Chemical Geology, 2003, 200(1-2): 89-103. doi: 10.1016/S0009-2541(03)00164-5 |
[38] | Hu J F, Peng P A, Fang D Y, et al. No aridity in Sunda Land during the last glaciation: evidence from molecular-isotopic stratigraphy of long-chain n-alkanes [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2003, 201(3-4): 269-281. doi: 10.1016/S0031-0182(03)00613-8 |
[39] | Li L, Li Q Y, Tian J, et al. Low latitude hydro-climatic changes during the Plio-Pleistocene: evidence from high resolution alkane records in the southern South China Sea [J]. Quaternary Science Reviews, 2013, 78: 209-224. doi: 10.1016/j.quascirev.2013.08.007 |
[40] | Hanebuth T, Stattegger K, Grootes P M. Rapid flooding of the Sunda shelf: a late-glacial sea-level record [J]. Science, 2000, 288(5468): 1033-1035. doi: 10.1126/science.288.5468.1033 |
[41] | Pelejero C, Kienast M, Wang L J, et al. The flooding of Sundaland during the last deglaciation: imprints in hemipelagic sediments from the southern South China Sea [J]. Earth and Planetary Science Letters, 1999, 171(4): 661-671. doi: 10.1016/S0012-821X(99)00178-8 |
[42] | Liu Z F, Zhao Y L, Colin C, et al. Source-to-sink transport processes of fluvial sediments in the South China Sea [J]. Earth-Science Reviews, 2016, 153: 238-273. doi: 10.1016/j.earscirev.2015.08.005 |
[43] | Jiwarungrueangkul T, Liu Z F, Zhao Y L. Terrigenous sediment input responding to sea level change and East Asian monsoon evolution since the last deglaciation in the southern South China Sea [J]. Global and Planetary Change, 2019, 174: 127-137. doi: 10.1016/j.gloplacha.2019.01.011 |
[44] | Partin J W, Cobb K M, Adkins J F, et al. Millennial-scale trends in West Pacific warm pool hydrology since the last glacial maximum [J]. Nature, 2007, 449(7161): 452-455. doi: 10.1038/nature06164 |
[45] | Wang Y J, Cheng H, Edwards R L, et al. A high-resolution absolute-dated Late Pleistocene monsoon record from Hulu Cave, China [J]. Science, 2001, 294(5550): 2345-2348. doi: 10.1126/science.1064618 |
[46] | Yuan D X, Cheng H, Edwards R L, et al. Timing, duration, and transitions of the last interglacial Asian monsoon [J]. Science, 2004, 304(5670): 575-578. doi: 10.1126/science.1091220 |
[47] | Laskar J, Robutel P, Joutel F, et al. A long-term numerical solution for the insolation quantities of the Earth [J]. Astronomy and Astrophysics, 2004, 428(1): 261-285. doi: 10.1051/0004-6361:20041335 |
[48] | Dubois N, Oppo D W, Galy V V, et al. Indonesian vegetation response to changes in rainfall seasonality over the past 25 000 years [J]. Nature Geoscience, 2014, 7(7): 513-517. doi: 10.1038/ngeo2182 |
[49] | Maloney B K. Pollen analytical evidence for early forest clearance in North Sumatra [J]. Nature, 1980, 287(5780): 324-326. doi: 10.1038/287324a0 |
[50] | Hope G. Environmental change in the Late Pleistocene and later Holocene at Wanda site, Soroako, South Sulawesi, Indonesia [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2001, 171(3-4): 129-145. doi: 10.1016/S0031-0182(01)00243-7 |
[51] | Kershaw A P, van der Kaars S, Flenle J R. The quaternary history of Far Eastern rainforests[M]//Bush M B, Flenley J R. Tropical Rainforest Responses to Climatic Change. Berlin, Heidelberg: Springer, 2007. |
[52] | Clement A C, Seager R, Cane M A. Orbital controls on the El Niño/Southern Oscillation and the tropical climate [J]. Paleoceanography, 1999, 14(4): 441-456. doi: 10.1029/1999PA900013 |
[53] | DiNezio P N, Tierney J E. The effect of sea level on glacial Indo-Pacific climate [J]. Nature Geoscience, 2013, 6(6): 485-491. doi: 10.1038/ngeo1823 |
Topography of the Sundaland and location of study sites
Alkane contents, CPI, ACL and the C31/(C29+C31)ratio at site MD 05-2894
Comparison of n-alkane contents and the ACL results from site MD 05-2894 with other climate reconstructions
The vegetation distribution on Sundaland during the LGM
Map of Southeast Asia land-sea distribution during the LGM estimated from the 120 m bathymetric line