2020 Vol. 40, No. 1
Article Contents

YANG Ying, TIAN Jun, HUANG Enqing. Herbaceous vegetation expansion on the north equatorial Sundaland during the last glacial maximum[J]. Marine Geology & Quaternary Geology, 2020, 40(1): 85-93. doi: 10.16562/j.cnki.0256-1492.2019031301
Citation: YANG Ying, TIAN Jun, HUANG Enqing. Herbaceous vegetation expansion on the north equatorial Sundaland during the last glacial maximum[J]. Marine Geology & Quaternary Geology, 2020, 40(1): 85-93. doi: 10.16562/j.cnki.0256-1492.2019031301

Herbaceous vegetation expansion on the north equatorial Sundaland during the last glacial maximum

More Information
  • Vegetation types on the exposed Sunda Shelf are important to understand the evolution of regional biodiversity and to assess the global terrestrial carbon storage during glacial periods. There are two conflicting opinions on glacial vegetation distribution over the exposed Sundaland, one considers that savannah occupied most of the exposed shelves while rainforest contracted into a ‘refugia’ condition; and the other believes that tropical rainforest prevailed over the most glacial Sundaland. So far well-dated paleo-vegetation reconstructions from the northern Sundaland are still lacking, which impedes the unveiling of this mystery. In this study, changes in the distribution of plant wax-derived n-alkanes of a marine sediment core from the southern South China Sea, close to the northern Sundaland paleo-river mouths, are used to reconstruct the vegetation changes over the northern Sundaland since LGM. The Average Chain Length(ACL)of n-alkanes is as high as 30.0 between 22 and 14.5 kaBP, indicating that herbaceous vegetation expanded on the northern Sundaland during the LGM compared to the Holocene. Previous modelling results suggest that a fell down of sea-level during the LGM can induce a weakened Walker circulation and the prevailing of El Niño-like conditions. This may further result in overall drought and increased dry-season water stress conditions on the glacial Sundaland, which may have contributed to the flourish of herbaceous vegetation.

  • 加载中
  • [1] Myers N, Mittermeier R A, Mittermeier C G, et al. Biodiversity hotspots for conservation priorities [J]. Nature, 2000, 403(6772): 853-858. doi: 10.1038/35002501

    CrossRef Google Scholar

    [2] Woodruff D S. Biogeography and conservation in Southeast Asia: how 2.7 million years of repeated environmental fluctuations affect today’s patterns and the future of the remaining refugial-phase biodiversity [J]. Biodiversity and Conservation, 2010, 19(4): 919-941. doi: 10.1007/s10531-010-9783-3

    CrossRef Google Scholar

    [3] Petit J R, Jouzel J, Raynaud D, et al. Climate and atmospheric history of the past 420, 000 years from the Vostok ice core, Antarctica [J]. Nature, 1999, 399(6735): 429-436. doi: 10.1038/20859

    CrossRef Google Scholar

    [4] Sigman D M, Boyle E A. Glacial/interglacial variations in atmospheric carbon dioxide [J]. Nature, 2000, 407(6806): 859-869. doi: 10.1038/35038000

    CrossRef Google Scholar

    [5] Montenegro A, Eby M, Kaplan J O, et al. Carbon storage on exposed continental shelves during the glacial‐interglacial transition [J]. Geophysical Research Letters, 2006, 33(8): L08703.

    Google Scholar

    [6] Otto D, Rasse D, Kaplan J, et al. Biospheric carbon stocks reconstructed at the Last Glacial Maximum: comparison between general circulation models using prescribed and computed sea surface temperatures [J]. Global and Planetary Change, 2002, 33(1-2): 117-138. doi: 10.1016/S0921-8181(02)00066-8

    CrossRef Google Scholar

    [7] Hoogakker B A A, Smith R S, Singarayer J S, et al. Terrestrial biosphere changes over the last 120 kyr [J]. Climate of the Past Discussions, 2015, 11(2): 1031-1091. doi: 10.5194/cpd-11-1031-2015

    CrossRef Google Scholar

    [8] Heaney L R. A synopsis of climatic and vegetational change in Southeast Asia [J]. Climatic Change, 1991, 19(1-2): 53-61. doi: 10.1007/BF00142213

    CrossRef Google Scholar

    [9] Gathorne-Hardy F J, Syaukani, Davies R G, et al. Quaternary rainforest refugia in South-East Asia: using termites (Isoptera) as indicators [J]. Biological Journal of the Linnean Society, 2002, 75(4): 453-466. doi: 10.1046/j.1095-8312.2002.00031.x

    CrossRef Google Scholar

    [10] Wurster C M, Bird M I, Bull I D, et al. Forest contraction in north equatorial Southeast Asia during the Last Glacial Period [J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(35): 15508-15511. doi: 10.1073/pnas.1005507107

    CrossRef Google Scholar

    [11] Sun X J, Li X, Luo Y L, et al. The vegetation and climate at the last glaciation on the emerged continental shelf of the South China Sea [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2000, 160(3-4): 301-316. doi: 10.1016/S0031-0182(00)00078-X

    CrossRef Google Scholar

    [12] Hope G, Kershaw A P, van der Kaars S, et al. History of vegetation and habitat change in the Austral-Asian region [J]. Quaternary International, 2004, 118-119: 103-126. doi: 10.1016/S1040-6182(03)00133-2

    CrossRef Google Scholar

    [13] Wang X M, Sun X J, Wang P X, et al. Vegetation on the Sunda shelf, South China Sea, during the last glacial maximum [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 278(1-4): 88-97. doi: 10.1016/j.palaeo.2009.04.008

    CrossRef Google Scholar

    [14] Cannon C H, Morley R J, Bush A B G. The current refugial rainforests of Sundaland are unrepresentative of their biogeographic past and highly vulnerable to disturbance [J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(27): 11188-11193. doi: 10.1073/pnas.0809865106

    CrossRef Google Scholar

    [15] Raes N, Cannon C H, Hijmans R J, et al. Historical distribution of Sundaland's Dipterocarp rainforests at Quaternary glacial maxima [J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(47): 16790-16795. doi: 10.1073/pnas.1403053111

    CrossRef Google Scholar

    [16] Eglinton G, Hamilton R J. Leaf epicuticular waxes [J]. Science, 1967, 156(3780): 1322-1335. doi: 10.1126/science.156.3780.1322

    CrossRef Google Scholar

    [17] Schwark L, Zink K, Lechterbeck J. Reconstruction of postglacial to early Holocene vegetation history in terrestrial Central Europe via cuticular lipid biomarkers and pollen records from lake sediments [J]. Geology, 2002, 30(5): 463-466. doi: 10.1130/0091-7613(2002)030<0463:ROPTEH>2.0.CO;2

    CrossRef Google Scholar

    [18] Schefuß E, Schouten S, Schneider R R. Climatic controls on central African hydrology during the past 20, 000?years [J]. Nature, 2005, 437(7061): 1003-1006. doi: 10.1038/nature03945

    CrossRef Google Scholar

    [19] Rommerskirchen F, Eglinton G, Dupont L, et al. A north to south transect of Holocene southeast Atlantic continental margin sediments: relationship between aerosol transport and compound-specific δ13C land plant biomarker and pollen records [J]. Geochemistry, Geophysics, Geosystems, 2013, 4(12): 1101.

    Google Scholar

    [20] Cranwell P A. Diagenesis of free and bound lipids in terrestrial detritus deposited in a lacustrine sediment [J]. Organic Geochemistry, 1981, 3(3): 79-89. doi: 10.1016/0146-6380(81)90002-4

    CrossRef Google Scholar

    [21] Yan X H, Ho C R, Zheng Q A, et al. Temperature and size variabilities of the Western pacific warm pool [J]. Science, 1992, 258(5088): 1643-1645. doi: 10.1126/science.258.5088.1643

    CrossRef Google Scholar

    [22] Moerman J W, Cobb K M, Adkins J F, et al. Diurnal to interannual rainfall δ18O variations in northern Borneo driven by regional hydrology [J]. Earth and Planetary Science Letters, 2013, 369-370: 108-119. doi: 10.1016/j.jpgl.2013.03.014

    CrossRef Google Scholar

    [23] Lea D W, Pak D K, Spero H J. Climate impact of late quaternary equatorial pacific sea surface temperature variations [J]. Science, 2000, 289(5485): 1719-1724. doi: 10.1126/science.289.5485.1719

    CrossRef Google Scholar

    [24] Hanebuth T J J, Voris H K, Yokoyama Y, et al. Formation and fate of sedimentary depocentres on Southeast Asia’s Sunda Shelf over the past sea-level cycle and biogeographic implications [J]. Earth-Science Reviews, 2011, 104(1-3): 92-110. doi: 10.1016/j.earscirev.2010.09.006

    CrossRef Google Scholar

    [25] Molengraaff G A F. Modern deep-sea research in the East Indian archipelago [J]. The Geographical Journal, 1921, 57(2): 95-118. doi: 10.2307/1781559

    CrossRef Google Scholar

    [26] Solihuddin T. A drowning Sunda shelf model during Last Glacial Maximum (LGM) and Holocene: a review [J]. Indonesian Journal on Geoscience, 2014, 1(2): 99-107.

    Google Scholar

    [27] Voris H K. Maps of Pleistocene sea levels in Southeast Asia: shorelines, river systems and time durations [J]. Journal of Biogeography, 2000, 27(5): 1153-1167. doi: 10.1046/j.1365-2699.2000.00489.x

    CrossRef Google Scholar

    [28] Laj C, Wang P, Balut Y. MD147-Marco Polo IMAGES XII Cruise Report[R]. France: Institut Paul-Emile Victor, 2005: 36-38.

    Google Scholar

    [29] 安阳, 翦知湣. 末次冰消期南海南部的普林虫低值事件[J]. 科学通报, 2009, 54(17):2527-2532.

    Google Scholar

    [30] Reimer P J, Baillie M G L, Bard E, et al. IntCal09 and Marine09 radiocarbon age calibration curves, 0-50 000 Years cal BP [J]. Radiocarbon, 2009, 51(4): 1111-1150. doi: 10.1017/S0033822200034202

    CrossRef Google Scholar

    [31] Marzi R, Torkelson B E, Olson R K. A revised carbon preference index [J]. Organic Geochemistry, 1993, 20(8): 1303-1306. doi: 10.1016/0146-6380(93)90016-5

    CrossRef Google Scholar

    [32] Collister J W, Rieley G, Stern B, et al. Compound-specific δ 13C analyses of leaf lipids from plants with differing carbon dioxide metabolisms [J]. Organic Geochemistry, 1994, 21(6-7): 619-627. doi: 10.1016/0146-6380(94)90008-6

    CrossRef Google Scholar

    [33] Cranwell P A. Chain-length distribution of n-alkanes from lake sediments in relation to post-glacial environmental change [J]. Freshwater Biology, 1973, 3(3): 259-265. doi: 10.1111/j.1365-2427.1973.tb00921.x

    CrossRef Google Scholar

    [34] Zech M, Zech R, Morrás H, et al. Late Quaternary environmental changes in Misiones, subtropical NE Argentina, deduced from multi-proxy geochemical analyses in a palaeosol-sediment sequence [J]. Quaternary International, 2009, 196(1-2): 121-136. doi: 10.1016/j.quaint.2008.06.006

    CrossRef Google Scholar

    [35] Vogts A, Schefuß E, Badewien T, et al. n-Alkane parameters from a deep sea sediment transect off southwest Africa reflect continental vegetation and climate conditions [J]. Organic Geochemistry, 2012, 47: 109-119. doi: 10.1016/j.orggeochem.2012.03.011

    CrossRef Google Scholar

    [36] Vogts A, Moossen H, Rommerskirchen F, et al. Distribution patterns and stable carbon isotopic composition of alkanes and alkan-1-ols from plant waxes of African rain forest and savanna C3 species [J]. Organic Geochemistry, 2009, 40(10): 1037-1054. doi: 10.1016/j.orggeochem.2009.07.011

    CrossRef Google Scholar

    [37] Pelejero C. Terrigenous n-alkane input in the South China Sea: high-resolution records and surface sediments [J]. Chemical Geology, 2003, 200(1-2): 89-103. doi: 10.1016/S0009-2541(03)00164-5

    CrossRef Google Scholar

    [38] Hu J F, Peng P A, Fang D Y, et al. No aridity in Sunda Land during the last glaciation: evidence from molecular-isotopic stratigraphy of long-chain n-alkanes [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2003, 201(3-4): 269-281. doi: 10.1016/S0031-0182(03)00613-8

    CrossRef Google Scholar

    [39] Li L, Li Q Y, Tian J, et al. Low latitude hydro-climatic changes during the Plio-Pleistocene: evidence from high resolution alkane records in the southern South China Sea [J]. Quaternary Science Reviews, 2013, 78: 209-224. doi: 10.1016/j.quascirev.2013.08.007

    CrossRef Google Scholar

    [40] Hanebuth T, Stattegger K, Grootes P M. Rapid flooding of the Sunda shelf: a late-glacial sea-level record [J]. Science, 2000, 288(5468): 1033-1035. doi: 10.1126/science.288.5468.1033

    CrossRef Google Scholar

    [41] Pelejero C, Kienast M, Wang L J, et al. The flooding of Sundaland during the last deglaciation: imprints in hemipelagic sediments from the southern South China Sea [J]. Earth and Planetary Science Letters, 1999, 171(4): 661-671. doi: 10.1016/S0012-821X(99)00178-8

    CrossRef Google Scholar

    [42] Liu Z F, Zhao Y L, Colin C, et al. Source-to-sink transport processes of fluvial sediments in the South China Sea [J]. Earth-Science Reviews, 2016, 153: 238-273. doi: 10.1016/j.earscirev.2015.08.005

    CrossRef Google Scholar

    [43] Jiwarungrueangkul T, Liu Z F, Zhao Y L. Terrigenous sediment input responding to sea level change and East Asian monsoon evolution since the last deglaciation in the southern South China Sea [J]. Global and Planetary Change, 2019, 174: 127-137. doi: 10.1016/j.gloplacha.2019.01.011

    CrossRef Google Scholar

    [44] Partin J W, Cobb K M, Adkins J F, et al. Millennial-scale trends in West Pacific warm pool hydrology since the last glacial maximum [J]. Nature, 2007, 449(7161): 452-455. doi: 10.1038/nature06164

    CrossRef Google Scholar

    [45] Wang Y J, Cheng H, Edwards R L, et al. A high-resolution absolute-dated Late Pleistocene monsoon record from Hulu Cave, China [J]. Science, 2001, 294(5550): 2345-2348. doi: 10.1126/science.1064618

    CrossRef Google Scholar

    [46] Yuan D X, Cheng H, Edwards R L, et al. Timing, duration, and transitions of the last interglacial Asian monsoon [J]. Science, 2004, 304(5670): 575-578. doi: 10.1126/science.1091220

    CrossRef Google Scholar

    [47] Laskar J, Robutel P, Joutel F, et al. A long-term numerical solution for the insolation quantities of the Earth [J]. Astronomy and Astrophysics, 2004, 428(1): 261-285. doi: 10.1051/0004-6361:20041335

    CrossRef Google Scholar

    [48] Dubois N, Oppo D W, Galy V V, et al. Indonesian vegetation response to changes in rainfall seasonality over the past 25 000 years [J]. Nature Geoscience, 2014, 7(7): 513-517. doi: 10.1038/ngeo2182

    CrossRef Google Scholar

    [49] Maloney B K. Pollen analytical evidence for early forest clearance in North Sumatra [J]. Nature, 1980, 287(5780): 324-326. doi: 10.1038/287324a0

    CrossRef Google Scholar

    [50] Hope G. Environmental change in the Late Pleistocene and later Holocene at Wanda site, Soroako, South Sulawesi, Indonesia [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2001, 171(3-4): 129-145. doi: 10.1016/S0031-0182(01)00243-7

    CrossRef Google Scholar

    [51] Kershaw A P, van der Kaars S, Flenle J R. The quaternary history of Far Eastern rainforests[M]//Bush M B, Flenley J R. Tropical Rainforest Responses to Climatic Change. Berlin, Heidelberg: Springer, 2007.

    Google Scholar

    [52] Clement A C, Seager R, Cane M A. Orbital controls on the El Niño/Southern Oscillation and the tropical climate [J]. Paleoceanography, 1999, 14(4): 441-456. doi: 10.1029/1999PA900013

    CrossRef Google Scholar

    [53] DiNezio P N, Tierney J E. The effect of sea level on glacial Indo-Pacific climate [J]. Nature Geoscience, 2013, 6(6): 485-491. doi: 10.1038/ngeo1823

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(1)

Article Metrics

Article views(2185) PDF downloads(40) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint