2020 Vol. 40, No. 2
Article Contents

SONG Jiaze, HUANG Xiangtong, YANG Shouye, QI Lijian. In-situ microanalysis of elemental ratios in a single oyster shell from the South Yellow Sea, China and its environmental implications[J]. Marine Geology & Quaternary Geology, 2020, 40(2): 70-79. doi: 10.16562/j.cnki.0256-1492.2019022701
Citation: SONG Jiaze, HUANG Xiangtong, YANG Shouye, QI Lijian. In-situ microanalysis of elemental ratios in a single oyster shell from the South Yellow Sea, China and its environmental implications[J]. Marine Geology & Quaternary Geology, 2020, 40(2): 70-79. doi: 10.16562/j.cnki.0256-1492.2019022701

In-situ microanalysis of elemental ratios in a single oyster shell from the South Yellow Sea, China and its environmental implications

More Information
  • Biogenic calcium carbonates are widely used natural archives to study environmental history and human activities as they preserve a wealth of information of climatic and environmental changes. With the NIST610 glass as the reference material and 43Ca as the internal element to calibrate, major and trace elements in a modern Pacific Oyster shell (Crassostrea gigas) taken from the offshore area of South Yellow Sea near Haimen were measured with laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS). The primary objecitve is to reveal elemental compositions and environmental implications. Our results show very good correlations between the variations in Mg/Ca, Sr/Ca, Na/Ca ratios and the seasonal growth increments of the shell. This might suggest that variations in elemental ratios of the shell are mainly controlled by physical and chemical properties of the ambient sea water. In most cases, the chalky calcite layers in oyster shells correspond to the period of higher sea water temperature, while the foliated calcite layers are associated with the period of lower temperature. In general, the chalky calcite layers are featured by high Mg/Ca and Sr/Ca and low Na/Ca ratios. By applying Mg/Ca-temperature reconstruction equation published in literature, we obtained reliable sea surface temperature for the study area based on Mg/Ca ratios in the oyster shell, which is supported by the overall consistence between gauged water temperatures and the reconstructed.

  • 加载中
  • [1] Perkins W T, Fuge R, Pearce N J G. Quantitative analysis of trace elements in carbonates using laser ablation inductively coupled plasma mass spectrometry [J]. Journal of Analytical Atomic Spectrometry, 1991, 6(6): 445-449. doi: 10.1039/ja9910600445

    CrossRef Google Scholar

    [2] Marali S, Schöne B R, Mertz-Kraus R, et al. Reproducibility of trace element time-series (Na/Ca, Mg/Ca, Mn/Ca, Sr/Ca, and Ba/Ca) within and between specimens of the bivalve Arctica islandica - A LA-ICP-MS line scan study [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 484: 109-128. doi: 10.1016/j.palaeo.2016.11.024

    CrossRef Google Scholar

    [3] Müller W, Fietzke J. The role of LA-ICP-MS in palaeoclimate research [J]. Elements, 2016, 12(5): 329-334. doi: 10.2113/gselements.12.5.329

    CrossRef Google Scholar

    [4] Jochum K P, Scholz D, Stoll B, et al. Accurate trace element analysis of speleothems and biogenic calcium carbonates by LA-ICP-MS [J]. Chemical Geology, 2012, 318-319: 31-44. doi: 10.1016/j.chemgeo.2012.05.009

    CrossRef Google Scholar

    [5] Schöne B R, Zhang Z J, Radermacher P, et al. Sr/Ca and Mg/Ca ratios of ontogenetically old, long-lived bivalve shells (Arctica islandica) and their function as paleotemperature proxies [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 302(1-2): 52-64. doi: 10.1016/j.palaeo.2010.03.016

    CrossRef Google Scholar

    [6] Elliot M, Welsh K, Chilcott C, et al. Profiles of trace elements and stable isotopes derived from giant long-lived Tridacna gigas bivalves: potential applications in paleoclimate studies [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 280(1-2): 132-142. doi: 10.1016/j.palaeo.2009.06.007

    CrossRef Google Scholar

    [7] Rosenthal Y, Katz A. The applicability of trace elements in freshwater shells for paleogeochemical studies [J]. Chemical Geology, 1989, 78(1): 65-76. doi: 10.1016/0009-2541(89)90052-1

    CrossRef Google Scholar

    [8] Carriker M R, Swann C P, Ewart J, et al. Ontogenetic trends of elements (Na to Sr) in prismatic shell of living Crassostrea virginica (Gmelin) grown in three ecologically dissimilar habitats for 28 weeks: a proton probe study [J]. Journal of Experimental Marine Biology and Ecology, 1996, 201(1-2): 87-135. doi: 10.1016/0022-0981(96)00013-5

    CrossRef Google Scholar

    [9] Putten E V, Dehairs F, Keppens E, et al. High resolution distribution of trace elements in the calcite shell layer of modern Mytilus edulis: environmental and biological controls [J]. Geochimica et Cosmochimica Acta, 2000, 64(6): 997-1011. doi: 10.1016/S0016-7037(99)00380-4

    CrossRef Google Scholar

    [10] Freitas P S, Clarke L J, Kennedy H, et al. Ion microprobe assessment of the heterogeneity of Mg/Ca, Sr/Ca and Mn/Ca ratios in Pecten maximus and Mytilus edulis (bivalvia) shell calcite precipitated at constant temperature [J]. Biogeosciences, 2009, 6(7): 1209-1227. doi: 10.5194/bg-6-1209-2009

    CrossRef Google Scholar

    [11] Bougeois L, de Rafélis M, Reichart G J, et al. A high resolution study of trace elements and stable isotopes in oyster shells to estimate Central Asian Middle Eocene seasonality [J]. Chemical Geology, 2014, 363: 200-212. doi: 10.1016/j.chemgeo.2013.10.037

    CrossRef Google Scholar

    [12] Bougeois L, de Rafélis M, Reichart G J, et al. Mg/Ca in fossil oyster shells as palaeotemperature proxy, an example from the Palaeogene of Central Asia [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 441: 611-626. doi: 10.1016/j.palaeo.2015.09.052

    CrossRef Google Scholar

    [13] Mouchi V, de Rafélis M, Lartaud F, et al. Chemical labelling of oyster shells used for time-calibrated high-resolution Mg/Ca ratios: a tool for estimation of past seasonal temperature variations [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 373: 66-74. doi: 10.1016/j.palaeo.2012.05.023

    CrossRef Google Scholar

    [14] Surge D, Lohmann K C. Evaluating Mg/Ca ratios as a temperature proxy in the estuarine oyster, Crassostrea virginica [J]. Journal of Geophysical Research, 2008, 113(G2): G02001.

    Google Scholar

    [15] Tynan S, Opdyke B N, Walczak M, et al. Assessment of Mg/Ca in Saccostrea glomerata (the Sydney rock oyster) shell as a potential temperature record [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 484: 79-88. doi: 10.1016/j.palaeo.2016.08.009

    CrossRef Google Scholar

    [16] Warter V, Müller W. Daily growth and tidal rhythms in Miocene and modern giant clams revealed via ultra-high resolution LA-ICPMS analysis - a novel methodological approach towards improved sclerochemistry [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 465: 362-375. doi: 10.1016/j.palaeo.2016.03.019

    CrossRef Google Scholar

    [17] Sano Y, Kobayashi S, Shirai K, et al. Past daily light cycle recorded in the strontium/calcium ratios of giant clam shells [J]. Nature Communications, 2012, 3(1): 761. doi: 10.1038/ncomms1763

    CrossRef Google Scholar

    [18] Dodd J R, Crisp E L. Non-linear variation with salinity of Sr/Ca and Mg/Ca ratios in water and aragonitic bivalve shells and implications for paleosalinity studies [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1982, 38(1-2): 45-56. doi: 10.1016/0031-0182(82)90063-3

    CrossRef Google Scholar

    [19] Ullmann C V, Böhm F, Rickaby R E M, et al. The giant Pacific Oyster (Crassostrea gigas) as a modern analog for fossil ostreoids: Isotopic (Ca, O, C) and elemental (Mg/Ca, Sr/Ca, Mn/Ca) proxies [J]. Geochemistry, Geophysics, Geosystems, 2013, 14(10): 4109-4120. doi: 10.1002/ggge.20257

    CrossRef Google Scholar

    [20] Lerman A. Strontium and magnesium in water and in Crassostrea Calcite [J]. Science, 1965, 150(3697): 745-751. doi: 10.1126/science.150.3697.745

    CrossRef Google Scholar

    [21] Immega N T. Environmental influences on trace element concentrations in some modern and fossil oysters[D]. Doctor Dissertation of Indiana University, 1976.

    Google Scholar

    [22] Rucker J B, Valentine J W. Salinity response of trace element concentration in Crassostrea virginica [J]. Nature, 1961, 190(4781): 1099-1100. doi: 10.1038/1901099a0

    CrossRef Google Scholar

    [23] Higuera-Ruiz R, Elorza J. Biometric, microstructural, and high-resolution trace element studies in Crassostrea gigas of Cantabria (Bay of Biscay, Spain): anthropogenic and seasonal influences [J]. Estuarine, Coastal and Shelf Science, 2009, 82(2): 201-213. doi: 10.1016/j.ecss.2009.01.001

    CrossRef Google Scholar

    [24] Zhao L Q, Schöne B R, Mertz-Kraus R. Delineating the role of calcium in shell formation and elemental composition of Corbicula fluminea (Bivalvia) [J]. Hydrobiologia, 2017, 790(1): 259-272. doi: 10.1007/s10750-016-3037-7

    CrossRef Google Scholar

    [25] Kent B W. Making Dead Oysters Talk: Techniques for Analyzing Oysters from Archaeological Sites[M]. Crownsville: Maryland Historical & Cultural Publications, 1992.

    Google Scholar

    [26] Kirby M X, Soniat T M, Spero H J. Stable Isotope sclerochronology of Pleistocene and recent oyster shells (Crassostrea virginica) [J]. Palaios, 1998, 13(6): 560-569. doi: 10.2307/3515347

    CrossRef Google Scholar

    [27] Lartaud F, de Rafelis M, Ropert M, et al. Mn labelling of living oysters: artificial and natural cathodoluminescence analyses as a tool for age and growth rate determination of C. gigas (Thunberg, 1793) Shells [J]. Aquaculture, 2010, 300(1-4): 206-217. doi: 10.1016/j.aquaculture.2009.12.018

    CrossRef Google Scholar

    [28] 范昌福, 王宏, 裴艳东, 等. 牡蛎壳体的同位素贝壳年轮研究[J]. 地球科学进展, 2010, 25(2):163-173

    Google Scholar

    FAN Changfu, WANG Hong, PEI Yandong, et al. Stable isotope sclerochronology study of oyster shells [J]. Advances in Earth Science, 2010, 25(2): 163-173.

    Google Scholar

    [29] 徐凤山, 张素萍, 王少青. 中国海产双壳类图志[M]. 北京: 科学出版社, 2008.

    Google Scholar

    XU Fengshan, ZHANG Suping, WANG Shaoqing. An Illustrated Bivalvia Mollusca Fauna of China Seas[M]. Beijing: China Ocean Press, 2008.

    Google Scholar

    [30] 王建, 赵梅, 白世彪, 等. 黄海南部海门近岸牡蛎礁发育的物质基础与环境背景[J]. 地理研究, 2009, 28(5):1170-1178 doi: 10.3321/j.issn:1000-0585.2009.05.003

    CrossRef Google Scholar

    WANG Jian, ZHAO Mei, BAI Shibiao, et al. Environmental background of oyster reef development in near-shore Haimen of southern Yellow Sea [J]. Geographical Research, 2009, 28(5): 1170-1178. doi: 10.3321/j.issn:1000-0585.2009.05.003

    CrossRef Google Scholar

    [31] Wang H, Van Strydonck M. Chronology of Holocene cheniers and oyster reefs on the coast of Bohai Bay, China [J]. Quaternary Research, 1997, 47(2): 192-205. doi: 10.1006/qres.1996.1865

    CrossRef Google Scholar

    [32] Kirby M X. Paleoecological differences between Tertiary and Quaternary Crassostrea Oysters, as revealed by stable isotope sclerochronology [J]. Palaios, 2000, 15(2): 132-141. doi: 10.1669/0883-1351(2000)015<0132:PDBTAQ>2.0.CO;2

    CrossRef Google Scholar

    [33] 张忍顺, 王艳红, 张正龙, 等. 江苏小庙洪牡蛎礁的地貌特征及演化[J]. 海洋与湖沼, 2007, 38(3):259-265 doi: 10.3321/j.issn:0029-814X.2007.03.012

    CrossRef Google Scholar

    ZHANG Renshun, WANG Yanhong, ZHANG Zhenglong, et al. Geomorphology and evolution of the Xiaomiaohong oyster reef off Jiangsu Coast, China [J]. Oceanologia et Limnologia Sinica, 2007, 38(3): 259-265. doi: 10.3321/j.issn:0029-814X.2007.03.012

    CrossRef Google Scholar

    [34] 宋召军, 黄海军, 杜廷芹, 等. 南黄海辐射沙洲附近海域悬浮体的研究[J]. 海洋地质与第四纪地质, 2006, 26(6):19-25

    Google Scholar

    SONG Zhaojun, HUANG Haijun, DU Tingqin, et al. Suspended sediment near radial sand ridge area in the South Yellow Sea [J]. Marine Geology & Quaternary Geology, 2006, 26(6): 19-25.

    Google Scholar

    [35] 任美锷. 江苏省海岸带和海涂资源综合调查[M]. 北京: 科学出版社, 1986: 19-44.

    Google Scholar

    REN Mei'e. Comprehensive Investigation of Coastal Zone and Tidal Flat Resources, Jiangsu Province[M]. Beijing: China Ocean Press, 1986: 19-44.

    Google Scholar

    [36] Harding J M, Mann R. Age and growth of wild Suminoe (Crassostrea ariakensis, fugita 1913) and Pacific (C. gigas, Thunberg 1793) oysters from Laizhou bay, China [J]. Journal of Shellfish Research, 2015, 25(1): 73-82.

    Google Scholar

    [37] 刘勇胜, 胡兆初, 李明, 等. LA-ICP-MS在地质样品元素分析中的应用[J]. 科学通报, 2013, 58(32):3863-3878 doi: 10.1007/s11434-013-5901-4

    CrossRef Google Scholar

    LIU Yongsheng, HU Zhaochu, LI Ming, et al. Applications of LA-ICP-MS in the elemental analyses of geological samples [J]. Chinese Science Bulletin, 2013, 58(32): 3863-3878. doi: 10.1007/s11434-013-5901-4

    CrossRef Google Scholar

    [38] Longerich H P, Jackson S E, Günther D. Inter-laboratory note. Laser ablation inductively coupled plasma mass spectrometric transient signal data acquisition and analyte concentration calculation [J]. Journal of Analytical Atomic Spectrometry, 1996, 11(9): 899-904. doi: 10.1039/JA9961100899

    CrossRef Google Scholar

    [39] 徐金龙, 刘中勇, 华斌, 等. 分析化学中检出限问题探讨[J]. 检验检疫学刊, 2012, 22(6):74-76

    Google Scholar

    XU Jinlong, LIU Zhongyong, HUA Bin, et al. Discussion of detection limit concept question in analytical chemistry [J]. Journal of Inspection and Quarantine, 2012, 22(6): 74-76.

    Google Scholar

    [40] 陈璐. 碳酸岩样品微量元素LA-ICP-MS微区原位准确分析方法研究[D]. 中国地质大学硕士学位论文, 2011.

    Google Scholar

    CHEN Lu. In situ accurate analysis of trace elements of carbonate by LA-ICP-MS[D]. Master Dissertation of China University of Geosciences, 2011.

    Google Scholar

    [41] Morse J W, Mackenzie F T. Geochemistry of Sedimentary Carbonates[M]. New York: Elsevier Science Publishers Company, 1990.

    Google Scholar

    [42] Yoshimura T, Tamenori Y, Suzuki A, et al. Altervalent substitution of sodium for calcium in biogenic calcite and aragonite [J]. Geochimica et Cosmochimica Acta, 2017, 202: 21-38. doi: 10.1016/j.gca.2016.12.003

    CrossRef Google Scholar

    [43] Almeida M J, Machado J, Moura G, et al. Temporal and local variations in biochemical composition of Crassostrea gigas shells [J]. Journal of Sea Research, 1998, 40(3-4): 233-249. doi: 10.1016/S1385-1101(98)00033-1

    CrossRef Google Scholar

    [44] Ohde S, Kitano Y. Coprecipitation of strontium with marine Ca-Mg carbonates [J]. Geochemical journal, 1984, 18(3): 143-146. doi: 10.2343/geochemj.18.143

    CrossRef Google Scholar

    [45] Durham S R, Gillikin D P, Goodwin D H, et al. Rapid determination of oyster lifespans and growth rates using LA-ICP-MS line scans of shell Mg/Ca ratios [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 485: 201-209. doi: 10.1016/j.palaeo.2017.06.013

    CrossRef Google Scholar

    [46] 刘文, 李天华, 张滕军, 等. 牡蛎壳中钙的改性及吸附特性的研究[J]. 材料导报, 2012, 26(18):88-92 doi: 10.3969/j.issn.1005-023X.2012.18.024

    CrossRef Google Scholar

    LIU Wen, LI Tianhua, ZHANG Tengjun, et al. Study on modification of calcium and adsorbability of oyster shells [J]. Materials Review, 2012, 26(18): 88-92. doi: 10.3969/j.issn.1005-023X.2012.18.024

    CrossRef Google Scholar

    [47] 余克服, 赵焕庭, 朱袁智. 南沙群岛永暑礁等8座环礁现代沉积物中Ca、Sr、Mg的特征[J]. 海洋通报, 1996, 15(3):54-63

    Google Scholar

    YU Kefu, ZHAO Huanting, ZHU Yuanzhi. Content characters about Ca, Sr and Mg in modern sediments from eight atolls of Nansha Islands [J]. Marine Science Bulletin, 1996, 15(3): 54-63.

    Google Scholar

    [48] Mucci A. Influence of temperature on the composition of magnesian calcite overgrowths precipitated from seawater [J]. Geochimica et Cosmochimica Acta, 1987, 51(7): 1977-1984. doi: 10.1016/0016-7037(87)90186-4

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Article Metrics

Article views(2476) PDF downloads(56) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint