2020 Vol. 40, No. 1
Article Contents

ZHANG Rui, HUANG Jianping, LI Zhenchun, WANG Wei, YUAN Shuangqi, ZHUANG Subin. A controlled beam migration for anisotropic media and its application to marine data[J]. Marine Geology & Quaternary Geology, 2020, 40(1): 184-197. doi: 10.16562/j.cnki.0256-1492.2018120101
Citation: ZHANG Rui, HUANG Jianping, LI Zhenchun, WANG Wei, YUAN Shuangqi, ZHUANG Subin. A controlled beam migration for anisotropic media and its application to marine data[J]. Marine Geology & Quaternary Geology, 2020, 40(1): 184-197. doi: 10.16562/j.cnki.0256-1492.2018120101

A controlled beam migration for anisotropic media and its application to marine data

More Information
  • As exploration areas move from the land to the sea, research targets get more complicated, and the high-precision imaging method becomes critical for marine oil and gas exploration. Gaussian beam migration (GBM) is a robust imaging method with high computational efficiency and flexibility. A high-precision GBM method, suitable for marine observation systems, has been developed by the authors in this paper, which contains the transformation between common-shot and common-offset domains and the data-driven framework. On one hand, considering the anisotropy of the subsurface media, an anisotropic ray tracing equation is introduced. On the other hand, based on the semblance difference between signal and disturbance in the τ-p domain, we develop the semblance threshold filtering method to eliminate disturbance during GBM procedure, thereby reducing migration noise. Numerical tests on anisotropic sag model, modified SEG/Hess VTI model and marine data suggest that (1) anisotropic parameters can improve the imaging quality significantly for the large offset data, (2) the proposed method can more accurately recover the complex structure, and (3) the new method may improve the signal-to-noise ratio (S/N) of the migration profile to a certain extent.

  • 加载中
  • [1] 吴国忱. 各向异性介质地震波传播与成像[M]. 东营: 中国石油大学出版社, 2006.

    Google Scholar

    WU Guochen. Seismic Wave Propagation and Imaging in Anisotropic Media[M]. Dongying: China University of Petroleum Press, 2006.

    Google Scholar

    [2] Babich V M, Popov M M. Gaussian summation method (review) [J]. Radiophysics and Quantum Electronics, 1989, 32(12): 1063-1081. doi: 10.1007/BF01038632

    CrossRef Google Scholar

    [3] Popov M M. A new method of computation of wave fields using Gaussian beams [J]. Wave Motion, 1982, 4(1): 85-97. doi: 10.1016/0165-2125(82)90016-6

    CrossRef Google Scholar

    [4] Popov M M. Ray theory and Gaussian beam method for geophysicists[Z]. EDUFBA, 2002.

    Google Scholar

    [5] Bleistein N. Hagedoorn told us how to do Kirchhoff migration and inversion [J]. The Leading Edge, 1999, 18(8): 918-927. doi: 10.1190/1.1438407

    CrossRef Google Scholar

    [6] Hill N R. Prestack Gaussian-beam depth migration [J]. Geophysics, 2001, 66(4): 1240-1250. doi: 10.1190/1.1487071

    CrossRef Google Scholar

    [7] Gray S H, Notfors C, Bleistein N. Imaging using multi-arrivals: Gaussian beams or multi-arrival Kirchhoff?[C]//2002 SEG Annual Meeting. Salt Lake City, Utah: SEG, 2002: 1117-1120.

    Google Scholar

    [8] Liu J, Palacharla G. Multiarrival Kirchhoff beam migration [J]. Geophysics, 2011, 76(5): WB109-WB118. doi: 10.1190/geo2010-0403.1

    CrossRef Google Scholar

    [9] Kachalov A P, Popov M M. Application of the method of summation of Gaussian beams for calculation of high-frequency wave fields [J]. Soviet Physics Doklady, 1981, 26: 604-606.

    Google Scholar

    [10] Červený V, Popov M M, Pšenčík I. Computation of wave fields in inhomogeneous media-Gaussian beam approach [J]. Geophysical Journal International, 1982, 70(1): 109-128. doi: 10.1111/j.1365-246X.1982.tb06394.x

    CrossRef Google Scholar

    [11] Červený V. Synthetic body wave seismograms for laterally varying layered structures by the Gaussian beam method [J]. Geophysical Journal International, 1983, 73(2): 389-426. doi: 10.1111/j.1365-246X.1983.tb03322.x

    CrossRef Google Scholar

    [12] Červený V, Pšenčík I. Gaussian beams in two-dimensional elastic inhomogeneous media [J]. Geophysical Journal International, 1983, 72(2): 417-433. doi: 10.1111/j.1365-246X.1983.tb03793.x

    CrossRef Google Scholar

    [13] Červený V, Pšenčík I. Gaussian beams in elastic 2-D laterally varying layered structures [J]. Geophysical Journal International, 1984, 78(1): 65-91. doi: 10.1111/j.1365-246X.1984.tb06472.x

    CrossRef Google Scholar

    [14] Hill N R. Gaussian beam migration [J]. Geophysics, 1990, 55(11): 1416-1428. doi: 10.1190/1.1442788

    CrossRef Google Scholar

    [15] Alkhalifah T. Gaussian beam depth migration for anisotropic media [J]. Geophysics, 1995, 60(5): 1474-1484. doi: 10.1190/1.1443881

    CrossRef Google Scholar

    [16] Zhu T F, Gray S H, Wang D L. Prestack Gaussian-beam depth migration in anisotropic media [J]. Geophysics, 2007, 72(3): S133-S138. doi: 10.1190/1.2711423

    CrossRef Google Scholar

    [17] 段鹏飞, 程玖兵, 陈爱萍, 等. TI介质局部角度域高斯束叠前深度偏移成像[J]. 地球物理学报, 2013, 56(12):4206-4214 doi: 10.6038/cjg20131223

    CrossRef Google Scholar

    DUAN Pengfei, CHENG Jiubing, CHEN Aiping, et al. Local angle-domain Gaussian beam prestack depth migration in a TI medium [J]. Chinese Journal of Geophysics, 2013, 56(12): 4206-4214. doi: 10.6038/cjg20131223

    CrossRef Google Scholar

    [18] Protasov M I. 2-D Gaussian beam imaging of multicomponent seismic data in anisotropic media [J]. Geophysical Journal International, 2015, 203(3): 2021-2031. doi: 10.1093/gji/ggv408

    CrossRef Google Scholar

    [19] 张凯, 段新意, 李振春, 等. 角度域各向异性高斯束逆时偏移[J]. 石油地球物理勘探, 2015, 50(5):912-918

    Google Scholar

    ZHANG Kai, DUAN Xinyi, LI Zhenchun, et al. Angle domain reverse time migration with Gaussian beams in anisotropic media [J]. Oil Geophysical Prospecting, 2015, 50(5): 912-918.

    Google Scholar

    [20] 李振春, 刘强, 韩文功, 等. VTI介质角度域转换波高斯束偏移成像方法研究[J]. 地球物理学报, 2018, 61(4):1471-1481

    Google Scholar

    LI Zhenchun, LIU Qiang, HAN Wengong, et al. Angle domain converted wave Gaussian beam migration in VTI media [J]. Chinese Journal of Geophysics, 2018, 61(4): 1471-1481.

    Google Scholar

    [21] Popov M M, Semtchenok N M, Popov P M, et al. Depth migration by the Gaussian beam summation method [J]. Geophysics, 2010, 75(2): S81-S93. doi: 10.1190/1.3361651

    CrossRef Google Scholar

    [22] 黄建平, 张晴, 张凯, 等. 格林函数高斯束逆时偏移[J]. 石油地球物理勘探, 2014, 49(1):101-106

    Google Scholar

    HUANG Jianping, ZHANG Qing, ZHANG Kai, et al. Reverse time migration with Gaussian beams based on the Green function [J]. Oil Geophysical Prospecting, 2014, 49(1): 101-106.

    Google Scholar

    [23] Huang J P, Yuan M L, Zhang Q, et al. Reverse time migration with elastodynamic Gaussian beams [J]. Journal of Earth Science, 2017, 28(4): 695-702. doi: 10.1007/s12583-015-0609-9

    CrossRef Google Scholar

    [24] Gray S H, Bleistein N. True-amplitude Gaussian-beam migration [J]. Geophysics, 2009, 74(2): S11-S23. doi: 10.1190/1.3052116

    CrossRef Google Scholar

    [25] Protasov M I, Tcheverda V A. True amplitude elastic Gaussian beam imaging of multicomponent walkaway vertical seismic profiling data [J]. Geophysical Prospecting, 2012, 60(6): 1030-1042. doi: 10.1111/j.1365-2478.2012.01068.x

    CrossRef Google Scholar

    [26] 黄建平, 杨继东, 李振春, 等. 基于有效邻域波场近似的起伏地表保幅高斯束偏移[J]. 地球物理学报, 2016, 59(6):2245-2256 doi: 10.6038/cjg20160627

    CrossRef Google Scholar

    HUANG Jianping, YANG Jidong, LI Zhenchun, et al. An amplitude-preserved Gaussian beam migration based on wave field approximation in effective vicinity under irregular topographical conditions [J]. Chinese Journal of Geophysics, 2016, 59(6): 2245-2256. doi: 10.6038/cjg20160627

    CrossRef Google Scholar

    [27] Hu H, Liu Y K, Zheng Y C, et al. Least-squares Gaussian beam migration [J]. Geophysics, 2016, 81(3): S87-S100. doi: 10.1190/geo2015-0328.1

    CrossRef Google Scholar

    [28] Yuan M L, Huang J P, Liao W Y, et al. Least-squares Gaussian beam migration [J]. Journal of Geophysics and Engineering, 2017, 14(1): 184-196. doi: 10.1088/1742-2140/14/1/184

    CrossRef Google Scholar

    [29] Yang J D, Zhu H J, McMechan G, et al. Time-domain least-squares migration using the Gaussian beam summation method [J]. Geophysical Journal International, 2018, 214(1): 548-572. doi: 10.1093/gji/ggy142

    CrossRef Google Scholar

    [30] 黄建平, 袁茂林, 李振春, 等. 双复杂条件下非倾斜叠加精确束偏移方法及应用Ⅰ——声波方程[J]. 地球物理学报, 2015, 58(1):267-276

    Google Scholar

    HUANG Jianping, YUAN Maolin, LI Zhenchun, et al. The accurate beam migration method without slant stack under dual-complexity conditions and its application (I): Acoustic equation [J]. Chinese Journal of Geophysics, 2015, 58(1): 267-276.

    Google Scholar

    [31] 张瑞, 黄建平, 崔超, 等. 莺歌海盆地二维剖面高斯束高精度叠前深度偏移[J]. 海洋地质与第四纪地质, 2017, 37(1):168-175

    Google Scholar

    ZHANG Rui, HUANG Jianping, CUI Chao, et al. High precision Gaussian beam pre-stack depth migration for Yinggehai basin 2D seismic profiles [J]. Marine Geology and Quaternary Geology, 2017, 37(1): 168-175.

    Google Scholar

    [32] Yang J D, Zhu H J. A practical data-driven optimization strategy for Gaussian beam migration [J]. Geophysics, 2018, 83(1): S81-S92. doi: 10.1190/geo2017-0314.1

    CrossRef Google Scholar

    [33] Vinje V, Roberts G A, Taylor R. Controlled beam migration: a versatile structural imaging tool [J]. First Break, 2008, 26(9): 109-113.

    Google Scholar

    [34] Zhou B, Zhou J, Wang Z L, et al. Anisotropic depth imaging with high fidelity controlled beam migration: A case study in Bohai, offshore China[C]//2011 SEG Annual Meeting. San Antonio, Texas: SEG, 2011: 217-221.

    Google Scholar

    [35] Casasanta L, Gray S, Grion S. Converted-wave controlled beam migration with sparse sources or receivers[C]//75th EAGE Conference & Exhibition. London, UK: EAGE, 2013.

    Google Scholar

    [36] 黄建平, 吴建文, 杨继东, 等. 一种τ-p域二维控制束成像方法[J]. 石油地球物理勘探, 2016, 51(2):342-349

    Google Scholar

    HUANG Jianping, WU Jianwen, YANG Jidong, et al. A 2D control beam migration in the τ-p domain [J]. Oil Geophysical Prospecting, 2016, 51(2): 342-349.

    Google Scholar

    [37] Červený V. Seismic rays and ray intensities in inhomogeneous anisotropic media [J]. Geophysical Journal International, 1972, 29(1): 1-13. doi: 10.1111/j.1365-246X.1972.tb06147.x

    CrossRef Google Scholar

    [38] Hanyga A. Gaussian beams in anisotropic elastic media [J]. Geophysical Journal International, 1986, 85(3): 473-504. doi: 10.1111/j.1365-246X.1986.tb04528.x

    CrossRef Google Scholar

    [39] Zhang Y, Xu S, Bleistein N, et al. True-amplitude, angle-domain, common-image gathers from one-way wave-equation migrations [J]. Geophysics, 2007, 72(1): S49-S58. doi: 10.1190/1.2399371

    CrossRef Google Scholar

    [40] 高成, 孙建国, 齐鹏, 等. 2D共炮时间域高斯波束偏移[J]. 地球物理学报, 2015, 58(4):1333-1340

    Google Scholar

    GAO Cheng, SUN Jianguo, QI Peng, et al. 2-D Gaussian-beam migration of common-shot records in time domain [J]. Chinese Journal of Geophysics, 2015, 58(4): 1333-1340.

    Google Scholar

    [41] Hale D. Migration by the Kirchhoff, slant stack, and Gaussian beam methods[Z]. Center for Wave Phenomena, Colorado School of Mines, 1992.

    Google Scholar

    [42] 孙夕平, 杜世通. 相干体技术算法研究及其在地震资料解释中的应用[J]. 石油大学学报: 自然科学版, 2003, 27(2):32-35, 40

    Google Scholar

    SUN Xiping, DU Shitong. Development and application of algorithm of coherency cub technique to seismic interpretation [J]. Journal of China University of Petroleum, China: Edition of Natural Science, 2003, 27(2): 32-35, 40.

    Google Scholar

    [43] Bahorich M, Farmer S. 3-D seismic discontinuity for faults and stratigraphic features: The coherence cube [J]. The Leading Edge, 1995, 14(10): 1053-1058. doi: 10.1190/1.1437077

    CrossRef Google Scholar

    [44] Marfurt K J, Kirlin R L, Farmer S L, et al. 3-D seismic attributes using a semblance-based coherency algorithm [J]. Geophysics, 1998, 63(4): 1150-1165. doi: 10.1190/1.1444415

    CrossRef Google Scholar

    [45] Marfurt K J, Sudhaker V, Gersztenkorn A, et al. Coherency calculations in the presence of structural dip [J]. Geophysics, 1999, 64(1): 104-111. doi: 10.1190/1.1444508

    CrossRef Google Scholar

    [46] Neidell N S, Taner M T. Semblance and other coherency measures for multichannel data [J]. Geophysics, 1971, 36(3): 482-497. doi: 10.1190/1.1440186

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(12)

Article Metrics

Article views(2616) PDF downloads(76) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint