2020 Vol. 40, No. 1
Article Contents

LIU Xiangqi, SONG Lei, WU Qilong, LI Guomin, MAO Xin. Application of the affinity propagation clustering algorithm based on grain-size distribution curve to discrimination of sedimentary environment——A case study in Baiyangdian area[J]. Marine Geology & Quaternary Geology, 2020, 40(1): 198-209. doi: 10.16562/j.cnki.0256-1492.2018100802
Citation: LIU Xiangqi, SONG Lei, WU Qilong, LI Guomin, MAO Xin. Application of the affinity propagation clustering algorithm based on grain-size distribution curve to discrimination of sedimentary environment——A case study in Baiyangdian area[J]. Marine Geology & Quaternary Geology, 2020, 40(1): 198-209. doi: 10.16562/j.cnki.0256-1492.2018100802

Application of the affinity propagation clustering algorithm based on grain-size distribution curve to discrimination of sedimentary environment——A case study in Baiyangdian area

More Information
  • In the paper, 22 sedimentary sections are selected from the Baiyangdian region as research carriers. The affinity propagation (AP) clustering algorithm is adopted to cluster the similar grain size distribution of sediment into clusters. The results are then compared with the characteristics of grain size distribution which are known in typical sedimentary environments. The grain size distribution patterns in different sedimentary environments in Baiyangdian area are concluded and the feasibility of application of the affinity propagation clustering algorithm based on sediment grain characteristics to environmental interpretation discussed. The results suggests that the AP clustering algorithm can gather the sediments formed under the same or similar dynamical conditions into groups, and dig out the sedimentary dynamical information contained in the grain size data; The distribution curves of grain size for all samples are subdivided into 11 clusters. Considering the change in dynamic conditions in the same sedimentary environment, the 11 cluster curves are further categorized into 4 sets of curves, which could be compared with the grain size curves from known environment. 4 sedimentary facies i.e. the lacustrine-swamp facies, lacustrine facies, fluvial facies and alluvial facies are recognized. Among them, in terms of sedimentary dynamics, the lacustrine-swamp facies are similar with the central lake facies, while the lake shore facies similar with alluvial flat facies. The lacustrine-swamp facies and central lake facies are mainly composed of fine silty sand, whereas the lake shore facies and alluvial flat facies composed of coarse silt. River bed facies consist of sand or coarse sand. The contents of coarse silt, medium sand and coarse sand are similar in the flooding deposits, characterized by multi-peak curves. The performance proves that the AP clustering algorithm can provide a new mean for inversion and zonation of sedimentary environment conditions.

  • 加载中
  • [1] Weltje G J, Prins M A. Muddled or mixed? Inferring palaeoclimate from size distributions of deep-sea clastics [J]. Sedimentary Geology, 2003, 162(1-2): 39-62. doi: 10.1016/S0037-0738(03)00235-5

    CrossRef Google Scholar

    [2] 范天来, 范育新. 频率分布曲线和概率累积曲线在沉积物粒度数据分析中应用的对比[J]. 甘肃地质, 2010, 19(2):32-37

    Google Scholar

    FAN Tianlai, FAN Yuxin. A comparison of grain size expression methods: A case study [J]. Gansu Geology, 2010, 19(2): 32-37.

    Google Scholar

    [3] 曲政. 沉积物粒度数据表征方法的研究[J]. 中国粉体技术, 2001, 7(4):24-31 doi: 10.3969/j.issn.1008-5548.2001.04.008

    CrossRef Google Scholar

    QU Zheng. A study on characterization methods of grain-size data of sediment [J]. China Powder Science and Technology, 2001, 7(4): 24-31. doi: 10.3969/j.issn.1008-5548.2001.04.008

    CrossRef Google Scholar

    [4] 孙东怀, 鹿化煜, David R, et al. 中国黄土粒度的双峰分布及其古气候意义[J]. 沉积学报, 2001, 18(3):327-335 doi: 10.3969/j.issn.1000-0550.2001.03.002

    CrossRef Google Scholar

    SUN Donghuai, LU Huayu, David R, et al. Bimode grain-size distribution of Chinese loess and its paleoclimate implication [J]. Acta Sedimentologica Sinica, 2001, 18(3): 327-335. doi: 10.3969/j.issn.1000-0550.2001.03.002

    CrossRef Google Scholar

    [5] Weltje G J. End-member modeling of compositional data: Numerical-statistical algorithms for solving the explicit mixing problem [J]. Mathematical Geology, 1997, 29(4): 503-549. doi: 10.1007/BF02775085

    CrossRef Google Scholar

    [6] 孙吉贵, 刘杰, 赵连宇. 聚类算法研究[J]. 软件学报, 2008, 19(1):48-61 doi: 10.3724/SP.J.1001.2008.00048

    CrossRef Google Scholar

    SUN Jigui, LIU Jie, ZHAO Lianyu. Clustering algorithms research [J]. Journal of Software, 2008, 19(1): 48-61. doi: 10.3724/SP.J.1001.2008.00048

    CrossRef Google Scholar

    [7] 李玉中, 陈沈良. 系统聚类分析在现代沉积环境划分中的应用——以崎岖列岛海区为例[J]. 沉积学报, 2003, 21(3):487-494 doi: 10.3969/j.issn.1000-0550.2003.03.019

    CrossRef Google Scholar

    LI Yuzhong, CHEN Shenliang. Application of system cluster analysis to classification of modern sedimentary environment: A case study in Qiqu Archipelago Area [J]. Acta Sedimentologica Sinica, 2003, 21(3): 487-494. doi: 10.3969/j.issn.1000-0550.2003.03.019

    CrossRef Google Scholar

    [8] 杨传慧, 吉根林, 章志刚. AP算法在图像聚类中的应用研究[J]. 计算机与数字工程, 2012, 40(10):119-121 doi: 10.3969/j.issn.1672-9722.2012.10.036

    CrossRef Google Scholar

    YANG Chuanhui, JI Genlin, ZHANG Zhigang. Research on application of algorithm AP in images clustering [J]. Computer and Digital Engineering, 2012, 40(10): 119-121. doi: 10.3969/j.issn.1672-9722.2012.10.036

    CrossRef Google Scholar

    [9] 吴娱, 钟诚, 尹梦晓. 基因表达数据的分层近邻传播聚类算法[J]. 计算机工程与设计, 2016, 37(11):2961-2966

    Google Scholar

    WU Yu, ZHONG Cheng, YIN Mengxiao. Gene expression data clustering algorithm using hierarchical affinity propagation [J]. Computer Engineering and Design, 2016, 37(11): 2961-2966.

    Google Scholar

    [10] 肖宇, 于剑. 基于近邻传播算法的半监督聚类[J]. 软件学报, 2008, 19(11):2803-2813

    Google Scholar

    XIAO Yu, YU Jian. Semi-supervised clustering based on affinity propagation algorithm [J]. Journal of Software, 2008, 19(11): 2803-2813.

    Google Scholar

    [11] 许清海, 陈淑英, 孔昭宸, 等. 白洋淀地区全新世以来植被演替和气候变化初探[J]. 植物生态学与地植物学学报, 1988, 12(2):143-151

    Google Scholar

    XU Qinhai, CHEN Shuying, KONG Zhaochen, et al. Preliminary discussion of vegetation succession and climate change since the Holocene in the Baiyangdian lake district [J]. Acta Phytoecologica et Geobotanica Sinica, 1988, 12(2): 143-151.

    Google Scholar

    [12] 王永, 闵隆瑞, 董进, 等. 河北白洋淀全新统沉积特征与地层划分[J]. 地球学报, 2015, 36(5):575-582 doi: 10.3975/cagsb.2015.05.07

    CrossRef Google Scholar

    WANG Yong, MIN Longrui, DONG Jin, et al. Sedimentary characteristics and stratigraphic division of Holocene series in Baiyang Dian, Hebei Provence [J]. Acta Geoscientica Sinica, 2015, 36(5): 575-582. doi: 10.3975/cagsb.2015.05.07

    CrossRef Google Scholar

    [13] 杨慧君, 王永, 迟振卿, 等. 河北白洋淀老河头剖面25.5 kaBP以来气候环境变化的沉积记录[J]. 现代地质, 2015, 29(2):291-298 doi: 10.3969/j.issn.1000-8527.2015.02.011

    CrossRef Google Scholar

    YANG Huijun, WANG Yong, CHI Zhenqing, et al. Sedimentary record of climate change during the past 25.5 ka of Laohetou profile from Baiyangdian, Hebei Province [J]. Geoscience, 2015, 29(2): 291-298. doi: 10.3969/j.issn.1000-8527.2015.02.011

    CrossRef Google Scholar

    [14] 高彦春, 王金凤, 封志明. 白洋淀流域气温、降水和径流变化特征及其相互响应关系[J]. 中国生态农业学报, 2017, 25(4):467-477

    Google Scholar

    GAO Yanchun, WANG Jinfeng, FENG Zhiming. Variation trend and response relationship of temperature, precipitation and runoff in Baiyangdian Lake Basin [J]. Chinese Journal of Eco-Agriculture, 2017, 25(4): 467-477.

    Google Scholar

    [15] 何乃华, 朱宣清. 白洋淀地区近3万年来的古环境与历史上人类活动的影响[J]. 海洋地质与第四纪地质, 1992, 12(2):79-88

    Google Scholar

    HE Naihua, ZHU Xuanqing. Palaeoenvironment changes since 30000 aBP and effects of human activities in the Baiyangdian area [J]. Marine Geology and Quaternary Geology, 1992, 12(2): 79-88.

    Google Scholar

    [16] Frey B J, Dueck D. Clustering by passing messages between data points [J]. Science, 2007, 315(5814): 972-976. doi: 10.1126/science.1136800

    CrossRef Google Scholar

    [17] Brusco M J, Köhn H F. Comment on "Clustering by passing messages between data points" [J]. Science, 2008, 319(5864): 726.

    Google Scholar

    [18] Nelson P A, Bellugi D, Dietrich W E. Delineation of river bed-surface patches by clustering high-resolution spatial grain size data [J]. Geomorphology, 2014, 205: 102-119. doi: 10.1016/j.geomorph.2012.06.008

    CrossRef Google Scholar

    [19] Baxter M J, Beardah C C, Cool H E M, et al. Compositional data analysis of some alkaline Glasses [J]. Mathematical Geology, 2005, 37(2): 183-196. doi: 10.1007/s11004-005-1308-3

    CrossRef Google Scholar

    [20] Ordóñez C, Ruiz-Barzola O, Sierra C. Sediment particle size distributions apportionment by means of functional cluster analysis (FCA) [J]. Catena, 2016, 137: 31-36. doi: 10.1016/j.catena.2015.09.006

    CrossRef Google Scholar

    [21] 朱连江, 马炳先, 赵学泉. 基于轮廓系数的聚类有效性分析[J]. 计算机应用, 2010, 30(2):139-141

    Google Scholar

    ZHU Lianjiang, MA Bingxian, ZHAO Xuequan. Clustering validity analysis based on silhouette coefficient [J]. Journal of Computer Applications, 2010, 30(2): 139-141.

    Google Scholar

    [22] 张晋, 李安春, 万世明, 等. 南海南部表层沉积物粒度分布特征及其影响因素[J]. 海洋地质与第四纪地质, 2016, 36(2):1-10

    Google Scholar

    ZHANG Jin, LI Anchun, WAN Shiming, et al. Grain size distribution of surface sediments in the southern South China Sea and influencing factors [J]. Marine Geology and Quaternary Geology, 2016, 36(2): 1-10.

    Google Scholar

    [23] 殷志强, 秦小光, 吴金水, 等. 中国北方部分地区黄土、沙漠沙、湖泊、河流细粒沉积物粒度多组分分布特征研究[J]. 沉积学报, 2009, 27(2):343-351

    Google Scholar

    YIN Zhiqiang, QIN Xiaoguang, WU Jinshui, et al. The multimodal grain-size distribution characteristics of loess, desert, lake and river sediments in some areas of Northern China [J]. Acta Sedimentologica Sinica, 2009, 27(2): 343-351.

    Google Scholar

    [24] 孙东怀, 安芷生, 苏瑞侠, 等. 古环境中沉积物粒度组分分离的数学方法及其应用[J]. 自然科学进展, 2001, 11(3):269-276 doi: 10.3321/j.issn:1002-008X.2001.03.008

    CrossRef Google Scholar

    SUN Donghuai, AN Zhisheng, SUN Ruixia, et al. Mathematics method and its application of grain size distribution of Paleoenvironment Sediments [J]. Progress in Natural Sciences, 2001, 11(3): 269-276. doi: 10.3321/j.issn:1002-008X.2001.03.008

    CrossRef Google Scholar

    [25] 张平, 宋春晖, 杨用彪, 等. 稳定湖相沉积物和风成黄土粒度判别函数的建立及其意义[J]. 沉积学报, 2008, 26(3):501-507

    Google Scholar

    ZHANG Ping, SONG Chunhui, YANG Yongbiao, et al. The significance and establishment of discriminant function with grain size of stable lacustrine sediment and eolian loess [J]. Acta Sedimentologica Sinica, 2008, 26(3): 501-507.

    Google Scholar

    [26] 卢连战, 史正涛. 沉积物粒度参数内涵及计算方法的解析[J]. 环境科学与管理, 2010, 35(6):54-60 doi: 10.3969/j.issn.1673-1212.2010.06.013

    CrossRef Google Scholar

    LU Lianzhan, SHI Zhengtao. Analysis for sediment grain size parameters of connotations and calculation method [J]. Environmental Science and Management, 2010, 35(6): 54-60. doi: 10.3969/j.issn.1673-1212.2010.06.013

    CrossRef Google Scholar

    [27] Blott S J, Pye K. GRADISTAT: a grain size distribution and statistics package for the analysis of unconsolidated sediments [J]. Earth Surface Processes and Landforms, 2001, 26(11): 1237-1248. doi: 10.1002/esp.261

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(4)

Article Metrics

Article views(3655) PDF downloads(168) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint