2020 Vol. 40, No. 1
Article Contents

LIN Wuhui, YU Kefu, WANG Yinghui, LIU Xinming, CHEN Liqi. Using uranium-series radionuclides as tools for tracing marine sedimentary processes: Source identification, sedimentation rate, and sediment resuspension[J]. Marine Geology & Quaternary Geology, 2020, 40(1): 60-70. doi: 10.16562/j.cnki.0256-1492.2018092001
Citation: LIN Wuhui, YU Kefu, WANG Yinghui, LIU Xinming, CHEN Liqi. Using uranium-series radionuclides as tools for tracing marine sedimentary processes: Source identification, sedimentation rate, and sediment resuspension[J]. Marine Geology & Quaternary Geology, 2020, 40(1): 60-70. doi: 10.16562/j.cnki.0256-1492.2018092001

Using uranium-series radionuclides as tools for tracing marine sedimentary processes: Source identification, sedimentation rate, and sediment resuspension

More Information
  • Radionuclides are widely used as tracers in oceanography. As the final fate of many substances, marine sediment is mainly concerned from three perspectives: source identification, sedimentation rate, and sediment resuspension. In the present study, uranium-series radionuclides (210Pb, 226Ra, 234Th, and 238U) are applied in several sea regions such as the nine typical coral reefs in the South China Sea, the Weizhou Island, the Pearl River Estuary, the Arctic Ocean, and the Southern Ocean, to study the sediment source, sedimentation rate, and sediment resuspension. Firstly, activity ratio of 226Ra to 238U was found extremely low (<0.1) in the marine sediment of coral reef regions comparing to the activity ratios (0.5~1.0) in other marine sediments and therefore, it could be used as the tool to identify the sources of marine sediments from coral reef regions in addition to other geochemical tools (Al, Ti, and REE). Secondly, the sedimentation rate (3.7±0.6 mm/a) was calculated for a sediment core taking from the coral reefs near the Weizhou Island via excess 210Pb (Constant Flux Constant Sedimentation Model, CFCS model in brief) which was lower than most figures (5 mm/a~96 mm/a) in other coastal areas of China. Finally, residual β activity of particulate 234Th (RAP234) was proposed for tracking marine sediment resuspension. The RAP234 was successfully applied in the Arctic Ocean, South China Sea, and Southern Ocean. In conclusion, the successful applications of these radioactive tracers have provided potential tools used for tracing marine sedimentary processes in addition to the ongoing toolbox.

  • 加载中
  • [1] 林武辉. 高纬度边缘海海洋生物泵的多同位素示踪研究[D]. 清华大学博士学位论文, 2015: 126.

    Google Scholar

    LIN Wuhui. Marine biological carbon pumps and their tracing using multi-isotope in the high latitude marginal seas[D]. Doctor Dissertation of Tsinghua University, 2015: 126.

    Google Scholar

    [2] 林武辉, 陈立奇, 余雯, 等. 白令海和楚科奇海陆架区的生源物质埋藏通量研究[J]. 极地研究, 2016, 28(2):194-202

    Google Scholar

    LIN Wuhui, CHEN Liqi, YU Wen, et al. Burial fluxes of biogenic materials in the Bering Sea and Chukchi Sea [J]. Chinese Journal of Polar Research, 2016, 28(2): 194-202.

    Google Scholar

    [3] Lin W H, Chen L Q, Zeng S, et al. Residual β activity of particulate 234Th as a novel proxy for tracking sediment resuspension in the ocean [J]. Scientific Reports, 2016, 6: 27069. doi: 10.1038/srep27069

    CrossRef Google Scholar

    [4] 黄奕普, 陈敏. 海洋同位素示踪技术研究进展[J]. 厦门大学学报: 自然科学版, 2001, 40(2):512-523

    Google Scholar

    HUANG Yipu, CHEN Min. Progress in the isotope tracer technique for marine science [J]. Journal of Xiamen University: Natural Science, 2001, 40(2): 512-523.

    Google Scholar

    [5] 毕倩倩, 杜金洲. 海洋环境中放射性分析及其应用[J]. 核化学与放射化学, 2015, 37(4):193-206 doi: 10.7538/hhx.2015.37.04.0193

    CrossRef Google Scholar

    BI Qianqian, DU Jinzhou. Radio-analysis and its application in the marine environment [J]. Journal of Nuclear and Radiochemistry, 2015, 37(4): 193-206. doi: 10.7538/hhx.2015.37.04.0193

    CrossRef Google Scholar

    [6] Hong G H, Hamilton T F, Baskaran M, et al. Applications of anthropogenic radionuclides as tracers to investigate marine environmental processes[M]//Baskaran M. Handbook of Environmental Isotope Geochemistry. Berlin, Heidelberg: Springer, 2012: 367-394.

    Google Scholar

    [7] Rutgers Van Der Loeff M M. Uranium-Thorium decay series in the oceans overview[M]//Steele J H. Encyclopedia of Ocean Sciences. San Diego: Academic Press, 2001: 3135-3145.

    Google Scholar

    [8] 刘广山. 同位素海洋学[M]. 郑州: 郑州大学出版社, 2010.

    Google Scholar

    LIU Guangshan. Isotopic Oceanography[M]. Zhengzhou: Zhengzhou University Press, 2010.

    Google Scholar

    [9] Loose B, Kelly R P, Bigdeli A, et al. How well does wind speed predict air‐sea gas transfer in the sea ice zone? A synthesis of radon deficit profiles in the upper water column of the Arctic Ocean [J]. Journal of Geophysical Research: Oceans, 2017, 122(5): 3696-3714. doi: 10.1002/2016JC012460

    CrossRef Google Scholar

    [10] Hayes C T, Anderson R F, Fleisher M Q, et al. Quantifying lithogenic inputs to the North Pacific Ocean using the long-lived thorium isotopes [J]. Earth and Planetary Science Letters, 2013, 383: 16-25. doi: 10.1016/j.jpgl.2013.09.025

    CrossRef Google Scholar

    [11] Kadko D, Landing W M, Shelley R U. A novel tracer technique to quantify the atmospheric flux of trace elements to remote ocean regions [J]. Journal of Geophysical Research: Oceans, 2015, 120(2): 848-858. doi: 10.1002/2014JC010314

    CrossRef Google Scholar

    [12] Baskaran M. Po-210 and Pb-210 as atmospheric tracers and global atmospheric Pb-210 fallout: a review [J]. Journal of Environmental Radioactivity, 2011, 102(5): 500-513. doi: 10.1016/j.jenvrad.2010.10.007

    CrossRef Google Scholar

    [13] Du J, Du J Z, Baskaran M, et al. Temporal variations of atmospheric depositional fluxes of 7Be and 210Pb over 8?years (2006-2013) at Shanghai, China, and synthesis of global fallout data [J]. Journal of Geophysical Research: Atmospheres, 2015, 120(9): 4323-4339. doi: 10.1002/2014JD022807

    CrossRef Google Scholar

    [14] Regaudie-de-Gioux A, Lasternas S, Agustí S, et al. Comparing marine primary production estimates through different methods and development of conversion equations [J]. Frontiers in Marine Science, 2014, 1: 19.

    Google Scholar

    [15] Yu W, He J, Li Y, et al. Particulate organic carbon export fluxes and validation of steady state model of 234Th export in the Chukchi Sea [J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2012, 81-84: 63-71. doi: 10.1016/j.dsr2.2012.03.003

    CrossRef Google Scholar

    [16] He J H, Yu W, Lin W H, et al. Particulate organic carbon export fluxes on Chukchi Shelf, western Arctic Ocean, derived from 210Po/210Pb disequilibrium [J]. Chinese Journal of Oceanology and Limnology, 2015, 33(3): 741-747. doi: 10.1007/s00343-015-3357-x

    CrossRef Google Scholar

    [17] Lin W H, Ma H, Chen L Q, et al. Decay/ingrowth uncertainty correction of 210Po/210Pb in seawater [J]. Journal of Environmental Radioactivity, 2014, 137: 22-30. doi: 10.1016/j.jenvrad.2014.06.005

    CrossRef Google Scholar

    [18] Cai P H, Zhao D C, Wang L, et al. Role of particle stock and phytoplankton community structure in regulating particulate organic carbon export in a large marginal sea [J]. Journal of Geophysical Research: Oceans, 2015, 120(3): 2063-2095. doi: 10.1002/2014JC010432

    CrossRef Google Scholar

    [19] Kadko D, Johns W. Inferring upwelling rates in the equatorial Atlantic using 7Be measurements in the upper ocean [J]. Deep Sea Research Part I: Oceanographic Research Papers, 2011, 58(6): 647-657. doi: 10.1016/j.dsr.2011.03.004

    CrossRef Google Scholar

    [20] Geibert W, Rutgers Van Der Loeff M M, Hanfland C, et al. Actinium-227 as a deep-sea tracer: sources, distribution and applications [J]. Earth and Planetary Science Letters, 2002, 198(1-2): 147-165. doi: 10.1016/S0012-821X(02)00512-5

    CrossRef Google Scholar

    [21] Ma H Y, Yang W F, Zhang L H, et al. Utilizing 210Po deficit to constrain particle dynamics in mesopelagic water, western South China Sea [J]. Geochemistry, Geophysics, Geosystems, 2017, 18(4): 1594-1607. doi: 10.1002/2017GC006899

    CrossRef Google Scholar

    [22] Rutgers Van Der Loeff M, Meyer R, Rudels B, et al. Resuspension and particle transport in the benthic nepheloid layer in and near Fram Strait in relation to faunal abundances and 234Th depletion [J]. Deep Sea Research Part I: Oceanographic Research Papers, 2002, 49(11): 1941-1958. doi: 10.1016/S0967-0637(02)00113-9

    CrossRef Google Scholar

    [23] Cai P H, Shi X M, Moore W S, et al. 224Ra: 228Th disequilibrium in coastal sediments: Implications for solute transfer across the sediment–water interface [J]. Geochimica et Cosmochimica Acta, 2014, 125: 68-84. doi: 10.1016/j.gca.2013.09.029

    CrossRef Google Scholar

    [24] Du J Z, Zhang J, Baskaran M. Applications of short-lived radionuclides (7Be, 210Pb, 210Po, 137Cs and 234Th) to trace the sources, transport pathways and deposition of particles/sediments in rivers, estuaries and coasts[M]//Baskaran M. Handbook of Environmental Isotope Geochemistry. Berlin, Heidelberg: Springer, 2012: 305-329.

    Google Scholar

    [25] Huang D K, Du J Z, Moore W S, et al. Particle dynamics of the Changjiang Estuary and adjacent coastal region determined by natural particle-reactive radionuclides (7Be, 210Pb, and 234Th) [J]. Journal of Geophysical Research: Oceans, 2013, 118(4): 1736-1748. doi: 10.1002/jgrc.20148

    CrossRef Google Scholar

    [26] Wang J L, Du J Z, Baskaran M, et al. Mobile mud dynamics in the East China Sea elucidated using 210Pb, 137Cs, 7Be, and 234Th as tracers [J]. Journal of Geophysical Research: Oceans, 2016, 121(1): 224-239. doi: 10.1002/2015JC011300

    CrossRef Google Scholar

    [27] Moore W S. The effect of submarine groundwater discharge on the ocean [J]. Annual Review of Marine Science, 2010, 2: 59-88. doi: 10.1146/annurev-marine-120308-081019

    CrossRef Google Scholar

    [28] Wang G Z, Wang Z Y, Zhai W D, et al. Net subterranean estuarine export fluxes of dissolved inorganic C, N, P, Si, and total alkalinity into the Jiulong River estuary, China [J]. Geochimica et Cosmochimica Acta, 2015, 149: 103-114. doi: 10.1016/j.gca.2014.11.001

    CrossRef Google Scholar

    [29] Rutgers Van Der Loeff M, Cai P, Stimac I, et al. Shelf-basin exchange times of Arctic surface waters estimated from 228Th/228Ra disequilibrium [J]. Journal of Geophysical Research: Oceans, 2012, 117(C3): C03024.

    Google Scholar

    [30] Charette M A, Breier C F, Henderson P B, et al. Radium-based estimates of cesium isotope transport and total direct ocean discharges from the Fukushima Nuclear Power Plant accident [J]. Biogeosciences, 2013, 10(3): 2159-2167. doi: 10.5194/bg-10-2159-2013

    CrossRef Google Scholar

    [31] Charette M A, Morris P J, Henderson P B, et al. Radium isotope distributions during the US GEOTRACES North Atlantic cruises [J]. Marine Chemistry, 2015, 177: 184-195. doi: 10.1016/j.marchem.2015.01.001

    CrossRef Google Scholar

    [32] 杨守业. 一沙一世界——藏于海底的地球环境变迁史[J]. 自然杂志, 2017, 39(5):313-319 doi: 10.3969/j.issn.0253-9608.2017.05.001

    CrossRef Google Scholar

    YANG Shouye. To see a world in a grain of sand: Environment changes recorded in global seafloor [J]. Chinese Journal of Nature, 2017, 39(5): 313-319. doi: 10.3969/j.issn.0253-9608.2017.05.001

    CrossRef Google Scholar

    [33] Burdige D J. Geochemistry of Marine Sediments[M]. Princeton: Princeton University Press, 2006.

    Google Scholar

    [34] Liu Z F, Zhao Y L, Colin C, et al. Source-to-Sink transport processes of fluvial sediments in the South China Sea [J]. Earth-Science Reviews, 2016, 153: 238-273. doi: 10.1016/j.earscirev.2015.08.005

    CrossRef Google Scholar

    [35] Qiao S Q, Shi X F, Wang G Q, et al. Sediment accumulation and budget in the Bohai Sea, Yellow Sea and East China Sea [J]. Marine Geology, 2017, 390: 270-281. doi: 10.1016/j.margeo.2017.06.004

    CrossRef Google Scholar

    [36] 林武辉, 余克服, 王英辉, 等. 罕见的地表低辐射水平区域: 珊瑚礁区[J]. 辐射防护, 2018, 38(4):287-292

    Google Scholar

    LIN Wuhui, YU Kefu, WANG Yinghui, et al. Unusual low radiation area on the surface of the earth: coral reefs [J]. Radiation Protection, 2018, 38(4): 287-292.

    Google Scholar

    [37] 林武辉, 余克服, 王英辉, 等. 珊瑚礁区沉积物的极低放射性水平特征与成因[J]. 科学通报, 2018, 63(21):2173-2183

    Google Scholar

    LIN Wuhui, YU Kefu, WANG Yinghui, et al. Extremely low radioactivity in marine sediment of coral reefs and its mechanism [J]. Chinese Science Bulletin, 2018, 63(21): 2173-2183.

    Google Scholar

    [38] Liu X M, Lin W H. Natural radioactivity in the beach sand and soil along the coastline of Guangxi Province, China [J]. Marine Pollution Bulletin, 2018, 135: 446-450. doi: 10.1016/j.marpolbul.2018.07.057

    CrossRef Google Scholar

    [39] 毛远意, 林静, 黄德坤, 等. 北部湾白龙半岛邻近海域沉积物中放射性核素含量水平[J]. 应用海洋学学报, 2018, 37(2):194-202 doi: 10.3969/J.ISSN.2095-4972.2018.02.006

    CrossRef Google Scholar

    MAO Yuanyi, LIN Jing, HUANG Dekun, et al. Radionuclides in the surface sediments along the coast of Bailong Peninsula in Beibu Gulf [J]. Journal of Applied Oceanography, 2018, 37(2): 194-202. doi: 10.3969/J.ISSN.2095-4972.2018.02.006

    CrossRef Google Scholar

    [40] 杜金秋, 关道明, 姚子伟, 等. 大连近海沉积物中放射性核素分布及环境指示[J]. 中国环境科学, 2017, 37(5):1889-1895 doi: 10.3969/j.issn.1000-6923.2017.05.036

    CrossRef Google Scholar

    DU Jinqiu, GUAN Daoming, YAO Ziwei, et al. Distribution and environmental significances of radionuclides in sediments of Dalian coastal area [J]. China Environmental Science, 2017, 37(5): 1889-1895. doi: 10.3969/j.issn.1000-6923.2017.05.036

    CrossRef Google Scholar

    [41] Sanchez-Cabeza J A, Ruiz-Fernández A C. 210Pb sediment radiochronology: An integrated formulation and classification of dating models [J]. Geochimica et Cosmochimica Acta, 2012, 82: 183-200. doi: 10.1016/j.gca.2010.12.024

    CrossRef Google Scholar

    [42] Aller R C, Cochran J K. 234Th/238U disequilibrium in near-shore sediment: particle reworking and diagenetic time scales [J]. Earth and Planetary Science Letters, 1976, 29(1): 37-50. doi: 10.1016/0012-821X(76)90024-8

    CrossRef Google Scholar

    [43] Corbett D R, Mckee B, Duncan D. An evaluation of mobile mud dynamics in the Mississippi River deltaic region [J]. Marine Geology, 2004, 209(1-4): 91-112. doi: 10.1016/j.margeo.2004.05.028

    CrossRef Google Scholar

    [44] Moberg F, Folke C. Ecological goods and services of coral reef ecosystems [J]. Ecological Economics, 1999, 29(2): 215-233. doi: 10.1016/S0921-8009(99)00009-9

    CrossRef Google Scholar

    [45] Hughes T P, Barnes M L, Bellwood D R, et al. Coral reefs in the Anthropocene [J]. Nature, 2017, 546(7656): 82-90. doi: 10.1038/nature22901

    CrossRef Google Scholar

    [46] McCulloch M, Fallon S, Wyndham T, et al. Coral record of increased sediment flux to the inner Great Barrier Reef since European settlement [J]. Nature, 2003, 421(6924): 727-730. doi: 10.1038/nature01361

    CrossRef Google Scholar

    [47] Jones R, Bessell-Browne P, Fisher R, et al. Assessing the impacts of sediments from dredging on corals [J]. Marine Pollution Bulletin, 2016, 102(1): 9-29. doi: 10.1016/j.marpolbul.2015.10.049

    CrossRef Google Scholar

    [48] Wang J L, Du J Z, Bi Q Q. Natural radioactivity assessment of surface sediments in the Yangtze Estuary [J]. Marine Pollution Bulletin, 2017, 114(1): 602-608. doi: 10.1016/j.marpolbul.2016.09.040

    CrossRef Google Scholar

    [49] Huang D K, Du J Z, Deng B, et al. Distribution patterns of particle-reactive radionuclides in sediments off eastern Hainan Island, China: implications for source and transport pathways [J]. Continental Shelf Research, 2013, 57: 10-17. doi: 10.1016/j.csr.2012.04.019

    CrossRef Google Scholar

    [50] Wang Q D, Song J M, Li X G, et al. Environmental radionuclides in a coastal wetland of the Southern Laizhou Bay, China [J]. Marine Pollution Bulletin, 2015, 97(1-2): 506-511. doi: 10.1016/j.marpolbul.2015.05.035

    CrossRef Google Scholar

    [51] Zhou P, Li D M, Li H T, et al. Distribution of radionuclides in a marine sediment core off the waterspout of the nuclear power plants in Daya Bay, northeastern South China Sea [J]. Journal of Environmental Radioactivity, 2015, 145: 102-112. doi: 10.1016/j.jenvrad.2015.03.018

    CrossRef Google Scholar

    [52] Yu K N, Guan Z J, Stokes M J, et al. Natural and artificial radionuclides in seabed sediments of Hong Kong [J]. The International Journal of Radiation Applications and Instrumentation. Part E: Nuclear Geophysics, 1994, 8(1): 45-48.

    Google Scholar

    [53] 赵峰, 吴梅桂, 周鹏, 等. 黄茅海—广海湾及其邻近海域表层沉积物中γ放射性核素含量水平[J]. 热带海洋学报, 2015, 34(4):77-82 doi: 10.3969/j.issn.1009-5470.2015.04.011

    CrossRef Google Scholar

    ZHAO Feng, WU Meigui, ZHOU Peng, et al. Radionuclides in surface sediments from the Huangmaohai Estuary-Guanghai Bay and its adjacent sea area of the South China Sea [J]. Journal of Tropical Oceanography, 2015, 34(4): 77-82. doi: 10.3969/j.issn.1009-5470.2015.04.011

    CrossRef Google Scholar

    [54] 林武辉, 陈立奇, 马豪, 等. 日本福岛核事故后的海洋放射性监测进展[J]. 中国环境科学, 2015, 35(1):269-276

    Google Scholar

    LIN Wuhui, CHEN Liqi, MA Hao, et al. Review on monitoring marine radioactivity since the Fukushima Nuclear Accident [J]. China Environmental Science, 2015, 35(1): 269-276.

    Google Scholar

    [55] Baskaran M. Dating of biogenic and inorganic carbonates using 210Pb-226Ra disequilibrium method: a review[M]//Baskaran M. Handbook of Environmental Isotope Geochemistry. Berlin, Heidelberg: Springer, 2012: 789-809.

    Google Scholar

    [56] Saha N, Webb G E, Zhao J X. Coral skeletal geochemistry as a monitor of inshore water quality [J]. Science of the Total Environment, 2016, 566-567: 652-684. doi: 10.1016/j.scitotenv.2016.05.066

    CrossRef Google Scholar

    [57] Hart D E, Kench P S. Carbonate production of an emergent reef platform, Warraber Island, Torres Strait, Australia [J]. Coral Reefs, 2007, 26(1): 53-68. doi: 10.1007/s00338-006-0168-8

    CrossRef Google Scholar

    [58] Łącka M, Pawłowska J, Zajączkowski M. New methods in the reconstruction of Arctic marine palaeoenvironments[M]//Zielinski T, Weslawski M, Kuliński K. Impact of Climate Changes on Marine Environments. Cham: Springer, 2015: 127-148.

    Google Scholar

    [59] Oguri K, Harada N, Tadai O. Excess 210Pb and 137Cs concentrations, mass accumulation rates, and sedimentary processes on the Bering Sea continental shelf [J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2012, 61-64: 193-204. doi: 10.1016/j.dsr2.2011.03.007

    CrossRef Google Scholar

    [60] Kuzyk Z Z A, Gobeil C, Macdonald R W. 210Pb and 137Cs in margin sediments of the Arctic Ocean: controls on boundary scavenging [J]. Global Biogeochemical Cycles, 2013, 27(2): 422-439. doi: 10.1002/gbc.20041

    CrossRef Google Scholar

    [61] 曾文义, 程汉良, 曾宪章, 等. 厦门港的淤积现状及防淤建议[J]. 海洋通报, 1991, 10(1):45-49

    Google Scholar

    ZENG Wenyi, CHENG Hanliang, ZENG Xianzhang, et al. Situation of modern sedimentation and propositions of preventing siltation in Xiamen Harbour [J]. Marine Science Bulletin, 1991, 10(1): 45-49.

    Google Scholar

    [62] 刘广山. 210Pb过剩法与中国海的现代沉积物测年[M]//刘广山. 海洋放射年代学. 厦门: 厦门大学出版社, 2016: 106-136.

    Google Scholar

    LIU Guangshan. 210Pb excess method and modern sediment dating in the China Sea[M]//LIU Guangshan. Marine Radiological Chronology. Xiamen: Xiamen University Press, 2016: 106-136.]

    Google Scholar

    [63] 潘少明, 王雪瑜, SMITH J N. 海南岛洋浦港现代沉积速率[J]. 沉积学报, 1994, 12(2):86-93

    Google Scholar

    PAN Shaoming, WANG Xueyu, SMITH J N. Recent sedimentation rates in Yangpu Harbour on Hainan Island [J]. Acta Sedimentologica Sinica, 1994, 12(2): 86-93.

    Google Scholar

    [64] 潘少明, 施晓东, SMITH J N. 海南岛三亚港现代沉积速率的研究[J]. 海洋与湖沼, 1995, 26(2):132-137 doi: 10.3321/j.issn:0029-814X.1995.02.003

    CrossRef Google Scholar

    PAN Shaoming, SHI Xiaodong, SMITH J N. Determination of recent sedimentation rates in Sanya Harbour, Hainan Island [J]. Oceanologia et Limnologia Sinica, 1995, 26(2): 132-137. doi: 10.3321/j.issn:0029-814X.1995.02.003

    CrossRef Google Scholar

    [65] 刘志勇, 潘少明, 程功弼, 等. 珠江口沉积物210Pb分布特征及环境意义[J]. 沉积学报, 2010, 28(1):166-175

    Google Scholar

    LIU Zhiyong, PAN Shaoming, CHENG Gongbi, et al. 210Pb characteristic in the sediment cores from the Pearl River Mouth and its environmental implication [J]. Acta Sedimentologica Sinica, 2010, 28(1): 166-175.

    Google Scholar

    [66] Li P Y, Wang Y H, Huang W Y, et al. Sixty-Year sedimentary record of DDTs, HCHs, CHLs and Endosulfan from emerging development gulfs: a case study in the Beibu Gulf, South China Sea [J]. Bulletin of Environmental Contamination and Toxicology, 2014, 92(1): 23-29. doi: 10.1007/s00128-013-1130-4

    CrossRef Google Scholar

    [67] McCave I N. Local and global aspects of the bottom nepheloid layers in the world ocean [J]. Netherlands Journal of Sea Research, 1986, 20(2-3): 167-181. doi: 10.1016/0077-7579(86)90040-2

    CrossRef Google Scholar

    [68] Boudreau B P. A one-dimensional model for bed-boundary layer particle exchange [J]. Journal of Marine Systems, 1997, 11(3-4): 279-303. doi: 10.1016/S0924-7963(96)00127-3

    CrossRef Google Scholar

    [69] Middag R, Van Hulten M M P, Van Aken H M, et al. Dissolved aluminium in the ocean conveyor of the West Atlantic Ocean: effects of the biological cycle, scavenging, sediment resuspension and hydrography [J]. Marine Chemistry, 2015, 177: 69-86. doi: 10.1016/j.marchem.2015.02.015

    CrossRef Google Scholar

    [70] Hall I R, Schmidt S, McCave I N, et al. Particulate matter distribution and 234Th/238U disequilibrium along the Northern Iberian Margin: implications for particulate organic carbon export [J]. Deep Sea Research Part I: Oceanographic Research Papers, 2000, 47(4): 557-582. doi: 10.1016/S0967-0637(99)00065-5

    CrossRef Google Scholar

    [71] Rutgers Van Der Loeff M M, Boudreau B P. The effect of resuspension on chemical exchanges at the sediment-water interface in the deep sea — A modelling and natural radiotracer approach [J]. Journal of Marine Systems, 1997, 11(3-4): 305-342. doi: 10.1016/S0924-7963(96)00128-5

    CrossRef Google Scholar

    [72] Turley C. Bacteria in the cold deep-sea benthic boundary layer and sediment-water interface of the NE Atlantic [J]. FEMS Microbiology Ecology, 2000, 33(2): 89-99.

    Google Scholar

    [73] 汪卫国, 方建勇, 陈莉莉, 等. 楚科奇海悬浮体含量分布及其颗粒组分特征[J]. 极地研究, 2014, 26(1):79-88

    Google Scholar

    WANG Weiguo, FANG Jianyong, CHEN Lili, et al. The distribution and composition of suspended particles in the Chukchi Sea [J]. Chinese Journal of Polar Research, 2014, 26(1): 79-88.

    Google Scholar

    [74] Woodgate R A, Aagaard K, Weingartner T J. A year in the physical oceanography of the Chukchi Sea: Moored measurements from autumn 1990-1991 [J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2005, 52(24-26): 3116-3149. doi: 10.1016/j.dsr2.2005.10.016

    CrossRef Google Scholar

    [75] White W M. Geochemistry[M]. Chichester, West Sussex Hoboken: John Wiley & Sons, 2013.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Article Metrics

Article views(3147) PDF downloads(74) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint