2020 Vol. 40, No. 1
Article Contents

ZHANG Tingting, LIANG Qianyong, ZHAO Jing, XIAO Xi, DONG Yifei, GUO Binbin, ZHONG Chao, WU Xuemin, YANG Lin. Discussion on the sources and mechanism of supersaturated methane in euphotic seawater[J]. Marine Geology & Quaternary Geology, 2020, 40(1): 50-59. doi: 10.16562/j.cnki.0256-1492.2018083101
Citation: ZHANG Tingting, LIANG Qianyong, ZHAO Jing, XIAO Xi, DONG Yifei, GUO Binbin, ZHONG Chao, WU Xuemin, YANG Lin. Discussion on the sources and mechanism of supersaturated methane in euphotic seawater[J]. Marine Geology & Quaternary Geology, 2020, 40(1): 50-59. doi: 10.16562/j.cnki.0256-1492.2018083101

Discussion on the sources and mechanism of supersaturated methane in euphotic seawater

More Information
  • Methane supersaturation occurs widely in the euphotic zone of oceans, especially in the areas with natural gas hydrate. It is closely related to atmospheric methane emission and global greenhouse effect due to the proximity of the sea-air interface. Up to date, it remains controversy concerning the source of supersaturated methane in euphotic seawater. This paper focuses on synthesizing the previous research results in order to sort out the sources of supersaturated methane, summarizing the influencing factors of supersaturated methane formation, and further exploring the mechanism of methane metabolism that in-situ microbes may participate in. The sources of supersaturated methane in euphotic zone may be transported from sediments, near-rivers or generated by in-situ microbes, and affected by various factors such as region, season, nutrient, and biological activities. Due to the influence of oxygen, the particularity of methanogenic mechanism is showed in euphotic seawater. Currently, it is speculated that conventional methanogenic pathways may be still performed by microorganisms, which exist in the micro-anaerobic environment of seawater, or generate the ability of resistance to oxygen; in addition, microorganisms may also choose new methanogenic pathways that are not sensitive to oxygen. Therefore, for the methane supersaturation phenomenon in euphotic seawater in natural gas hydrate area, the study of the sources and metabolic mechanisms of methane was carried out. It was hoped to provide theoretical support for the environmental assessment of gas hydrate test mining and development, and provide a theoretical basis for exploring the impact of seawater methane on the atmosphere and global climate.

  • 加载中
  • [1] ICPP. Climate Change 2013: The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge: Cambridge University Press, 2013.

    Google Scholar

    [2] Judd A G, Hovland M, Dimitrov L I, et al. The geological methane budget at Continental Margins and its influence on climate change [J]. Geofluids, 2002, 2(2): 109-126. doi: 10.1046/j.1468-8123.2002.00027.x

    CrossRef Google Scholar

    [3] Reeburgh W S. Oceanic methane biogeochemistry [J]. Chemical Reviews, 2007, 107(2): 486-513. doi: 10.1021/cr050362v

    CrossRef Google Scholar

    [4] Cicerone R J, Oremland R S. Biogeochemical aspects of atmospheric methane [J]. Global Biogeochemical Cycles, 1988, 2(4): 299-327. doi: 10.1029/GB002i004p00299

    CrossRef Google Scholar

    [5] Schmale O, Beaubien S E, Rehder G, et al. Gas seepage in the Dnepr paleo-delta area (NW-Black Sea) and its regional impact on the water column methane cycle [J]. Journal of Marine Systems, 2010, 80(1-2): 90-100. doi: 10.1016/j.jmarsys.2009.10.003

    CrossRef Google Scholar

    [6] Schmale O, Blumenberg M, Kießlich K, et al. Aerobic methanotrophy within the pelagic redox-zone of the Gotland Deep (central Baltic Sea) [J]. Biogeosciences, 2012, 9(12): 4969-4977. doi: 10.5194/bg-9-4969-2012

    CrossRef Google Scholar

    [7] Damm E, Thoms S, Beszczynska-Möller A, et al. Methane excess production in oxygen-rich polar water and a model of cellular conditions for this paradox [J]. Polar Science, 2015, 9(3): 327-334. doi: 10.1016/j.polar.2015.05.001

    CrossRef Google Scholar

    [8] 张桂玲, 张经. 海洋中溶存甲烷研究进展[J]. 地球科学进展, 2001, 16(6):829-835 doi: 10.3321/j.issn:1001-8166.2001.06.012

    CrossRef Google Scholar

    ZHANG Guiling, ZHANG Jing. Advances in studies of dissolved methane in seawater [J]. Advance in Earth Sciences, 2001, 16(6): 829-835. doi: 10.3321/j.issn:1001-8166.2001.06.012

    CrossRef Google Scholar

    [9] 梁前勇, 赵静, 夏真, 等. 南海北部陆坡天然气水合物区海水甲烷浓度分布特征及其影响因素探讨[J]. 地学前缘, 2017, 24(4):89-101

    Google Scholar

    LIANG Qianyong, ZHAO Jing, XIA Zhen, et al. Distribution characteristics and influential factors of dissolved methane in sea water above gas hydrate area on the northern slope of the South China Sea [J]. Earth Science Frontiers, 2017, 24(4): 89-101.

    Google Scholar

    [10] Tang K W, Mcginnis D F, Ionescu D, et al. Methane production in oxic lake waters potentially increases aquatic methane flux to air [J]. Environmental Science & Technology Letters, 2016, 3(6): 227-233.

    Google Scholar

    [11] McGinnis D F, Kirillin G, Tang K W, et al. Enhancing surface methane fluxes from an oligotrophic lake: exploring the microbubble hypothesis [J]. Environmental Science & Technology Letters, 2015, 49(2): 873-880.

    Google Scholar

    [12] Wolfe R S. Microbial formation of methane [J]. Advances in Microbial Physiology, 1971, 6: 107-146. doi: 10.1016/S0065-2911(08)60068-5

    CrossRef Google Scholar

    [13] Lamontagne R A, Swinnerton J W, Linnenbom V J, et al. Methane concentrations in various marine environments [J]. Journal of Geophysical Research, 1973, 78(24): 5317-5324. doi: 10.1029/JC078i024p05317

    CrossRef Google Scholar

    [14] Hinrichs K U, Boetius A. The anaerobic oxidation of methane: new insights in microbial ecology and biogeochemistry[M]//Wefer G, Billett D, Hebbeln D, et al. Ocean Margin Systems. Berlin, Heidelberg: Springer, 2002: 457-477.

    Google Scholar

    [15] 尉建功, 杨胜雄, 梁金强, 等. 海洋钻探对甲烷渗漏的影响: 以南海北部天然气水合物钻探GMGS2-16站位为例[J]. 海洋地质与第四纪地质, 2018, 38(5):63-70

    Google Scholar

    WEI Jiangong, YANG Shengxiong, LIANG Jinqiang, et al. Impact of seafloor drilling on methane seepage—enlightenments from natural gas hydrate drilling site GMGS2-16, northern South China Sea [J]. Marine Geology & Quaternary Geology, 2018, 38(5): 63-70.

    Google Scholar

    [16] Boetius A, Wenzhöfer F. Seafloor oxygen consumption fuelled by methane from cold seeps [J]. Nature Geoscience, 2013, 6(9): 725-734. doi: 10.1038/ngeo1926

    CrossRef Google Scholar

    [17] Bastviken D, Cole J, Pace M, et al. Methane emissions from lakes: dependence of lake characteristics, two regional assessments, and a global estimate [J]. Global Biogeochemical Cycles, 2004, 18(4): GB4009.

    Google Scholar

    [18] DelSontro T, Kunz M J, Kempter T, et al. Spatial heterogeneity of methane ebullition in a large tropical reservoir [J]. Environmental Science & Technology, 2011, 45(23): 9866-9873.

    Google Scholar

    [19] Ostrovsky I, McGinnis D F, Lapidus L, et al. Quantifying gas ebullition with echosounder: the role of methane transport by bubbles in a medium‐sized lake [J]. Limnology and Oceanography: Methods, 2008, 6(2): 105-118. doi: 10.4319/lom.2008.6.105

    CrossRef Google Scholar

    [20] DelSontro T, McGinnis D F, Sobek S, et al. Extreme methane emissions from a Swiss hydropower reservoir: contribution from bubbling sediments [J]. Environmental Science & Technology, 2010, 44(7): 2419-2425.

    Google Scholar

    [21] DelSontro T, McGinnis D F, Wehrli B, et al. Size does matter: importance of large bubbles and small-scale hot spots for methane transport [J]. Environmental Science & Technology, 2015, 49(3): 1268-1276.

    Google Scholar

    [22] Shakhova N, Semiletov I, Salyuk A, et al. Extensive methane venting to the atmosphere from sediments of the East Siberian Arctic Shelf [J]. Science, 2010, 327(5970): 1246-1250. doi: 10.1126/science.1182221

    CrossRef Google Scholar

    [23] Schmale O, Haeckel M, McGinnis D F. Response of the Black Sea methane budget to massive short-term submarine inputs of methane [J]. Biogeosciences, 2011, 8(4): 911-918. doi: 10.5194/bg-8-911-2011

    CrossRef Google Scholar

    [24] Bastviken D, Ejlertsson J, Tranvik L. Measurement of methane oxidation in lakes: a comparison of methods [J]. Environmental Science & Technology, 2002, 36(15): 3354-3361.

    Google Scholar

    [25] Kankaala P, Huotari J, Peltomaa E, et al. Methanotrophic activity in relation to primary and bacterial production in a boreal humic lake [J]. SIL Proceedings, 1922-2010, 2005, 29(1): 250-253. doi: 10.1080/03680770.2005.11902007

    CrossRef Google Scholar

    [26] Zhou H Y, Yin X J, Yang Q H, et al. Distribution, source and flux of methane in the western Pearl River Estuary and northern South China Sea [J]. Marine Chemistry, 2009, 117(1-4): 21-31. doi: 10.1016/j.marchem.2009.07.011

    CrossRef Google Scholar

    [27] 张桂玲. 中国近海部分海域溶解甲烷和氧化亚氮的生物地球化学研究[D]. 中国海洋大学博士学位论文, 2004.

    Google Scholar

    ZHANG Guiling. Studies on biogeochemistry of dissolved methane and nitrous oxide in the coastal waters of China[D]. Doctor Dissertation of Ocean University of China, 2004.

    Google Scholar

    [28] Osudar R, Matoušů A, Alawi M, et al. Environmental factors affecting methane distribution and bacterial methane oxidation in the German Bight (North Sea) [J]. Estuarine, Coastal and Shelf Science, 2015, 160: 10-21. doi: 10.1016/j.ecss.2015.03.028

    CrossRef Google Scholar

    [29] Holmes M E, Sansone F J, Rust T M, et al. Methane production, consumption, and air-sea exchange in the open ocean: an evaluation based on carbon isotopic ratios [J]. Global Biogeochemical Cycles, 2000, 14(1): 1-10. doi: 10.1029/1999GB001209

    CrossRef Google Scholar

    [30] Schmale O, Wäge J, Mohrholz V, et al. The contribution of zooplankton to methane supersaturation in the oxygenated upper waters of the central Baltic Sea [J]. Limnology and Oceanography, 2018, 63(1): 412-430. doi: 10.1002/lno.10640

    CrossRef Google Scholar

    [31] Damm E, Kiene R P, Schwarz J, et al. Methane cycling in Arctic shelf water and its relationship with phytoplankton biomass and DMSP [J]. Marine Chemistry, 2008, 109(1-2): 45-59. doi: 10.1016/j.marchem.2007.12.003

    CrossRef Google Scholar

    [32] Florez-Leiva L, Damm E, Farías L. Methane production induced by dimethylsulfide in surface water of an upwelling ecosystem [J]. Progress in Oceanography, 2013, 112-113: 38-48. doi: 10.1016/j.pocean.2013.03.005

    CrossRef Google Scholar

    [33] Owens N J P, Law C S, Mantoura R F C, et al. Methane flux to the atmosphere from the Arabian Sea [J]. Nature, 1991, 354(6351): 293-296. doi: 10.1038/354293a0

    CrossRef Google Scholar

    [34] Tilbrook B D, Karl D M. Methane sources, distributions and sinks from California coastal waters to the oligotrophic North Pacific gyre [J]. Marine Chemistry, 1995, 49(1): 51-64. doi: 10.1016/0304-4203(94)00058-L

    CrossRef Google Scholar

    [35] Schulz M, Faber E, Hollerbach A, et al. The methane cycle in the epilimnion of Lake Constance [J]. Archiv für Hydrobiologie, 2001, 151(1): 157-176. doi: 10.1127/archiv-hydrobiol/151/2001/157

    CrossRef Google Scholar

    [36] Fetzer S, Conrad R. Effect of redox potential on methanogenesis by Methanosarcina barkeri [J]. Archives of Microbiology, 1993, 160(2): 108-113. doi: 10.1007/BF00288711

    CrossRef Google Scholar

    [37] Fetzer S, Bak F, Conrad R. Sensitivity of methanogenic bacteria from paddy soil to oxygen and desiccation [J]. FEMS Microbiology Ecology, 1993, 12(2): 107-115. doi: 10.1111/j.1574-6941.1993.tb00022.x

    CrossRef Google Scholar

    [38] Thauer R K, Kaster A K, Goenrich M, et al. Hydrogenases from methanogenic archaea, nickel, a novel cofactor, and H2 storage [J]. Annual Review of Biochemistry, 2010, 79: 507-536. doi: 10.1146/annurev.biochem.030508.152103

    CrossRef Google Scholar

    [39] Yuan Y L, Conrad R, Lu Y H. Transcriptional response of methanogen mcrA genes to oxygen exposure of rice field soil [J]. Environmental Microbiology Reports, 2011, 3(3): 320-328. doi: 10.1111/j.1758-2229.2010.00228.x

    CrossRef Google Scholar

    [40] Faber E, Berner U, Gerling P, et al. Isotopic tracing of methane in water and exchange with the atmosphere [J]. Energy Conversion and Management, 1996, 37(6-8): 1193-1198. doi: 10.1016/0196-8904(95)00319-3

    CrossRef Google Scholar

    [41] Bogard M J, del Giorgio P A, Boutet L, et al. Oxic water column methanogenesis as a major component of aquatic CH4 fluxes [J]. Nature Communications, 2014, 5(1): 5350. doi: 10.1038/ncomms6350

    CrossRef Google Scholar

    [42] Marty D, Nival P, Yoon W D. Methanoarchaea associated with sinking particles and zooplankton collected in the Northeastern tropical Atlantic [J]. Oceanologica Acta, 1997, 20(6): 863-869.

    Google Scholar

    [43] Karl D M, Tilbrook B D. Production and transport of methane in oceanic particulate organic matter [J]. Nature, 1994, 368(6473): 732-734. doi: 10.1038/368732a0

    CrossRef Google Scholar

    [44] Sasakawa M, Tsunogai U, Kameyama S, et al. Carbon isotopic characterization for the origin of excess methane in subsurface seawater [J]. Journal of Geophysical Research, 2008, 113(C3): C03012.

    Google Scholar

    [45] Oremland R S. Methanogenic activity in plankton samples and fish intestines A mechanism for in situ methanogenesis in oceanic surface waters [J]. Limnology and Oceanography, 1979, 24(6): 1136-1141. doi: 10.4319/lo.1979.24.6.1136

    CrossRef Google Scholar

    [46] Van Der Maarel M J E C, Sprenger W, Haanstra R, et al. Detection of methanogenic archaea in seawater particles and the digestive tract of a marine fish species [J]. FEMS Microbiology Letters, 1999, 173(1): 189-194. doi: 10.1111/j.1574-6968.1999.tb13501.x

    CrossRef Google Scholar

    [47] Bianchi M, Marty D, Teyssie J L, et al. Strictly aerobic and anaerobic bacteria associated with sinking particulate matter and zooplankton fecal pellets [J]. Marine Ecology Progress Series, 1992, 88: 55-60. doi: 10.3354/meps088055

    CrossRef Google Scholar

    [48] de Angelis M A, Lee C. Methane production during zooplankton grazing on marine phytoplankton [J]. Limnology and Oceanography, 1994, 39(6): 1298-1308. doi: 10.4319/lo.1994.39.6.1298

    CrossRef Google Scholar

    [49] Ditchfield A K, Wilson S T, Hart M C, et al. Identification of putative methylotrophic and hydrogenotrophic methanogens within sedimenting material and copepod faecal pellets [J]. Aquatic Microbial Ecology, 2012, 67(2): 151-160. doi: 10.3354/ame01585

    CrossRef Google Scholar

    [50] Angel R, Claus P, Conrad R. Methanogenic archaea are globally ubiquitous in aerated soils and become active under wet anoxic conditions [J]. The ISME Journal, 2012, 6(4): 847-862. doi: 10.1038/ismej.2011.141

    CrossRef Google Scholar

    [51] Angel R, Matthies D, Conrad R. Activation of methanogenesis in arid biological soil crusts despite the presence of oxygen [J]. PLoS One, 2011, 6(5): e20453. doi: 10.1371/journal.pone.0020453

    CrossRef Google Scholar

    [52] Grossart H P, Frindte K, Dziallas C, et al. Microbial methane production in oxygenated water column of an oligotrophic lake [J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(49): 19657-19661. doi: 10.1073/pnas.1110716108

    CrossRef Google Scholar

    [53] Paganin P, Chiarini L, Bevivino A, et al. Vertical distribution of bacterioplankton in Lake Averno in relation to water chemistry [J]. FEMS Microbiology Ecology, 2013, 84(1): 176-188. doi: 10.1111/1574-6941.12048

    CrossRef Google Scholar

    [54] Lyu Z, Lu Y H. Metabolic shift at the class level sheds light on adaptation of methanogens to oxidative environments [J]. The ISME Journal, 2018, 12(2): 411-423. doi: 10.1038/ismej.2017.173

    CrossRef Google Scholar

    [55] Liu Y C, Whitman W B. Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea [J]. Annals of the New York Academy of Sciences, 2008, 1125(1): 171-189. doi: 10.1196/annals.1419.019

    CrossRef Google Scholar

    [56] Sieburth J M, Donaghay P L. Planktonic methane production and oxidation within the algal maximum of the pycnocline: seasonal fine-scale observations in an anoxic estuarine basin [J]. Marine Ecology Progress Series, 1993, 100: 3-15. doi: 10.3354/meps100003

    CrossRef Google Scholar

    [57] Tang K W, McGinnis D F, Frindte K, et al. Paradox reconsidered: methane oversaturation in well‐oxygenated lake waters [J]. Limnology and Oceanography, 2014, 59(1): 275-284. doi: 10.4319/lo.2014.59.1.0275

    CrossRef Google Scholar

    [58] Conrad R, Seiler W. Contribution of hydrogen production by biological nitrogen fixation to the global hydrogen budget [J]. Journal of Geophysical Research, 1980, 85(C10): 5493-5498. doi: 10.1029/JC085iC10p05493

    CrossRef Google Scholar

    [59] Tholen A, Pester M, Brune A. Simultaneous methanogenesis and oxygen reduction by Methanobrevibacter cuticularis at low oxygen fluxes [J]. FEMS Microbiology Ecology, 2007, 62(3): 303-312. doi: 10.1111/j.1574-6941.2007.00390.x

    CrossRef Google Scholar

    [60] Sprenger W W, Hackstein J H P, Keltjens J T, et al. The competitive success of Methanomicrococcus blatticola, a dominant methylotrophic methanogen in the cockroach hindgut, is supported by high substrate affinities and favorable thermodynamics [J]. FEMS Microbiology Ecology, 2007, 60(2): 266-275. doi: 10.1111/j.1574-6941.2007.00287.x

    CrossRef Google Scholar

    [61] Bruhn D, Mikkelsen T N, Øbro J, et al. Effects of temperature, ultraviolet radiation and pectin methyl esterase on aerobic methane release from plant material [J]. Plant Biology, 2009, 11(S1): 43-48.

    Google Scholar

    [62] Ghyczy M, Torday C, Kaszaki J, et al. Hypoxia-induced generation of methane in mitochondria and eukaryotic cells-an alternative approach to methanogenesis [J]. Cellular Physiology and Biochemistry, 2008, 21(1-3): 251-258. doi: 10.1159/000113766

    CrossRef Google Scholar

    [63] Keppler F, Hamilton J T G, Braß M, et al. Methane emissions from terrestrial plants under aerobic conditions [J]. Nature, 2006, 439(7073): 187-191. doi: 10.1038/nature04420

    CrossRef Google Scholar

    [64] Lenhart K, Bunge M, Ratering S, et al. Evidence for methane production by saprotrophic fungi [J]. Nature Communications, 2012, 3(1): 1046. doi: 10.1038/ncomms2049

    CrossRef Google Scholar

    [65] Wang Z P, Chang S X, Chen H, et al. Widespread non-microbial methane production by organic compounds and the impact of environmental stresses [J]. Earth-Science Reviews, 2013, 127(2): 193-202.

    Google Scholar

    [66] Liu J G, Chen H, Zhu Q, et al. A novel pathway of direct methane production and emission by eukaryotes including plants, animals and fungi: an overview [J]. Atmospheric Environment, 2015, 115: 26-35. doi: 10.1016/j.atmosenv.2015.05.019

    CrossRef Google Scholar

    [67] Keller M D, Bellows W K, Guillard R R L. Dimethyl sulfide production in marine phytoplankton[M]//Saltzman E S, Cooper W J. Biogenic Sulfur in the Environment. Washington DC: American Chemical Society, 1989: 167-182.

    Google Scholar

    [68] Zindler C, Bracher A, Marandino C A, et al. Sulphur compounds, methane, and phytoplankton: interactions along a north-south transit in the western Pacific Ocean [J]. Biogeosciences Discussion, 2012, 9(10): 15011-15049. doi: 10.5194/bgd-9-15011-2012

    CrossRef Google Scholar

    [69] Damm E, Helmke E, Thoms S, et al. Methane production in aerobic oligotrophic surface water in the central Arctic Ocean [J]. Biogeosciences, 2010, 7(3): 1099-1108. doi: 10.5194/bg-7-1099-2010

    CrossRef Google Scholar

    [70] Andreae M O. Ocean-atmosphere interactions in the global biogeochemical sulfur cycle [J]. Marine Chemistry, 1990, 30: 1-29. doi: 10.1016/0304-4203(90)90059-L

    CrossRef Google Scholar

    [71] Taylor B F, Gilchrist D C. New routes for aerobic biodegradation of dimethylsulfoniopropionate [J]. Applied and Environmental Microbiology, 1991, 57(12): 3581-3584.

    Google Scholar

    [72] Kiene R P, Oremland R S, Catena A, et al. Metabolism of reduced methylated sulfur compounds in anaerobic sediments and by a pure culture of an estuarine methanogen [J]. Applied and Environmental Microbiology, 1986, 52(5): 1037-1045.

    Google Scholar

    [73] Finster K, Tanimoto Y, Bak F. Fermentation of methanethiol and dimethylsulfide by a newly isolated methanogenic bacterium [J]. Archives of Microbiology, 1992, 157(5): 425-430. doi: 10.1007/BF00249099

    CrossRef Google Scholar

    [74] Karl D M, Beversdorf L, Björkman K M, et al. Aerobic production of methane in the sea [J]. Nature Geoscience, 2008, 1(7): 473-478. doi: 10.1038/ngeo234

    CrossRef Google Scholar

    [75] Villarreal-Chiu J F, Quinn J P, Mcgrath J W. The genes and enzymes of phosphonate metabolism by bacteria, and their distribution in the marine environment [J]. Frontiers in Microbiology, 2012, 3: 19.

    Google Scholar

    [76] Wang Q, Dore J E, McDermott T R. Methylphosphonate metabolism by Pseudomonas sp. populations contributes to the methane oversaturation paradox in an oxic freshwater lake [J]. Environmental Microbiology, 2017, 19(6): 2366-2378. doi: 10.1111/1462-2920.13747

    CrossRef Google Scholar

    [77] Carini P, White A E, Campbell E O, et al. Methane production by phosphate-starved SAR11 chemoheterotrophic marine bacteria [J]. Nature Communications, 2014, 5(1): 4346. doi: 10.1038/ncomms5346

    CrossRef Google Scholar

    [78] Metcalf W W, Griffin B M, Cicchillo R M, et al. Synthesis of methylphosphonic acid by marine microbes: a source for methane in the aerobic ocean [J]. Science, 2015, 337(6098): 1104-1107.

    Google Scholar

    [79] Karner M B, DeLong E F, Karl D M. Archaeal dominance in the mesopelagic zone of the Pacific Ocean [J]. Nature, 2001, 409(6819): 507-510. doi: 10.1038/35054051

    CrossRef Google Scholar

    [80] Könneke M, Bernhard A E, de la Torre J R, et al. Isolation of an autotrophic ammonia-oxidizing marine archaeon [J]. Nature, 2005, 437(7058): 543-546. doi: 10.1038/nature03911

    CrossRef Google Scholar

    [81] Kolowith L C, Ingall E D, Benner R. Composition and cycling of marine organic phosphorus [J]. Limnology and Oceanography, 2001, 46(2): 309-320. doi: 10.4319/lo.2001.46.2.0309

    CrossRef Google Scholar

    [82] Sannigrahi P, Ingall E D, Benner R. Cycling of dissolved and particulate organic matter at station Aloha: insights from 13C NMR spectroscopy coupled with elemental, isotopic and molecular analyses [J]. Deep Sea Research Part I: Oceanographic Research Papers, 2005, 52(8): 1429-1444. doi: 10.1016/j.dsr.2005.04.001

    CrossRef Google Scholar

    [83] Santoro A E, Dupont C L, Richter R A, et al. Genomic and proteomic characterization of “Candidatus Nitrosopelagicus brevis”: an ammonia-oxidizing archaeon from the open ocean [J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(4): 1173-1178. doi: 10.1073/pnas.1416223112

    CrossRef Google Scholar

    [84] Del Valle D A, Karl D M. Aerobic production of methane from dissolved water-column methylphosphonate and sinking particles in the North Pacific Subtropical Gyre [J]. Aquatic Microbial Ecology, 2014, 73(2): 93-105. doi: 10.3354/ame01714

    CrossRef Google Scholar

    [85] Repeta D J, Ferrón S, Sosa O A, et al. Marine methane paradox explained by bacterial degradation of dissolved organic matter [J]. Nature Geoscience, 2016, 9(12): 884-887. doi: 10.1038/ngeo2837

    CrossRef Google Scholar

    [86] Yu X M, Doroghazi J R, Janga S C, et al. Diversity and abundance of phosphonate biosynthetic genes in nature [J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(51): 20759-20764. doi: 10.1073/pnas.1315107110

    CrossRef Google Scholar

    [87] Gomez-Garcia M R, Davison M, Blain-Hartnung M, et al. Alternative pathways for phosphonate metabolism in thermophilic cyanobacteria from microbial mats [J]. The ISME Journal, 2011, 5(1): 141-149. doi: 10.1038/ismej.2010.96

    CrossRef Google Scholar

    [88] Scranton M I, Farrington J W. Methane production in the waters off Walvis Bay [J]. Journal of Geophysical Research, 1977, 82(31): 4947-4953. doi: 10.1029/JC082i031p04947

    CrossRef Google Scholar

    [89] Scranton M I, Brewer P G. Occurrence of methane in the near-surface waters of the western subtropical North-Atlantic [J]. Deep Sea Research, 1977, 24(2): 127-138. doi: 10.1016/0146-6291(77)90548-3

    CrossRef Google Scholar

    [90] Lenhart K, Klintzsch T, Langer G, et al. Evidence for methane production by the marine algae Emiliana huxleyi [J]. Biogeosciences Discussions, 2015, 12(24): 20323-20360. doi: 10.5194/bgd-12-20323-2015

    CrossRef Google Scholar

    [91] Althoff F, Jugold A, Keppler F. Methane formation by oxidation of ascorbic acid using iron minerals and hydrogen peroxide [J]. Chemosphere, 2010, 80(3): 286-292. doi: 10.1016/j.chemosphere.2010.04.004

    CrossRef Google Scholar

    [92] Althoff F, Benzing K, Comba P, et al. Abiotic methanogenesis from organosulphur compounds under ambient conditions [J]. Nature Communications, 2014, 5(1): 4205. doi: 10.1038/ncomms5205

    CrossRef Google Scholar

    [93] Bange H W, Uher G. Photochemical production of methane in natural waters: implications for its present and past oceanic source [J]. Chemosphere, 2005, 58(2): 177-183. doi: 10.1016/j.chemosphere.2004.06.022

    CrossRef Google Scholar

    [94] 耿澜涛. 加拿大北极亚北极海水中溶解甲烷的分布及其生物地球化学研究[D]. 中国地质大学博士学位论文, 2017.

    Google Scholar

    GENG Lantao. Studies on the distribution of dissolved methane and its biogeochemistry in Canadian Arctic and sub-Arctic Seas[D]. Doctor Dissertation of China University of Geosciences, 2017.

    Google Scholar

    [95] Bižić-Ionescu M, Ionescu D, Günthel M, et al. Oxic methane cycling: new evidence for methane formation in oxic lake water[M]//Stams A J M, Sousa D. Biogenesis of Hydrocarbons. Cham: Springer, 2018: 1-22.

    Google Scholar

    [96] Ward B B, Kilpatrick K A, Novelli P C, et al. Methane oxidation and methane fluxes in the ocean surface layer and deep anoxic waters [J]. Nature, 1987, 327(6119): 226-229. doi: 10.1038/327226a0

    CrossRef Google Scholar

    [97] Pack M A, Heintz M B, Reeburgh W S, et al. Methane oxidation in the eastern tropical North Pacific Ocean water column [J]. Journal of Geophysical Research, 2015, 120(6): 1078-1092.

    Google Scholar

    [98] Murase J, Sugimoto A. Inhibitory effect of light on methane oxidation in the pelagic water column of a mesotrophic lake (Lake Biwa, Japan) [J]. Limnology and Oceanography, 2005, 50(4): 1339-1343. doi: 10.4319/lo.2005.50.4.1339

    CrossRef Google Scholar

    [99] Thauer R K. Biochemistry of methanogenesis: a tribute to Marjory Stephenson: 1998 Marjory Stephenson Prize Lecture [J]. Microbiology, 1998, 144(9): 2377-2406. doi: 10.1099/00221287-144-9-2377

    CrossRef Google Scholar

    [100] Welte C, Deppenmeier U. Bioenergetics and anaerobic respiratory chains of aceticlastic methanogens [J]. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 2014, 1837(7): 1130-1147. doi: 10.1016/j.bbabio.2013.12.002

    CrossRef Google Scholar

    [101] Costa K C, Leigh J A. Metabolic versatility in methanogens [J]. Current Opinion in Biotechnology, 2014, 29: 70-75. doi: 10.1016/j.copbio.2014.02.012

    CrossRef Google Scholar

    [102] Ermler U, Grabarse W, Shima S, et al. Crystal structure of methyl-coenzyme M reductase: the key enzyme of biological methane formation [J]. Science, 1997, 278(5342): 1457-1462. doi: 10.1126/science.278.5342.1457

    CrossRef Google Scholar

    [103] Scheller S, Goenrich M, Boecher R, et al. The key nickel enzyme of methanogenesis catalyses the anaerobic oxidation of methane [J]. Nature, 2010, 465(7298): 606-608. doi: 10.1038/nature09015

    CrossRef Google Scholar

    [104] Lueders T, Chin K J, Conrad R, et al. Molecular analyses of methyl-coenzyme M reductase α-subunit (mcrA) genes in rice field soil and enrichment cultures reveal the methanogenic phenotype of a novel archaeal lineage [J]. Environmental Microbiology, 2001, 3(3): 194-204. doi: 10.1046/j.1462-2920.2001.00179.x

    CrossRef Google Scholar

    [105] Imlay J A. Cellular defenses against superoxide and hydrogen peroxide [J]. Annual Review of Biochemistry, 2008, 77: 755-776. doi: 10.1146/annurev.biochem.77.061606.161055

    CrossRef Google Scholar

    [106] 承磊, 郑珍珍, 王聪, 等. 产甲烷古菌研究进展[J]. 微生物学通报, 2016, 43(5):1143-1164

    Google Scholar

    CHENG Lei, ZHENG Zhenzhen, WANG Cong, et al. Recent advances in methanoges [J]. Microbiology China, 2016, 43(5): 1143-1164.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(2)

Tables(2)

Article Metrics

Article views(2834) PDF downloads(102) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint