2018 Vol. 38, No. 6
Article Contents

ZHANG Hanyu, WU Shiguo, HAN Xiaohui, LIU Gang, CHEN Wanli, LIU Huaishan, XING Lei. Characteristics of seismic data and its processing procedures in the areas of Reef Islands——a case from Yon-gle Atoll of Xisha Islands[J]. Marine Geology & Quaternary Geology, 2018, 38(6): 172-184. doi: 10.16562/j.cnki.0256-1492.2018.06.017
Citation: ZHANG Hanyu, WU Shiguo, HAN Xiaohui, LIU Gang, CHEN Wanli, LIU Huaishan, XING Lei. Characteristics of seismic data and its processing procedures in the areas of Reef Islands——a case from Yon-gle Atoll of Xisha Islands[J]. Marine Geology & Quaternary Geology, 2018, 38(6): 172-184. doi: 10.16562/j.cnki.0256-1492.2018.06.017

Characteristics of seismic data and its processing procedures in the areas of Reef Islands——a case from Yon-gle Atoll of Xisha Islands

More Information
  • Reef islands have recently become one of the hot interests in international geoscientific researches. Recent progress indicates that the internal structure of reef island is the key to some scientific issues, such as deep-sea geological evolution, paleo-environmental and paleo-climatic changes and to some engineering problems, for example, the construction of man-made reefs and islands. The Yongle Atoll in the Xisha Islands of the South China Sea, which has experienced the geological evolution as part of the South China Sea and become famous because of the deepest Blue Hole in the world, is a key area for marine scientific research in China. However, the internal structure of the islands is not clear at present due to lack of detecting facilities and imaging methods. Based on the collected high- resolution seismic data with 3.125m trace distance from the Yongle Atoll, this paper revealed for the first time the fine internal structure of the reef islands of the Yongle Atoll with high-precision seismic images by enhancing the signal-to-noise ratio, resolution and imaging accuracy of the seismic data via improvement of seismic data analysis, seismic data processing process and seismic imaging methods. The output indicates that the seismic data processing procedures promoted by this paper has advantages in the migration and reorientation of the seabed reef's diffraction wave, working out clearer shallow structures inside the reef, and acquiring the in-phase axis of seismic reflection from deep water. Our study proves that it is a suitable and effective method for seismic data acquisition and processing in the area of reef islands as such in the South China Sea of China.

  • 加载中
  • [1] Austin J, Schlager W, Comet P, et al. Site 628: Little Bahama Bank. Proceedings of the Ocean drilling program[R]. part A: initial reports, College Station, TX (Ocean Drilling Program), 1986, 101: 213-270.

    Google Scholar

    [2] WU Shiguo, ZHANG Xinyuan, YANG Zhen, et al. Spatial and temporal evolution of Cenozoic carbonate platforms on the continental margins of the South China Sea: Response to opening of the ocean basin[J]. Interpretation, 2016, 4(3): SP1-SP19. doi: 10.1190/INT-2015-0162.1

    CrossRef Google Scholar

    [3] McNeill L, Shillington D, Carter G. Expedition 381 Scientific Prospectus: Corinth Active Rift Development[R]. International Ocean Discovery Program, 2017.https://doi.org/10.14379/iodp.sp.381.

    Google Scholar

    [4] 汪品先.追踪边缘海的生命史:"南海深部计划"的科学目标[J].科学通报, 2012, 57(20):1807-1826. doi: 10.1007/s11434-012-5087-1

    CrossRef Google Scholar

    WANG Pingxian. Tracing the life history of a marginal Sea: On the "South China Sea Deep" Research Program [J]. Chinese Science Bulletin, 2012, 57, doi:10.1007/s11434-012-5087-1

    CrossRef Google Scholar

    [5] 丁巍伟, 李家彪.南海南部陆缘构造变形特征及伸展作用:来自两条973多道地震测线的证据[J].地球物理学报, 2011, 54(12):3038-3056.

    Google Scholar

    DING Weiwei, LI Jiabiao. Seismic stratigraphy, tectonic structure and extension model across the Reed Bank Basin in the South China Sea: evidence from NH973-2 multi-channel seismic profile [J]. Geophysics, 2011, 36(5): 895-904.

    Google Scholar

    [6] 吴时国, 张新元.南海共轭陆缘新生代碳酸盐台地对海盆构造演化的响应[J].地球科学-中国地质大学学报, 2015, 40(2):234-248.

    Google Scholar

    WU Shiguo, ZHANG Xinyuan. Response of Cenozoic Carbonate Platform on Tectonic Evolution in the Conjugated Margin of South China Sea [J]. Earth Science, 2015, 40(2):234-248.

    Google Scholar

    [7] 卢树参, 许红, 陈勇, 等.巴哈马滩与西沙群岛台地生物礁地质特征对比[J].海洋地质前沿, 2016, 32(3):57-63.

    Google Scholar

    LU Shuchen, XU Hong, CHEN Yong, et al. Comparative study of the reef Geology Between Bahama Banks and Xisha Islands[J]. Marine Geology Frontiers, 2016, 32(3):57-63.

    Google Scholar

    [8] 杨振, 吴时国, 吕福亮, 等.西沙海区晚新生代碳酸盐台地的发育模式及控制因素[J].海洋地质与第四纪地质, 2014, 34(5):47-55.

    Google Scholar

    YANG Zhen, WU Shiguo, LV Fuliang, et al. Evolutionary model and control factors of late cenozoic carbonate platform in xisha area[J]. Marine Geology & Quaternary Geology, 2014, 34(5):47-55.

    Google Scholar

    [9] France R E. The Holocene Geology of the Pelsaert Reef Complex, Southern Houtman-Abrolhos, Western Australia[D]. Perth, Australia: University of Western Australia, doctoral thesis, 1985: 248.

    Google Scholar

    [10] Willams T D, Kroon S, Spezzaferri. Middle-upper-Miocene cyclostratigraphy of downhole logs and short to long term astronomical cycles in carbonate production of Great Bahama Bank[J]. Marine Geology, 2002, 185:75-93. doi: 10.1016/S0025-3227(01)00291-2

    CrossRef Google Scholar

    [11] Wyrwoll K H, Zhu Z R, Collins L B, Hatcher B G. Origin of Blue Hole Structures in Coral Reefs: Houtman Abrolhos, Western Australia[J]. Journal of Coastal Research, 2006, 221: 202-208. doi: 10.2112/05A-0015.1

    CrossRef Google Scholar

    [12] MA Benjun, WU Shiguo, LV Fuliang, et al. Seismic characteristics and development of the Xisha carbonate platforms, northern margin of the South China Sea[J]. Journal of Asian Earth Sciences, 2011, 40(3): 770-783. doi: 10.1016/j.jseaes.2010.11.003

    CrossRef Google Scholar

    [13] Mulder T, Ducassou E, Eberli G. P, et al. New insights into the morphology and sedimentary processes along the western slope of Great Bahama Bank[J]. Geology, 2012, 40(7): 603-606. doi: 10.1130/G32972.1

    CrossRef Google Scholar

    [14] Mulder T, Ducassou E, Gillet H, et al. First Discovery of Channel-Level Complexes In A Modern Deep-Water Carbonate Slope Environment[J]. Journal of Sedimentary Research, 2014, 84(11): 1139-1146. doi: 10.2110/jsr.2014.90

    CrossRef Google Scholar

    [15] Read J F. Carbonate platforms of passive (extensional) continental Margins-types, characteristics and evolution[J]. Tectonophysics, 1982, 81:195-212. doi: 10.1016/0040-1951(82)90129-9

    CrossRef Google Scholar

    [16] Read J F. Carbonate platform facies models[J]. AAPG Bulletin, 1985, 69:1- 21.

    Google Scholar

    [17] Saenger E H, Gold N, Shapiro S A. Modeling the propagation of elastic waves using a modified finite-difference grid[J]. Wave Motion, 2000, 33: 77-92.

    Google Scholar

    [18] Betzler C, John J G. Reijm, et al. Sedimentary patterns and geometries of the Bahamian outer carbonate ramp (Miocene ±Lower Pliocene, Great Bahama Bank)[J]. Sedimentology, 1999, 46: 1127-1143. doi: 10.1046/j.1365-3091.1999.00268.x

    CrossRef Google Scholar

    [19] Betzler C, Lindhorst S, Eberl G P, et al. Periplatform drift: The combined result of contour current and off-bank transport along carbonate platforms[J]. Geology, 2014, 42: 871-874. doi: 10.1130/G35900.1

    CrossRef Google Scholar

    [20] Betzler C, Fürstenau J, Lüdmann T, et al. Sea-level and ocean-current control on carbonate-platform growth, Maldives, Indian Ocean[J]. Basin Research, 2013, 25(2): 172-196. doi: 10.1111/j.1365-2117.2012.00554.x

    CrossRef Google Scholar

    [21] Betzler C, Hübscher C, Lindhorst S, et al. Lowstand wedges in carbonate platform slopes (Quaternary, Maldives, Indian Ocean)[J]. The Depositional Record, 2016, 2(2):196-207. doi: 10.1002/dep2.21

    CrossRef Google Scholar

    [22] Betzler C, Lüdmann T, Hübscher C, et al. Current and sea-level signals in periplatform ooze (Neogene, Maldives, Indian Ocean)[J]. Sedimentary Geology, 2013, 290: 126-137. doi: 10.1016/j.sedgeo.2013.03.011

    CrossRef Google Scholar

    [23] Principaud M, Ponte J P, Mulder T, et al. Slope-to-basin stratigraphic evolution of the northwestern Great Bahama Bank (Bahamas) during the Neogene to Quaternary: interactions between downslope and bottom currents deposits[J]. Basin Research, 2017, 29(6): 699-724. doi: 10.1111/bre.12195

    CrossRef Google Scholar

    [24] Lüdmann T, Kalvelage C, Betzler C, et al. The Maldives, a giant isolated carbonate platform dominated by bottom currents[J]. Marine and Petroleum Geology, 2013, 43: 326-340. doi: 10.1016/j.marpetgeo.2013.01.004

    CrossRef Google Scholar

    [25] 马玉波, 吴时国, 杜晓慧, 等.西沙碳酸盐岩建隆发育模式及其主控因素[J].海洋地质与第四纪地质, 2011, 31(4):59-67.

    Google Scholar

    MA Yubo, WU Shiguo, DU Xiaohui, et al. Evolutionary Model and Control Factors of Xisha Carbonate Buildup[J]. Marine Geology & Quaternary Geology, 2011, 31(4):59-68.

    Google Scholar

    [26] 马玉波, 吴时国, 邢树文, 等.南海北部陆坡混合沉积地层模式及地震响应特征[J].吉林大学学报:地球科学版, 2012, 42(S1):88-95.

    Google Scholar

    MA Yubo, WU Shiguo, XING Shuwen, et al.Stratigraphic model and seismic characteristics of the mixed sedimentation in the slope area of north south china sea[J]. Journal of Jilin University, 2012, 42(S1): 88-95.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(13)

Tables(1)

Article Metrics

Article views(2117) PDF downloads(94) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint