2018 Vol. 38, No. 5
Article Contents

ZHAO Jie, WANG Jiasheng, CEN Yue, SU Pibo, LIN Qi, LIU Jiarui. Authigenic minerals at site GMGS2-16 of northeastern South China Sea and its implications for gas hydrate evolution[J]. Marine Geology & Quaternary Geology, 2018, 38(5): 144-155. doi: 10.16562/j.cnki.0256-1492.2018.05.014
Citation: ZHAO Jie, WANG Jiasheng, CEN Yue, SU Pibo, LIN Qi, LIU Jiarui. Authigenic minerals at site GMGS2-16 of northeastern South China Sea and its implications for gas hydrate evolution[J]. Marine Geology & Quaternary Geology, 2018, 38(5): 144-155. doi: 10.16562/j.cnki.0256-1492.2018.05.014

Authigenic minerals at site GMGS2-16 of northeastern South China Sea and its implications for gas hydrate evolution

More Information
  • The sulfate-methane transition zone (SMTZ) is a pivotal biogeochemical zone within an anoxic sediment column, in which anaerobic oxidation of methane (AOM) may affect the formation of authigenic minerals, such as carbonate, pyrite, barite and gypsum. In this paper, authigenic minerals in 58 marine sediment samples from site GMGS2-16 at the gas hydrate drilling area in the northeastern South China Sea were analyzed. We investigated the type, content, distribution, morphology and isotopic composition of the authigenic minerals to explore the formation mechanism of them and their implications for methane events. Carbonate, pyrite and gypsum are the three dominant authigenic minerals at site GMGS2-16, and also found is the presence of elemental sulfur particles. The distribution of the authigenic mineral contents varies greatly and shows several high concentration peaks. The authigenic carbonates are formed in irregular clumps. These carbonates have extremely negative carbon isotope (-37.3‰ VPDB~-51.7‰ VPDB) and heavy oxygen isotope compositions (3.13‰ VPDB~4.95‰ VPDB), which are typical characteristics of methane-derived carbonates, suggesting that AOM is the trigger for carbonate precipitation. Authigenic pyrites are mostly in forms of irregular masses, rod-tube and organism-filling aggregates. The sulfur isotopic values (δ34S) of the authigenic pyrites range from -41.7‰ VCDT to 27.1‰ VCDT. Anomalously positive excursions of sulfur isotopic values probably stem from enhanced-AOM in the SMTZ because of high methane flux. The AOM-derived authigenic carbonates are basically consistent with the δ34S-anomaly authigenic pyrite production, indicating the occurrence of episodic methane events, which may be related to natural gas hydrate dissociation at site GMGS2-16. Authigenic gypsums occur as hyaline prisms more or less elongated and as dull prismatic or lenticular crystals, and some of them are attached to the authigenic pyrites. We tentatively propose that the precipitation of the authigenic gypsums results from ion exclusion during the formation of gas hydrates and/or pyrite oxidation caused by the change in environmental redox conditions. Hence, carbonate- pyrite-gypsum authigenic mineral assemblage in marine sediments may have the possibility to be used as a proxy for development of natural gas hydrate.

  • 加载中
  • [1] Boetius A, Ravenschlag K, Schubert C J, et al. A marine microbial consortium apparently mediating anaerobic oxidation of methane[J]. Nature, 2000, 407(6804): 623-626. doi: 10.1038/35036572

    CrossRef Google Scholar

    [2] Orphan V J, House C H, Hinrichs K U, et al. Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis[J]. Science, 2001, 293(5529): 484-487. doi: 10.1126/science.1061338

    CrossRef Google Scholar

    [3] Rodriguez N M, Paull C K, Borowski W S. Zonation of authigenic carbonates within gas hydrate-bearing sedimentary sections on the Blake Ridge: offshore southeastern north America[J]. Journal of Biological Chemistry, 2000, 282(31): 22499-22512.

    Google Scholar

    [4] Reeburgh W S. Methane consumption in Cariaco Trench waters and sediments[J]. Earth and Planetary Science Letters, 1976, 28(3): 337-344. doi: 10.1016/0012-821X(76)90195-3

    CrossRef Google Scholar

    [5] Nauhaus K, Treude T, Boetius A, et al. Environmental regulation of the anaerobic oxidation of methane: a comparison of ANME-I and ANME-II communities[J]. Environmental Microbiology, 2005, 7(1): 98-106. doi: 10.1111/j.1462-2920.2004.00669.x

    CrossRef Google Scholar

    [6] Reeburgh W S. Oceanic methane biogeochemistry[J]. Chemical Reviews, 2007, 107(2): 486-513. doi: 10.1021/cr050362v

    CrossRef Google Scholar

    [7] Borowski W S, Paull C K, Ussler W. Marine pore-water sulfate profiles indicate in situ methane flux from underlying gas hydrate[J]. Geology, 1996, 24(7): 655-658. doi: 10.1130/0091-7613(1996)024<0655:MPWSPI>2.3.CO;2

    CrossRef Google Scholar

    [8] Niewohner C, Hensen C, Kasten S, et al. Deep sulfate reduction completely mediated by anaerobic methane oxidation in sediments of the upwelling area off Namibia[J]. Geochimica et Cosmochimica Acta, 1998, 62(3): 455-464. doi: 10.1016/S0016-7037(98)00055-6

    CrossRef Google Scholar

    [9] Aloisi G, Bouloubassi I, Heijs S K, et al. CH4-consuming microorganisms and the formation of carbonate crusts at cold seeps[J]. Earth and Planetary Science Letters, 2002, 203(PII S0012-821X(02)00878-61): 195-203.

    Google Scholar

    [10] Jorgensen B B, Bottcher M E, Luschen H, et al. Anaerobic methane oxidation and a deep H2S sink generate isotopically heavy sulfides in Black Sea sediments[J]. Geochimica et Cosmochimica Acta, 2004, 68(9): 2095-2118. doi: 10.1016/j.gca.2003.07.017

    CrossRef Google Scholar

    [11] Lin Z, Sun X, Peckmann J, et al. How sulfate-driven anaerobic oxidation of methane affects the sulfur isotopic composition of pyrite: A SIMS study from the South China Sea[J]. Chemical Geology, 2016, 440: 26-41. doi: 10.1016/j.chemgeo.2016.07.007

    CrossRef Google Scholar

    [12] Naehr T H, Eichhubl P, Orphan V J, et al. Authigenic carbonate formation at hydrocarbon seeps in continental margin sediments: A comparative study[J]. Deep-Sea Research Part II-Topical Studies in Oceanography, 2007, 54(11-13): 1268-1291. doi: 10.1016/j.dsr2.2007.04.010

    CrossRef Google Scholar

    [13] Pierre C, Blanc-Valleron M, Demange J, et al. Authigenic carbonates from active methane seeps offshore southwest Africa[J]. Geo-marine Letters, 2012, 32(5-6): 501-513. doi: 10.1007/s00367-012-0295-x

    CrossRef Google Scholar

    [14] Dickens G R. Sulfate profiles and barium fronts in sediment on the Blake Ridge: Present and past methane fluxes through a large gas hydrate reservoir[J]. Geochimica et Cosmochimica Acta, 2001, 65(4): 529-543. doi: 10.1016/S0016-7037(00)00556-1

    CrossRef Google Scholar

    [15] Lin Q, Wang J, Algeo T J, et al. Formation mechanism of authigenic gypsum in marine methane hydrate settings: Evidence from the northern South China Sea[J]. Deep-Sea Research Part I-Oceanographic Research Papers, 2016, 115: 210-220. doi: 10.1016/j.dsr.2016.06.010

    CrossRef Google Scholar

    [16] Snyder G T, Dickens G R, Castellini D G. Labile barite contents and dissolved barium concentrations on Blake Ridge: New perspectives on barium cycling above gas hydrate systems[J]. Journal of Geochemical Exploration, 2007, 95(1): 48-65.

    Google Scholar

    [17] Riedinger N, Kasten S, Gröger J, et al. Active and buried authigenic barite fronts in sediments from the Eastern Cape Basin[J]. Earth and Planetary Science Letters, 2006, 241(3): 876-887.

    Google Scholar

    [18] Dickens G R. Rethinking the global carbon cycle with a large, dynamic and microbially mediated gas hydrate capacitor[J]. Earth and Planetary Science Letters, 2003, 213(3-4): 169-183. doi: 10.1016/S0012-821X(03)00325-X

    CrossRef Google Scholar

    [19] Kasten S, Noethen K, Hensen C, et al. Gas hydrate decomposition recorded by authigenic barite at pockmark sites of the northern Congo Fan[J]. Geo-marine Letters, 2012, 32(5-6): 515-524. doi: 10.1007/s00367-012-0288-9

    CrossRef Google Scholar

    [20] Torres M E, Brumsack H J, Bohrmann G, et al. Barite fronts in continental margin sediments: a new look at barium remobilization in the zone of sulfate reduction and formation of heavy barites in diagenetic fronts[J]. Chemical Geology, 1996, 127(1-3): 125-139. doi: 10.1016/0009-2541(95)00090-9

    CrossRef Google Scholar

    [21] Lin Q, Wang J, Algeo T J, et al. Enhanced framboidal pyrite formation related to anaerobic oxidation of methane in the sulfate-methane transition zone of the northern South China Sea[J]. Marine Geology, 2016, 379: 100-108. doi: 10.1016/j.margeo.2016.05.016

    CrossRef Google Scholar

    [22] Peketi A, Mazumdar A, Joshi R K, et al. Tracing the Paleo sulfate-methane transition zones and H2S seepage events in marine sediments: An application of C-S-Mo systematics[J]. Geochemistry Geophysics Geosystems, 2012, 13(Q10007).

    Google Scholar

    [23] Hu Y, Chen L, Feng D, et al. Geochemical record of methane seepage in authigenic carbonates and surrounding host sediments: A case study from the South China Sea[J]. Journal of Asian Earth Sciences, 2017, 138: 51-61. doi: 10.1016/j.jseaes.2017.02.004

    CrossRef Google Scholar

    [24] Dewangan P, Basavaiah N, Badesab F K, et al. Diagenesis of magnetic minerals in a gas hydrate/cold seep environment off the Krishna-Godavari basin, Bay of Bengal[J]. Marine Geology, 2013, 340: 57-70. doi: 10.1016/j.margeo.2013.04.016

    CrossRef Google Scholar

    [25] Borowski W S, Rodriguez N M, Paull C K, et al. Are 34S-enriched authigenic sulfide minerals a proxy for elevated methane flux and gas hydrates in the geologic record?[J]. Marine and Petroleum Geology, 2013, 43: 381-395. doi: 10.1016/j.marpetgeo.2012.12.009

    CrossRef Google Scholar

    [26] 梁金强, 张光学, 陆敬安, 等.南海东北部陆坡天然气水合物富集特征及成因模式[J].天然气工业, 2016(10): 157-162. doi: 10.3787/j.issn.1000-0976.2016.10.020

    CrossRef Google Scholar

    LIANG Jinqiang, ZHANG Guangxue, LU Jingan, et al. Accumulation characteristics and genetic models of natural gas hydrate reservoirs in the NE slope of the South China Sea[J]. Natural Gas Industry, 2016(10): 157-162. doi: 10.3787/j.issn.1000-0976.2016.10.020

    CrossRef Google Scholar

    [27] 陈芳, 庄畅, 周洋, 等.南海东北部陆坡天然气水合物钻探区生物地层与沉积速率[J].地球科学, 2016(3): 416-424.

    Google Scholar

    CHEN Fang, ZHUANG Chang, ZHOU Yang, et al. Calcareous nannofossils and foraminifera biostratigraphy on the northeastern slope of the South China Sea and variation in sedimentation rates[J]. Earth Science, 2016(3): 416-424.

    Google Scholar

    [28] 彭大钧, 陈长民, 庞雄, 等.南海珠江口盆地深水扇系统的发现[J].石油学报, 2004(5): 17-23. doi: 10.3321/j.issn:0253-2697.2004.05.004

    CrossRef Google Scholar

    PENG Dajun, CHEN Changmin, PANG Xiong, et al. Discovery of deep-water fan system in South China Sea[J]. Acta Petrolei Sinica, 2004(5): 17-23. doi: 10.3321/j.issn:0253-2697.2004.05.004

    CrossRef Google Scholar

    [29] Mcdonnell S L, Max M D, Cherkis N Z, et al. Tectono-sedimentary controls on the likelihood of gas hydrate occurrence near Taiwan[J]. Marine and Petroleum Geology, 2000, 17(8): 929-936. doi: 10.1016/S0264-8172(00)00023-4

    CrossRef Google Scholar

    [30] 何家雄, 祝有海, 翁荣南, 等.南海北部边缘盆地泥底辟及泥火山特征及其与油气运聚关系[J].地球科学(中国地质大学学报), 2010(1): 75-86.

    Google Scholar

    HE Jiaxiong, ZHU Youhai, WENG Rongnan, et al. Characters of north-west mud diapirs volcanoes in South China Sea and relationship between them and accumulation and migration of oil and gas[J]. Earth Science-Journal of China University of Geosciences, 2010(1): 75-86.

    Google Scholar

    [31] Lin C, Lin A T, Liu C, et al. Geological controls on BSR occurrences in the incipient arc-continent collision zone off southwest Taiwan[J]. Marine and Petroleum Geology, 2009, 26(7): 1118-1131. doi: 10.1016/j.marpetgeo.2008.11.002

    CrossRef Google Scholar

    [32] Zhang G, Liang J, Lu J, et al. Geological features, controlling factors and potential prospects of the gas hydrate occurrence in the east part of the Pearl River Mouth Basin, South China Sea[J]. Marine and Petroleum Geology, 2015, 67: 356-367. doi: 10.1016/j.marpetgeo.2015.05.021

    CrossRef Google Scholar

    [33] 张光学, 梁金强, 陆敬安, 等.南海东北部陆坡天然气水合物藏特征[J].天然气工业, 2014(11): 1-10. doi: 10.3787/j.issn.1000-0976.2014.11.001

    CrossRef Google Scholar

    ZHANG Guangxue, LIANG Jinqiang, LU Jingan, et al. Characteristics of natural gas hydrate reservoirs on the northeastern slope of the South China Sea[J]. Natural Gas Industry, 2014(11): 1-10. doi: 10.3787/j.issn.1000-0976.2014.11.001

    CrossRef Google Scholar

    [34] Sha Z, Liang J, Zhang G, et al. A seepage gas hydrate system in northern South China Sea: Seismic and well log interpretations[J]. Marine Geology, 2015, 366: 69-78. doi: 10.1016/j.margeo.2015.04.006

    CrossRef Google Scholar

    [35] 龚跃华, 吴时国, 张光学, 等.南海东沙海域天然气水合物与地质构造的关系[J].海洋地质与第四纪地质, 2008(1): 99-104.

    Google Scholar

    GONG Yuehua, WU Shiguo, ZHANG Guangxue, et al. Relation between gas hydrate and geologic structures in Dongsha islands sea area of South China Sea[J]. Marine Geology and Quaternary Geology, 2008(1): 99-104]

    Google Scholar

    [36] 林杞, 王家生, 卜庆涛, 等.海洋沉积物中自生黄铁矿研究的体视镜挑选与铬还原处理方法对比—来自南海北部陆坡Site 4B站位的研究[J].沉积学报, 2014(6): 1052-1059.

    Google Scholar

    LIN Qi, WANG Jiasheng, BU Qingtao, et al. Method comparison of authigenic pyrite analysis between the handpicking under binocular microscope and the CRS in shallow cored marine sediments: An example from the Site 4B, northern continental slope of the South China Sea[J]. Acta Sedimentologica Sinica, 2014(6): 1052-1059.

    Google Scholar

    [37] 林杞, 王家生, 付少英, 等.南海北部沉积物中单质硫颗粒的发现及意义[J].中国科学:地球科学, 2015(11): 1747-1756.

    Google Scholar

    LIN Qi, WANG Jiasheng, FU Shaoying, et al. Elemental sulfur in northern South China Sea sediments and its significance[J]. Science China: Earth Sciences, 2015(11): 1747-1756.

    Google Scholar

    [38] Gong J, Sun X, Xu L, et al. Contribution of thermogenic organic matter to the formation of biogenic gas hydrate: Evidence from geochemical and microbial characteristics of hydrate-containing sediments in the Taixinan Basin, South China Sea[J]. Marine and Petroleum Geology, 2017, 80: 432-449. doi: 10.1016/j.marpetgeo.2016.12.019

    CrossRef Google Scholar

    [39] Reeburgh W S. Anaerobic methane oxidation: Rate depth distributions in Skan Bay sediments[J]. Earth and Planetary Science Letters, 1980, 47(3): 345-352. doi: 10.1016/0012-821X(80)90021-7

    CrossRef Google Scholar

    [40] Whiticar M J. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane[J]. Chemical Geology, 1999, 161(1-3): 291-314. doi: 10.1016/S0009-2541(99)00092-3

    CrossRef Google Scholar

    [41] Sackett W M. Carbon and hydrogen isotope effects during the thermocatalytic production of hydrocarbons in laboratory simulation experiments[J]. Geochimica et Cosmochimica Acta, 1978, 42(6): 571-580. doi: 10.1016/0016-7037(78)90002-9

    CrossRef Google Scholar

    [42] Jorgensen N O. Methane-derived carbonate cementation of marine sediments from the Kattegat, Denmark - Geochemical and geological evidence[J]. Marine Geology, 1992, 103(1-3): 1-13. doi: 10.1016/0025-3227(92)90006-4

    CrossRef Google Scholar

    [43] Luff R, Wallmann K. Fluid flow, methane fluxes, carbonate precipitation and biogeochemical turnover in gas hydrate-bearing sediments at Hydrate Ridge, Cascadia Margin: Numerical modeling and mass balances[J]. Geochimica et Cosmochimica Acta, 2003, 67(18): 3403-3421. doi: 10.1016/S0016-7037(03)00127-3

    CrossRef Google Scholar

    [44] Peckmann J, Thiel V. Carbon cycling at ancient methane-seeps[J]. Chemical Geology, 2004, 205(3-4): 443-467. doi: 10.1016/j.chemgeo.2003.12.025

    CrossRef Google Scholar

    [45] Peckmann J, Reimer A, Luth U, et al. Methane-derived carbonates and authigenic pyrite from the northwestern Black Sea[J]. Marine Geology, 2001, 177(1-2SI): 129-150.

    Google Scholar

    [46] Han X, Suess E, Huang Y, et al. Jiulong methane reef: Microbial mediation of seep carbonates in the South China Sea[J]. Marine Geology, 2008, 249(3-4): 243-256. doi: 10.1016/j.margeo.2007.11.012

    CrossRef Google Scholar

    [47] Vanneste H, Kastner M, James R H, et al. Authigenic carbonates from the Darwin Mud Volcano, Gulf of Cadiz: A record of palaeo-seepage of hydrocarbon bearing fluids[J]. Chemical Geology, 2012, 300-301(2): 24-39.

    Google Scholar

    [48] Bayon G, Pierre C, Etoubleau J, et al. Sr/Ca and Mg/Ca ratios in Niger Delta sediments: Implications for authigenic carbonate genesis in cold seep environments[J]. Marine Geology, 2007, 241(1-4): 93-109. doi: 10.1016/j.margeo.2007.03.007

    CrossRef Google Scholar

    [49] Bo B J, Nelson D C. Sulfide Oxidation in Marine Sediments: Geochemistry Meets Microbiology [M]. US: Geological Society of America, 2004: In Special Paper 379: Sulfur Biogeochemistry - Past and Present (pp. 63-81).

    Google Scholar

    [50] David Rickard A, Iii G W L. Chemistry of iron sulfides[J]. Chemical Reviews, 2007, 107(2): 514-562. doi: 10.1021/cr0503658

    CrossRef Google Scholar

    [51] Taylor K G, Macquaker J H S. Iron minerals in marine sediments record chemical environments[J]. Elements, 2011, 7(2): 113-118. doi: 10.2113/gselements.7.2.113

    CrossRef Google Scholar

    [52] Canfield D E, Thamdrup B. The production of 34S-depleted sulfide during bacterial disproportionation of elemental sulfur[J]. Science, 1994, 266(5193): 1973-1975. doi: 10.1126/science.11540246

    CrossRef Google Scholar

    [53] Canfield D E. Isotope fractionation by natural populations of sulfate-reducing bacteria[J]. Geochimica et Cosmochimica Acta, 2001, 65(7): 1117-1124. doi: 10.1016/S0016-7037(00)00584-6

    CrossRef Google Scholar

    [54] Sim M S, Bosak T, Ono S. Large sulfur isotope fractionation does not require disproportionation[J]. Science, 2011, 333(6038): 74-77. doi: 10.1126/science.1205103

    CrossRef Google Scholar

    [55] Rees C E, Jenkins W J, Monster J. The sulphur isotopic composition of ocean water sulphate[J]. Geochimica et Cosmochimica Acta, 1978, 42(4): 377-381. doi: 10.1016/0016-7037(78)90268-5

    CrossRef Google Scholar

    [56] Lin Q, Wang J, Taladay K, et al. Coupled pyrite concentration and sulfur isotopic insight into the paleo sulfate-methane transition zone (SMTZ) in the northern South China Sea[J]. Journal of Asian Earth Sciences, 2016, 115: 547-556. doi: 10.1016/j.jseaes.2015.11.001

    CrossRef Google Scholar

    [57] 张美, 孙晓明, 芦阳, 等.南海台西南盆地自生管状黄铁矿矿物学特征及其对天然气水合物的示踪意义[J].矿床地质, 2011(4): 725-734. doi: 10.3969/j.issn.0258-7106.2011.04.011

    CrossRef Google Scholar

    ZHANG Mei, SUN Xiaoming, LU Yang, et al. Mineralogy of authigenic tube pyrite from the Southwest Taiwan Basin of South China Sea and its tracing significance for gas hydrates[J]. Mineral Deposits, 2011(4): 725-734. doi: 10.3969/j.issn.0258-7106.2011.04.011

    CrossRef Google Scholar

    [58] 张美, 邬黛黛, 吴能友.南海北部天然气水合物沉积环境中自生矿物特征[J].新能源进展, 2016(1): 20-27. doi: 10.3969/j.issn.2095-560X.2016.01.004

    CrossRef Google Scholar

    ZHANG Mei, WU Daidai, WU Nengyou. Characteristics of authigenic minerals from the northern South China Sea[J]. Advances in New and Renewable Energy, 2016(1): 20-27. doi: 10.3969/j.issn.2095-560X.2016.01.004

    CrossRef Google Scholar

    [59] Zhang M, Konishi H, Xu H, et al. Morphology and formation mechanism of pyrite induced by the anaerobic oxidation of methane from the continental slope of the NE South China Sea[J]. Journal of Asian Earth Sciences, 2014, 92(5): 293-301.

    Google Scholar

    [60] Formolo M J, Lyons T W. Sulfur biogeochemistry of cold seeps in the Green Canyon region of the Gulf of Mexico[J]. Geochimica et Cosmochimica Acta, 2013, 119: 264-285. doi: 10.1016/j.gca.2013.05.017

    CrossRef Google Scholar

    [61] Pirlet H, Wehrmann L M, Brunner B, et al. Diagenetic formation of gypsum and dolomite in a cold-water coral mound in the Porcupine Seabight, off Ireland[J]. Sedimentology, 2010, 57(3): 786-805. doi: 10.1111/j.1365-3091.2009.01119.x

    CrossRef Google Scholar

    [62] Pierre C. Origin of the authigenic gypsum and pyrite from active methane seeps of the southwest African Margin[J]. Chemical Geology, 2017, 449: 158-164. doi: 10.1016/j.chemgeo.2016.11.005

    CrossRef Google Scholar

    [63] 王家生, E. Suess, D. Rickert.东北太平洋天然气水合物伴生沉积物中自生石膏矿物[J].中国科学(D辑:地球科学), 2003(5): 433-441.

    Google Scholar

    WANG Jiasheng, Suess E, Rickert D. Authigenic gypsum found in gas hydrate-associated sediments from Hydrate Ridge, the eastern north Pacific[J]. Science China: Earth Sciences, 2003(5): 433-441.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Article Metrics

Article views(3460) PDF downloads(87) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint