2018 Vol. 38, No. 5
Article Contents

FENG Yu, TIAN Jun. Hydrochemical behaviors of Cd in paleoceans and a review of Cd/Ca ratio in foraminifera shells as a paleoeanographyic proxy[J]. Marine Geology & Quaternary Geology, 2018, 38(5): 122-129. doi: 10.16562/j.cnki.0256-1492.2018.05.012
Citation: FENG Yu, TIAN Jun. Hydrochemical behaviors of Cd in paleoceans and a review of Cd/Ca ratio in foraminifera shells as a paleoeanographyic proxy[J]. Marine Geology & Quaternary Geology, 2018, 38(5): 122-129. doi: 10.16562/j.cnki.0256-1492.2018.05.012

Hydrochemical behaviors of Cd in paleoceans and a review of Cd/Ca ratio in foraminifera shells as a paleoeanographyic proxy

  • As an element sharing linier distribution relation with phosphorous in the ocean, cadmium has great potential to be a proxy for reconstruction of the concentration of labile nutrient during geological history. Further it could be used to trace the water source by calculating the isotope equilibrium caused by the water-atmosphere exchange when connected with the carbon isotope of foraminifera. Also, the concentration of cadmium, as a conservative attribute of water mass, remains considerably constant, thus its variation could record the changes in water mass mixing and the pattern of ocean circulation. The cadmium uptake during the crystallization of foraminifera makes its Cd/Ca ratio a reliable recorder of the concentration variability of cadmium in the sea over the tectonic, orbital and the millennial scales. Because the linear dependence between cadmium and phosphorous is not so perfect and the absorption ratio of cadmium in calcareous shells also changes through different circumstances, and the records has not been adequate for reference, challenge still remains for Cd/Ca as a reliable paleoenvironmental proxy.

  • 加载中
  • [1] Sarnthein M, Winn K, Jung S J A, et al. Changes in East Atlantic Deepwater Circulation over the last 30, 000 years: Eight time slice reconstructions[J]. Paleoceanography, 1994, 9(2):209-267. doi: 10.1029/93PA03301

    CrossRef Google Scholar

    [2] Slowey N C, Curry W B. Glacial-interglacial differences in circulation and carbon cycling within the upper western North Atlantic[J]. Paleoceanography, 1995, 10(4):715-732. doi: 10.1029/95PA01166

    CrossRef Google Scholar

    [3] Zheng X Y, Jenkyns H C, Gale A S, et al. Changing ocean circulation and hydrothermal inputs during Ocean Anoxic Event 2 (Cenomanian-Turonian): Evidence from Nd-isotopes in the European shelf sea[J]. Earth & Planetary Sciences Letters, 2013, 375(8):338-348.

    Google Scholar

    [4] Dera G, Prunier J, Smith P L, et al. Nd isotope constraints on ocean circulation, paleoclimate, and continental drainage during the Jurassic breakup of Pangea[J]. Gondwana Research, 2015, 27(4):1599-1615. doi: 10.1016/j.gr.2014.02.006

    CrossRef Google Scholar

    [5] Wei R, Abouchami W, Zahn R, et al. Deep circulation changes in the South Atlantic since the Last Glacial Maximum from Nd isotope and multi-proxy records[J]. Earth & Planetary Science Letters, 2016, 434:18-29.

    Google Scholar

    [6] Marchal O, François R, Stocker T F, et al. Ocean thermohaline circulation and sedimentary 231Pa/230Th ratio[J]. Paleoceanography, 2000, 15(6):625-641. doi: 10.1029/2000PA000496

    CrossRef Google Scholar

    [7] Mcmanus J F, Francois R, Gherardi J M, et al. Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes[J]. Nature, 2004, 428(6985):834. doi: 10.1038/nature02494

    CrossRef Google Scholar

    [8] Valley S, Lynch-Stieglitz J, Marchitto T M. Timing of Deglacial AMOC Variability from a High-resolution Seawater Cadmium Reconstruction[J]. Paleoceanography, 2017, 32(11).

    Google Scholar

    [9] Delaney M L, Boyle E A. Cd/Ca in late Miocene benthic foraminifera and changes in the global organic carbon budget[J]. Nature, 1987, 330(6144):156-159. doi: 10.1038/330156a0

    CrossRef Google Scholar

    [10] Jr T M M, Oppo D W, Curry W B. Paired benthic foraminiferal Cd/Ca and Zn/Ca evidence for a greatly increased presence of Southern Ocean Water in the glacial North Atlantic[J]. Paleoceanography, 2002, 17(3):10-1-10-18.

    Google Scholar

    [11] Rosenthal Y, Boyle E A, Labeyrie L, et al. Glacial enrichments of authigenic Cd And U in subantarctic sediments: A climatic control on the elements' oceanic budget?[J]. Paleoceanography, 1995, 10(3):395-413. doi: 10.1029/95PA00310

    CrossRef Google Scholar

    [12] Jr T M M, Curry W B, Oppo D W. Zinc concentrations in benthic foraminifera reflect seawater chemistry[J]. Paleoceanography, 2000, 15(3):299-306. doi: 10.1029/1999PA000420

    CrossRef Google Scholar

    [13] Marchitto T M, Ortiz J, Carriquiry J, et al. A 14, 000 year foraminiferal trace metal record of ENSO-influenced upwelling near southern Baja California[C]// AGU Fall Meeting, 2005.

    Google Scholar

    [14] Palmer M R, Brummer G J, Cooper M J, et al. Multi-proxy reconstruction of surface water pCO2, in the northern Arabian Sea since 29 ka[J]. Earth & Planetary Science Letters, 2010, 295(1-2):49-57.

    Google Scholar

    [15] Xie R C, Galer S J G, Abouchami W, et al. The cadmium-phosphate relationship in the western South Atlantic — The importance of mode and intermediate waters on the global systematics[J]. Marine Chemistry, 2015, 177:110-123. doi: 10.1016/j.marchem.2015.06.011

    CrossRef Google Scholar

    [16] Boyle E A, Sclater F, Edmond J M. On the marine geochemistry of cadmium[J]. Nature, 1976, 263(5572):42-44. doi: 10.1038/263042a0

    CrossRef Google Scholar

    [17] Boyle E A. Cadmium: Chemical tracer of deepwater paleoceanography[J]. Paleoceanography, 1988, 3(4):471-489. doi: 10.1029/PA003i004p00471

    CrossRef Google Scholar

    [18] Elderfield H, Rickaby R E. Oceanic Cd/P ratio and nutrient utilization in the glacial Southern Ocean[J]. Nature, 2000, 405(6784):305. doi: 10.1038/35012507

    CrossRef Google Scholar

    [19] Nozaki Y, Yamada M, Nakanishi T, et al. The distribution of radionuclides and some trace metals in the water columns of the Japan and Bonin trenches[J]. Oceanologica Acta, 1998, 21(3):469-484. doi: 10.1016/S0399-1784(98)80031-5

    CrossRef Google Scholar

    [20] Quay P, Cullen J, Landing W, et al. Processes controlling the distributions of Cd and PO4 in the ocean[J]. Global Biogeochemical Cycles, 2015, 29(6):830-841. doi: 10.1002/2014GB004998

    CrossRef Google Scholar

    [21] Price N M, Morel F M M. Cadmium and cobalt substitution for zinc in a marine diatom[J]. Nature, 1990, 344(6267):658-660. doi: 10.1038/344658a0

    CrossRef Google Scholar

    [22] Morel F M M, Reinfelder J R, Roberts S B, et al. Zinc and carbon co-limitation of marine phytoplankton[J]. Nature, 1994, 369(6483):740-742. doi: 10.1038/369740a0

    CrossRef Google Scholar

    [23] Morel F M M, Milligan A J, Saito M A. 6.05-marine bioinorganic chemistry: the role of trace metals in the oceanic cycles of major nutrients[J]. Treatise on Geochemistry, 2003, 6:113-143.

    Google Scholar

    [24] Lane T W, Morel F M. A biological function for cadmium in marine diatoms[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(9):4627. doi: 10.1073/pnas.090091397

    CrossRef Google Scholar

    [25] Lee J G, Morel F. Replacement of zinc by cadmium in marine phytoplankton[J]. Marine Ecology Progress, 1995, 127(1):305-309.

    Google Scholar

    [26] Cullen J T, Lane T W, Franç, et al. Modulation of cadmium uptake in phytoplankton by seawater CO2 concentration[J]. Nature, 1999, 442(6758):1025-1028.

    Google Scholar

    [27] Rijkenberg M J, Middag R, Laan P, et al. The distribution of dissolved iron in the West Atlantic Ocean.[J]. Plos One, 2014, 9(6):e101323. doi: 10.1371/journal.pone.0101323

    CrossRef Google Scholar

    [28] Pagani M, Freeman K H, Ohkouchi N, et al. Comparison of water column [CO2aq] with sedimentary alkenone-based estimates: A test of the alkenone-CO2 proxy[J]. Paleoceanography, 2002, 17(4):21-1-21-12.

    Google Scholar

    [29] Frew R D, Hunter K A. Influence of Southern Ocean waters on the cadmium-phosphate properties of the global ocean[J]. Nature, 1992, 360(6400):144-146. doi: 10.1038/360144a0

    CrossRef Google Scholar

    [30] Cullen J T. On the nonlinear relationship between dissolved cadmium and phosphate in the modern global ocean: could chronic iron limitation of phytoplankton growth cause the kink?[J]. Limnology & Oceanography, 2006, 51(3):1369-1380.

    Google Scholar

    [31] Frew R, Bowie A, Croot P, et al. Macronutrient and trace-metal geochemistry of an in situ iron-induced Southern Ocean bloom[J]. Deep Sea Research Part Ⅱ Topical Studies in Oceanography, 2001, 48(11-12):2467-2481. doi: 10.1016/S0967-0645(01)00004-2

    CrossRef Google Scholar

    [32] Finkel Z V, Quigg A S, Chiampi R K, et al. Phylogenetic diversity in cadmium : phosphorus ratio regulation by marine phytoplankton[J]. Limnology & Oceanography, 2007, 52(3):1131-1138.

    Google Scholar

    [33] Abouchami W, Galer S J G, Baar H J W D, et al. Modulation of the Southern Ocean cadmium isotope signature by ocean circulation and primary productivity[J]. Earth & Planetary Science Letters, 2011, 305(1-2):83-91.

    Google Scholar

    [34] Abouchami W, Galer S J G, Baar H J W D, et al. Biogeochemical cycling of cadmium isotopes in the Southern Ocean along the Zero Meridian[J]. Geochimica Et Cosmochimica Acta, 2014, 127(3):348-367.

    Google Scholar

    [35] Flegal A R, Yeats P A, Westerlund S. Cadmium, copper and nickel distributions at 4 stations in the eastern central and south Atlantic[J]. Marine Chemistry, 1995, 49(4):283-293. doi: 10.1016/0304-4203(95)00018-M

    CrossRef Google Scholar

    [36] Geen A V, Mccorkle D C, Klinkhammer G P. Sensitivity of the phosphate-cadmium-carbon isotope relation in the ocean to cadmium removal by suboxic sediments[J]. Paleoceanography, 1995, 10(2):159-169. doi: 10.1029/94PA03352

    CrossRef Google Scholar

    [37] Broecker W S, Peng T H. Tracers in the Sea[M]. Eldigio, Palisades, New York, 1982.

    Google Scholar

    [38] Walsh R S, Hunter K A. Influence of phosphorus storage on the uptake of cadmium by the marine alga Macrocystis pyrifera[J]. Limnology & Oceanography, 1992, 37(7):1361-1369.

    Google Scholar

    [39] Bruland K W. Oceanographic distributions of cadmium, zinc, nickel, and copper in the North Pacific[J]. Earth & Planetary Science Letters, 1980, 47(2):176-198.

    Google Scholar

    [40] Martin J H, Gordon R M, Fitzwater S E. Iron in Antarctic waters[J]. Nature, 1990, 345(6271):156-158. doi: 10.1038/345156a0

    CrossRef Google Scholar

    [41] Bruland K W. Manganese, nickel, copper, zinc and cadmium in the western north Atlantic.P[J]. Trace Metals in Sea Water, 1983, 4.

    Google Scholar

    [42] Baar H J W D, Saager P M, Nolting R F, et al. Cadmium versus phosphate in the world ocean[J]. Marine Chemistry, 1994, 46(3):261-281. doi: 10.1016/0304-4203(94)90082-5

    CrossRef Google Scholar

    [43] Broecker W S, Maier-Reimer E. The influence of air and sea exchange on the carbon isotope distribution in the sea[J]. Global Biogeochemical Cycles, 1992, 6(3):315-320. doi: 10.1029/92GB01672

    CrossRef Google Scholar

    [44] Lynch-Stieglitz J, Geen A V, Fairbanks R G. Interocean exchange of glacial North Atlantic Intermediate Water: Evidence from subantarctic Cd/Ca and carbon isotope measurements[J]. Paleoceanography, 1996, 11(2):191-201. doi: 10.1029/95PA03772

    CrossRef Google Scholar

    [45] Marchitto T M, Broecker W S. Deep water mass geometry in the glacial Atlantic Ocean: A review of constraints from the paleonutrient proxy Cd/Ca[J]. Geochemistry Geophysics Geosystems, 2006, Q12003.

    Google Scholar

    [46] Chappell J. Upper Quaternary warping and uplift rates in the Bay of Plenty and west coast, North Island, New Zealand[J]. New Zealand Journal of Geology & Geophysics, 1975, 18(1):129-154.

    Google Scholar

    [47] Boyle E A. Cadmium and delta 13C paleochemical ocean distributions during the stage 2 glacial maximum[J]. Annual Review of Earth & Planetary Sciences, 1992, 20(1):245-287.

    Google Scholar

    [48] Ohkouchi N, Kawahata H, Okada M, et al. Benthic foraminifera cadmium record from the western equatorial Pacific[J]. Marine Geology, 1995, 127(1):167-180.

    Google Scholar

    [49] Mccorkle D C, Martin P A, Lea D W, et al. Evidence of a dissolution effect on benthic foraminiferal shell chemistry: δ13C, Cd/Ca, Ba/Ca, and Sr/Ca results from the Ontong Java Plateau[J]. Paleoceanography, 1995, 10(4):699-714. doi: 10.1029/95PA01427

    CrossRef Google Scholar

    [50] Boyle E, Rosenthal Y. Chemical Hydrography of the South Atlantic During the Last Glacial Maximum: Cd vs. δ 13 C[M]// The South Atlantic. Springer Berlin Heidelberg, 1996: 423-443.

    Google Scholar

    [51] Boyle E A, Labeyrie L, Duplessly J C. Calcitic foraminiferal data confirmed by cadmium in aragonitic Hoeglundina : Application to the Last Glacial Maximum in the northern Indian Ocean[J]. Paleoceanography, 1995, 10(5):881-900. doi: 10.1029/95PA01625

    CrossRef Google Scholar

    [52] Marchitto T M. Lack of a significant temperature influence on the incorporation of Cd into benthic foraminiferal tests[J]. Geochemistry Geophysics Geosystems, 2004, 5(10).

    Google Scholar

    [53] Rickaby R E M, Elderfield H. Planktonic foraminiferal Cd/Ca: Paleonutrients or paleotemperature?[J]. Paleoceanography, 1999, 14(3):293-303. doi: 10.1029/1999PA900007

    CrossRef Google Scholar

    [54] Boyle E A, Keigwin L. North Atlantic thermohaline circulation during the past 20, 000 years linked to high-latitude surface temperature[J]. Nature, 1987, 330(6143):35-40. doi: 10.1038/330035a0

    CrossRef Google Scholar

    [55] Xie R C, Marcantonio F, Schmidt M W. Deglacial variability of Antarctic Intermediate Water penetration into the North Atlantic from authigenic neodymium isotope ratios[J]. Paleoceanography, 2012, 27(3), PA3221.

    Google Scholar

    [56] Lynch-Stieglitz J, Schmidt M W, Curry W B. Evidence from the Florida Straits for Younger Dryas ocean circulation changes[J]. Paleoceanography, 2011, 26(1).

    Google Scholar

    [57] Marchitto T M, Curry W B, Oppo D W. Millennial-scale changes in North Atlantic circulation since the last glaciation[J]. Nature, 1998, 393(393):557-561.

    Google Scholar

    [58] Sarnthein M, Winn K, Jung S J A, et al. Changes in East Atlantic Deepwater Circulation over the last 30, 000 years: Eight time slice reconstructions[J]. Paleoceanography, 1994, 9(2):209-267. doi: 10.1029/93PA03301

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Article Metrics

Article views(3000) PDF downloads(86) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint