Citation: | WANG Jiakai, LI Tiegang, XIONG Zhifang, CHANG Fengming, QIN Bingbin, WANG Linmiao, JIA Qi. Sedimentary gochemical characteristics of the Redox-sensitive elements in Ross Sea, Antarctica: Implications for paleoceanography[J]. Marine Geology & Quaternary Geology, 2018, 38(5): 112-121. doi: 10.16562/j.cnki.0256-1492.2018.05.011 |
Redox conditions of deep ocean are supposed closely related to deep ocean circulation and surface water production. Facts prove that surface water production and deep water circulation may strongly influence the formation of respiration carbon and its migration from ocean interior to atmosphere, which is closely related to the rise of atmospheric pCO2. Hence, verifying the redox environment evolution of the ocean could help us clarify the mechanism of variation in atmospheric pCO2 in glacial-interglacial cycles. Samples from core ANT31-R23 and the surface sediment of central Ross Sea, which were taken by R/V Xuelong in the 31st and 32th Chinese National Antarctic Research Expedition, are used as research materials in this study. Both the major and minor elements are analyzed, including calcium, titanium and the elements sensitive to paleo-redox environment of deposition, so-called Redox-sensitive elements (RSE), such as manganese, molybdenum, nickel, cobalt and cadmium. RSEs normalized by Ti are adopted as background values to estimate if the RSEs are enriched or depleted. The result shows that enrichment of Mn occurs in the entire core indicating an oxidizing condition. Four strong oxidation pulse events are identified based on Mn peaks in different depths, which may be related to stronger circulation conditions and/or lower surface water production in the Southern Ocean during late Quaternary. The layers enriched by Mo, Co and Ni in addition to Mn, are resulted from absorption, capture or scavenge by Mn-oxyhydroxides. These results suggest that the Ross Sea does not have significant contribution to the reducing of atmospheric pCO2 during glaciation. The strong oxidation pulse events, however, may play an important role in elevating atmospheric pCO2 during deglaciation. Nevertheless, the detailed processes of this mechanism will be effectively revealed by follow-up work after the establishment of accurate chronology framework.
[1] | Pailler D, Bard E, Rostek F, et al. Burial of redox-sensitive metals and organic matter in the equatorial Indian Ocean linked to precession[J]. Geochimica Et Cosmochimica Acta, 2002, 66(5): 849-865. doi: 10.1016/S0016-7037(01)00817-1 |
[2] | Li C, Love G D, Lyons T W, et al. A stratified redox model for the Ediacaran ocean[J]. Science, 2010, 328(5974): 80-83. doi: 10.1126/science.1182369 |
[3] | Jaccard S L, Galbraith E D, Martinez-Garcia A, et al. Covariation of deep Southern Ocean oxygenation and atmospheric CO2 through the last ice age[J]. Nature, 2016, 530(7589): 207-210. doi: 10.1038/nature16514 |
[4] | Jaccard S L, Galbraith E D. Large climate-driven changes of oceanic oxygen concentrations during the last deglaciation[J]. Nature Geoscience, 2011, 5(2): 151-156. |
[5] | Sigman D M, Hain M P, Haug G H. The polar ocean and glacial cycles in atmospheric CO2 concentration[J]. Nature, 2010, 466(7302): 47-55. doi: 10.1038/nature09149 |
[6] | Anderson R F, Ali S, Bradtmiller L I, et al. Wind-driven upwelling in the Southern Ocean and the deglacial rise in atmospheric CO2[J]. Science, 2009, 323(5920): 1443-1448. doi: 10.1126/science.1167441 |
[7] | Skinner L C, Fallon S, Waelbroeck C, et al. Ventilation of the deep Southern Ocean and deglacial CO2 rise[J]. Science, 2010, 328(5982): 1147-1151. doi: 10.1126/science.1183627 |
[8] | Fischer H, Schmitt J, Lüthi D, et al. The role of Southern Ocean processes in orbital and millennial CO2 variations-A synthesis[J]. Quaternary Science Reviews, 2010, 29(1-2): 193-205. doi: 10.1016/j.quascirev.2009.06.007 |
[9] | Calvert S E. Oceanographic controls on the accumulation of organic matter in marine sediments[J]. Geological Society, London, Special Publications, 1987, 26(1): 137-151. doi: 10.1144/GSL.SP.1987.026.01.08 |
[10] | Calvert S E, Pedersen T F. Anoxia vs. productivity: What controls the formation of organic-carbon-rich sediments and sedimentary rocks?[J]. The American Association of Petroleum Geologists Bulletin, 1990, 74(4): 454. |
[11] | Galbraith E D, Jaccard S L, Pedersen T F, et al. Carbon dioxide release from the North Pacific abyss during the last deglaciation[J]. Nature, 2007, 449(7164): 890-893. doi: 10.1038/nature06227 |
[12] | Francois R, Altabet M A, Yu E F, et al. Contribution of Southern Ocean surface-water stratification to low atmospheric CO2 concentrations during the last glacial period[J]. Nature, 1997, 389(6654): 929-935. doi: 10.1038/40073 |
[13] | Tribovillard N, Algeo T J, Lyons T, et al. Trace metals as paleoredox and paleoproductivity proxies: An update[J]. Chemical Geology, 2006, 232(1-2): 12-32. doi: 10.1016/j.chemgeo.2006.02.012 |
[14] | Calvert S E, Pedersen T F. Geochemistry of recent oxic and anoxic marine-sediments-implications for the geological record[J]. Marine Geology, 1993, 113(1-2): 67-88. doi: 10.1016/0025-3227(93)90150-T |
[15] | Brown E T, Le Callonnec L, German C R. Geochemical cycling of redox-sensitive metals in sediments from Lake Malawi: A diagnostic paleotracer for episodic changes in mixing depth[J]. Geochimica Et Cosmochimica Acta, 2000, 64(20): 3515-3523. doi: 10.1016/S0016-7037(00)00460-9 |
[16] | Calvert S E, Pedersen T F. Sedimentary geochemistry of manganese: Implications for the environment of formation of manganiferous black shales[J]. Economic Geology and the Bulletin of the Society of Economic Geologists, 1996, 91(1): 36-47. doi: 10.2113/gsecongeo.91.1.36 |
[17] | Anderson R F, Fleisher M Q, Lehuray A P. Concentration, oxidation-state, and particulate flux of uranium in the Black-Sea[J]. Geochimica Et Cosmochimica Acta, 1989, 53(9): 2215-2224. doi: 10.1016/0016-7037(89)90345-1 |
[18] | Chaillou G, Anschutz P, Lavaux G, et al. The distribution of Mo, U, and Cd in relation to major redox species in muddy sediments of the Bay of Biscay[J]. Marine Chemistry, 2002, 80(1): 41-59. doi: 10.1016/S0304-4203(02)00097-X |
[19] | Howarth R W, Cole J J. Molybdenum availability, nitrogen limitation, and phytoplankton growth in natural waters[J]. Science, 1985, 229(4714): 653-655. doi: 10.1126/science.229.4714.653 |
[20] | Calvert S E, Pedersen T F. Geochemistry of recent oxic and anoxic sediments: implications for the geological record[J]. Marine Geology, 1993, 113(1-2): 67-88. doi: 10.1016/0025-3227(93)90150-T |
[21] | Huertadiaz M A, Morse J W. Pyritization of trace-metals in anoxic marine-sediments[J]. Geochimica Et Cosmochimica Acta, 1992, 56(7): 2681-2702. doi: 10.1016/0016-7037(92)90353-K |
[22] | Erickson B E, Helz G R. Molybdenum(Ⅵ) speciation in sulfidic waters[J]. Geochimica et Cosmochimica Acta, 2000, 64(7): 1149-1158. doi: 10.1016/S0016-7037(99)00423-8 |
[23] | Helz G R, Miller C V, Charnock J M, et al. Mechanism of molybdenum removal from the sea and its concentration in black shales: EXAFS evidence[J]. Geochimica Et Cosmochimica Acta, 1996, 60(19): 3631-3642. doi: 10.1016/0016-7037(96)00195-0 |
[24] | Vorlicek T P, Kahn M D, Kasuya Y, et al. Capture of molybdenum in pyrite-forming sediments: Role of ligand-induced reduction by polysulfides[J]. Geochimica Et Cosmochimica Acta, 2004, 68(3): 547-556. doi: 10.1016/S0016-7037(03)00444-7 |
[25] | Holland M M, Landrum L, Raphael M, et al. Springtime winds drive Ross Sea ice variability and change in the following autumn[J]. Nature Communications, 2017, 8(1): 731. doi: 10.1038/s41467-017-00820-0 |
[26] | Jacobs S S. Bottom water production and its links with the thermohaline circulation[J]. Antarctic Science, 2004, 16(4): 427-437. doi: 10.1017/S095410200400224X |
[27] | Orsi A H, Johnson G C, Bullister J L. Circulation, mixing, and production of Antarctic Bottom Water[J]. Progress in Oceanography, 1999, 43(1): 55-109. doi: 10.1016/S0079-6611(99)00004-X |
[28] | Gordon A L, Orsi A H, Muench R, et al. Western Ross Sea continental slope gravity currents[J]. Deep-Sea Research Part Ⅱ-Topical Studies in Oceanography, 2009, 56(13-14): 796-817. doi: 10.1016/j.dsr2.2008.10.037 |
[29] | Orsi A H, Wiederwohl C L. A recount of Ross Sea waters[J]. Deep-Sea Research Part Ⅱ-Topical Studies in Oceanography, 2009, 56(13-14): 778-795. doi: 10.1016/j.dsr2.2008.10.033 |
[30] | Tamura T, Ohshima K I, Nihashi S. Mapping of sea ice production for Antarctic coastal polynyas[J]. Geophysical Research Letters, 2008, 35(7): 284-298. |
[31] | Ferrari R, Jansen M F, Adkins J F, et al. Antarctic sea ice control on ocean circulation in present and glacial climates[J]. Proceedings of the National Academy of Sciences of America, 2014, 111(24): 8753-8758. doi: 10.1073/pnas.1323922111 |
[32] | Whitworth T, Orsi A H. Antarctic Bottom Water production and export by tides in the Ross Sea[J]. Geophysical Research Letters, 2006, 33(12): 285-293. |
[33] | Rivaro P, Massolo S, Bergamasco A, et al. Chemical evidence of the changes of the Antarctic Bottom Water ventilation in the western Ross Sea between 1997 and 2003[J]. Deep-Sea Research Part I-Oceanographic Research Papers, 2010, 57(5): 639-652. doi: 10.1016/j.dsr.2010.03.005 |
[34] | Van Wijk E M, Rintoul S R. Freshening drives contraction of Antarctic Bottom Water in the Australian Antarctic Basin[J]. Geophysical Research Letters, 2014, 41(5): 1657-1664. doi: 10.1002/2013GL058921 |
[35] | Parker M L, Donnelly J, Torres J J. Invertebrate micronekton and macrozooplankton in the Marguerite Bay region of the Western Antarctic Peninsula[J]. Deep-Sea Research Part Ⅱ-Topical Studies in Oceanography, 2011, 58(13-16): 1580-1598. doi: 10.1016/j.dsr2.2010.08.020 |
[36] | Truesdale G A, Downing A L, Lowden G F. The solubility of oxygen in pure water and sea-water[J]. Journal of Chemical Technology & Biotechnology, 1955, 5(2): 53-62. |
[37] | Merlin O H, Salvador G L, Vitturi L M, et al. Geochemical characteristics of western Ross Sea (Antarctica) sediments[J]. Marine Geology, 1991, 99(1-2): 209-229. doi: 10.1016/0025-3227(91)90092-I |
[38] | Brumsack H J. Geochemistry of recent toc-rich sediments from the gulf of California and the Black-Sea[J]. Geologische Rundschau, 1989, 78(3): 851-882. doi: 10.1007/BF01829327 |
[39] | Middelburg J J, Delange G J, Vanderweijden C H. Manganese solubility control in marine pore waters[J]. Geochimica Et Cosmochimica Acta, 1987, 51(3): 759-763. doi: 10.1016/0016-7037(87)90086-X |
[40] | Morford J L, Russell A D, Emerson S. Trace metal evidence for changes in the redox environment associated with the transition from terrigenous clay to diatomaceous sediment, Saanich Inlet, BC[J]. Marine Geology, 2001, 174(1-4): 355-369. doi: 10.1016/S0025-3227(00)00160-2 |
[41] | Algeo T J, Maynard J B. Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems[J]. Chemical Geology, 2004, 206(3-4): 289-318. doi: 10.1016/j.chemgeo.2003.12.009 |
[42] | Boyle E A. Cadmium: chemical tracer of deepwater paleoceanography[J]. Paleoceanography, 1988, 3(4): 471-489. doi: 10.1029/PA003i004p00471 |
[43] | Rosenthal Y, Lam P, Boyle E A, et al. Authigenic cadmium enrichments in suboxic sediments-precipitation and postdepositional mobility[J]. Earth and Planetary Science Letters, 1995, 132(1-4): 99-111. doi: 10.1016/0012-821X(95)00056-I |
[44] | Piper D Z, Perkins R B. A modern vs. Permian black shale—the hydrography, primary productivity, and water-column chemistry of deposition[J]. Chemical Geology, 2004, 206(3-4): 177-197. doi: 10.1016/j.chemgeo.2003.12.006 |
[45] | Pujol F, Berner Z, Stüben D. Palaeoenvironmental changes at the Frasnian/Famennian boundary in key European sections: Chemostratigraphic constraints[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 240(1-2): 120-145. doi: 10.1016/j.palaeo.2006.03.055 |
[46] | Morford J L, Emerson S R, Breckel E J, et al. Diagenesis of oxyanions (V, U, Re, and Mo) in pore waters and sediments from a continental margin[J]. Geochimica et Cosmochimica Acta, 2005, 69(21): 5021-5032. doi: 10.1016/j.gca.2005.05.015 |
[47] | Piper D Z. The metal-oxide fraction of pelagic sediment in the equatorial north Pacific-Ocean-a source of metals in ferromanganese nodules[J]. Geochimica Et Cosmochimica Acta, 1988, 52(8): 2127-2145. doi: 10.1016/0016-7037(88)90193-7 |
[48] | Krishnaswami S. Authigenic transition-elements in Pacific pelagic clays[J]. Geochimica Et Cosmochimica Acta, 1976, 40(4): 425-434. doi: 10.1016/0016-7037(76)90007-7 |
[49] | Grill P B E. The effect of manganese oxide scavenging on molybdenum in saanich inlet, British Columbia[J]. Marine Chemistry, 1974, 2(2): 125-148. doi: 10.1016/0304-4203(74)90033-4 |
[50] | Li Y H. Ultimate removal mechanisms of elements from the ocean[J]. Geochimica Et Cosmochimica Acta, 1981, 45: 1659-1664. doi: 10.1016/0016-7037(81)90001-6 |
[51] | Ceccaroni L, Frank M, Frignani M, et al. Late Quaternary fluctuations of biogenic component fluxes on the continental slope of the Ross Sea, Antarctica[J]. Journal of Marine Systems, 1998, 17(1-4): 515-525. doi: 10.1016/S0924-7963(98)00061-X |
[52] | Martinson D G. Evolution of the southern ocean winter mixed layer and sea ice: Open ocean deepwater formation and ventilation[J]. Journal of Geophysical Research, 1990, 95(C7): 11641-11654. doi: 10.1029/JC095iC07p11641 |
[53] | Picco P, Bergamasco A, Demicheli L, et al. Large-scale circulation features in the central and western Ross Sea (Antarctica)[J]. Ross Sea Ecology: Springer, 2000: 95-105. |
[54] | Li Y H. Geochemical cycles of elements and human perturbation[J]. Geochimica Et Cosmochimica Acta, 1981, 45(11): 2073-2084. doi: 10.1016/0016-7037(81)90061-2 |
[55] | Ullermann J, Lamy F, Ninnemann U, et al. Pacific-Atlantic Circumpolar Deep Water coupling during the last 500ka[J]. Paleoceanography, 2016, 31(6): 639-650. doi: 10.1002/2016PA002932 |
[56] | Yamamoto A, Abe-Ouchi A, Shigemitsu M, et al. Global deep ocean oxygenation by enhanced ventilation in the Southern Ocean under long-term global warming[J]. Global Biogeochemical Cycles, 2015, 29(10): 1801-1815. doi: 10.1002/2015GB005181 |
[57] | Galbraith E D, Jaccard S L. Deglacial weakening of the oceanic soft tissue pump: global constraints from sedimentary nitrogen isotopes and oxygenation proxies[J]. Quaternary Science Reviews, 2015, 109: 38-48. doi: 10.1016/j.quascirev.2014.11.012 |
[58] | Xiao W S, Esper O, Gersonde R. Last Glacial - Holocene climate variability in the Atlantic sector of the Southern Ocean[J]. Quaternary Science Reviews, 2016, 135: 115-137. doi: 10.1016/j.quascirev.2016.01.023 |
[59] | Wagner M, Hendy I L. Trace metal evidence for a poorly ventilated glacial Southern Ocean[J]. Quaternary Science Reviews, 2017, 170(2): 109-120. |
[60] | Toggweiler J R. Variation of atmospheric CO2 by ventilation of the ocean's deepest water[J]. Paleoceanography, 1999, 14(5): 571-588. doi: 10.1029/1999PA900033 |
[61] | Wu L, Wang R, Xiao W, et al. Productivity-climate coupling recorded in Pleistocene sediments off Prydz Bay (East Antarctica)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 485: 260-270. doi: 10.1016/j.palaeo.2017.06.018 |
[62] | Mcmillan D G, Constable C G, Parker R L. Assessing the dipolar signal in stacked paleointensity records using a statistical error model and geodynamo simulations[J]. Physics of the Earth and Planetary Interiors, 2004, 145(1-4): 37-54. doi: 10.1016/j.pepi.2004.02.011 |
[63] | Prokopenko A A, Khursevich G K. Plio-Pleistocene transition in the continental record from Lake Baikal: Diatom biostratigraphy and age model[J]. Quaternary International, 2010, 219(1-2): 26-36. doi: 10.1016/j.quaint.2009.09.027 |
Basic information of geography, ocean currents and water column oxygen profile in Ross Sea, Antarctic
Major and minor element contents variation with depth of core ANT31-R23
Box-and-whisker plots of enrichment factors of RSE in different depths of Core ANT31-R23 in Ross Sea, Antarctic
The correlation figure of Mn relative to Mo、Co、Ni