2018 Vol. 38, No. 5
Article Contents

WANG Jiakai, LI Tiegang, XIONG Zhifang, CHANG Fengming, QIN Bingbin, WANG Linmiao, JIA Qi. Sedimentary gochemical characteristics of the Redox-sensitive elements in Ross Sea, Antarctica: Implications for paleoceanography[J]. Marine Geology & Quaternary Geology, 2018, 38(5): 112-121. doi: 10.16562/j.cnki.0256-1492.2018.05.011
Citation: WANG Jiakai, LI Tiegang, XIONG Zhifang, CHANG Fengming, QIN Bingbin, WANG Linmiao, JIA Qi. Sedimentary gochemical characteristics of the Redox-sensitive elements in Ross Sea, Antarctica: Implications for paleoceanography[J]. Marine Geology & Quaternary Geology, 2018, 38(5): 112-121. doi: 10.16562/j.cnki.0256-1492.2018.05.011

Sedimentary gochemical characteristics of the Redox-sensitive elements in Ross Sea, Antarctica: Implications for paleoceanography

More Information
  • Redox conditions of deep ocean are supposed closely related to deep ocean circulation and surface water production. Facts prove that surface water production and deep water circulation may strongly influence the formation of respiration carbon and its migration from ocean interior to atmosphere, which is closely related to the rise of atmospheric pCO2. Hence, verifying the redox environment evolution of the ocean could help us clarify the mechanism of variation in atmospheric pCO2 in glacial-interglacial cycles. Samples from core ANT31-R23 and the surface sediment of central Ross Sea, which were taken by R/V Xuelong in the 31st and 32th Chinese National Antarctic Research Expedition, are used as research materials in this study. Both the major and minor elements are analyzed, including calcium, titanium and the elements sensitive to paleo-redox environment of deposition, so-called Redox-sensitive elements (RSE), such as manganese, molybdenum, nickel, cobalt and cadmium. RSEs normalized by Ti are adopted as background values to estimate if the RSEs are enriched or depleted. The result shows that enrichment of Mn occurs in the entire core indicating an oxidizing condition. Four strong oxidation pulse events are identified based on Mn peaks in different depths, which may be related to stronger circulation conditions and/or lower surface water production in the Southern Ocean during late Quaternary. The layers enriched by Mo, Co and Ni in addition to Mn, are resulted from absorption, capture or scavenge by Mn-oxyhydroxides. These results suggest that the Ross Sea does not have significant contribution to the reducing of atmospheric pCO2 during glaciation. The strong oxidation pulse events, however, may play an important role in elevating atmospheric pCO2 during deglaciation. Nevertheless, the detailed processes of this mechanism will be effectively revealed by follow-up work after the establishment of accurate chronology framework.

  • 加载中
  • [1] Pailler D, Bard E, Rostek F, et al. Burial of redox-sensitive metals and organic matter in the equatorial Indian Ocean linked to precession[J]. Geochimica Et Cosmochimica Acta, 2002, 66(5): 849-865. doi: 10.1016/S0016-7037(01)00817-1

    CrossRef Google Scholar

    [2] Li C, Love G D, Lyons T W, et al. A stratified redox model for the Ediacaran ocean[J]. Science, 2010, 328(5974): 80-83. doi: 10.1126/science.1182369

    CrossRef Google Scholar

    [3] Jaccard S L, Galbraith E D, Martinez-Garcia A, et al. Covariation of deep Southern Ocean oxygenation and atmospheric CO2 through the last ice age[J]. Nature, 2016, 530(7589): 207-210. doi: 10.1038/nature16514

    CrossRef Google Scholar

    [4] Jaccard S L, Galbraith E D. Large climate-driven changes of oceanic oxygen concentrations during the last deglaciation[J]. Nature Geoscience, 2011, 5(2): 151-156.

    Google Scholar

    [5] Sigman D M, Hain M P, Haug G H. The polar ocean and glacial cycles in atmospheric CO2 concentration[J]. Nature, 2010, 466(7302): 47-55. doi: 10.1038/nature09149

    CrossRef Google Scholar

    [6] Anderson R F, Ali S, Bradtmiller L I, et al. Wind-driven upwelling in the Southern Ocean and the deglacial rise in atmospheric CO2[J]. Science, 2009, 323(5920): 1443-1448. doi: 10.1126/science.1167441

    CrossRef Google Scholar

    [7] Skinner L C, Fallon S, Waelbroeck C, et al. Ventilation of the deep Southern Ocean and deglacial CO2 rise[J]. Science, 2010, 328(5982): 1147-1151. doi: 10.1126/science.1183627

    CrossRef Google Scholar

    [8] Fischer H, Schmitt J, Lüthi D, et al. The role of Southern Ocean processes in orbital and millennial CO2 variations-A synthesis[J]. Quaternary Science Reviews, 2010, 29(1-2): 193-205. doi: 10.1016/j.quascirev.2009.06.007

    CrossRef Google Scholar

    [9] Calvert S E. Oceanographic controls on the accumulation of organic matter in marine sediments[J]. Geological Society, London, Special Publications, 1987, 26(1): 137-151. doi: 10.1144/GSL.SP.1987.026.01.08

    CrossRef Google Scholar

    [10] Calvert S E, Pedersen T F. Anoxia vs. productivity: What controls the formation of organic-carbon-rich sediments and sedimentary rocks?[J]. The American Association of Petroleum Geologists Bulletin, 1990, 74(4): 454.

    Google Scholar

    [11] Galbraith E D, Jaccard S L, Pedersen T F, et al. Carbon dioxide release from the North Pacific abyss during the last deglaciation[J]. Nature, 2007, 449(7164): 890-893. doi: 10.1038/nature06227

    CrossRef Google Scholar

    [12] Francois R, Altabet M A, Yu E F, et al. Contribution of Southern Ocean surface-water stratification to low atmospheric CO2 concentrations during the last glacial period[J]. Nature, 1997, 389(6654): 929-935. doi: 10.1038/40073

    CrossRef Google Scholar

    [13] Tribovillard N, Algeo T J, Lyons T, et al. Trace metals as paleoredox and paleoproductivity proxies: An update[J]. Chemical Geology, 2006, 232(1-2): 12-32. doi: 10.1016/j.chemgeo.2006.02.012

    CrossRef Google Scholar

    [14] Calvert S E, Pedersen T F. Geochemistry of recent oxic and anoxic marine-sediments-implications for the geological record[J]. Marine Geology, 1993, 113(1-2): 67-88. doi: 10.1016/0025-3227(93)90150-T

    CrossRef Google Scholar

    [15] Brown E T, Le Callonnec L, German C R. Geochemical cycling of redox-sensitive metals in sediments from Lake Malawi: A diagnostic paleotracer for episodic changes in mixing depth[J]. Geochimica Et Cosmochimica Acta, 2000, 64(20): 3515-3523. doi: 10.1016/S0016-7037(00)00460-9

    CrossRef Google Scholar

    [16] Calvert S E, Pedersen T F. Sedimentary geochemistry of manganese: Implications for the environment of formation of manganiferous black shales[J]. Economic Geology and the Bulletin of the Society of Economic Geologists, 1996, 91(1): 36-47. doi: 10.2113/gsecongeo.91.1.36

    CrossRef Google Scholar

    [17] Anderson R F, Fleisher M Q, Lehuray A P. Concentration, oxidation-state, and particulate flux of uranium in the Black-Sea[J]. Geochimica Et Cosmochimica Acta, 1989, 53(9): 2215-2224. doi: 10.1016/0016-7037(89)90345-1

    CrossRef Google Scholar

    [18] Chaillou G, Anschutz P, Lavaux G, et al. The distribution of Mo, U, and Cd in relation to major redox species in muddy sediments of the Bay of Biscay[J]. Marine Chemistry, 2002, 80(1): 41-59. doi: 10.1016/S0304-4203(02)00097-X

    CrossRef Google Scholar

    [19] Howarth R W, Cole J J. Molybdenum availability, nitrogen limitation, and phytoplankton growth in natural waters[J]. Science, 1985, 229(4714): 653-655. doi: 10.1126/science.229.4714.653

    CrossRef Google Scholar

    [20] Calvert S E, Pedersen T F. Geochemistry of recent oxic and anoxic sediments: implications for the geological record[J]. Marine Geology, 1993, 113(1-2): 67-88. doi: 10.1016/0025-3227(93)90150-T

    CrossRef Google Scholar

    [21] Huertadiaz M A, Morse J W. Pyritization of trace-metals in anoxic marine-sediments[J]. Geochimica Et Cosmochimica Acta, 1992, 56(7): 2681-2702. doi: 10.1016/0016-7037(92)90353-K

    CrossRef Google Scholar

    [22] Erickson B E, Helz G R. Molybdenum(Ⅵ) speciation in sulfidic waters[J]. Geochimica et Cosmochimica Acta, 2000, 64(7): 1149-1158. doi: 10.1016/S0016-7037(99)00423-8

    CrossRef Google Scholar

    [23] Helz G R, Miller C V, Charnock J M, et al. Mechanism of molybdenum removal from the sea and its concentration in black shales: EXAFS evidence[J]. Geochimica Et Cosmochimica Acta, 1996, 60(19): 3631-3642. doi: 10.1016/0016-7037(96)00195-0

    CrossRef Google Scholar

    [24] Vorlicek T P, Kahn M D, Kasuya Y, et al. Capture of molybdenum in pyrite-forming sediments: Role of ligand-induced reduction by polysulfides[J]. Geochimica Et Cosmochimica Acta, 2004, 68(3): 547-556. doi: 10.1016/S0016-7037(03)00444-7

    CrossRef Google Scholar

    [25] Holland M M, Landrum L, Raphael M, et al. Springtime winds drive Ross Sea ice variability and change in the following autumn[J]. Nature Communications, 2017, 8(1): 731. doi: 10.1038/s41467-017-00820-0

    CrossRef Google Scholar

    [26] Jacobs S S. Bottom water production and its links with the thermohaline circulation[J]. Antarctic Science, 2004, 16(4): 427-437. doi: 10.1017/S095410200400224X

    CrossRef Google Scholar

    [27] Orsi A H, Johnson G C, Bullister J L. Circulation, mixing, and production of Antarctic Bottom Water[J]. Progress in Oceanography, 1999, 43(1): 55-109. doi: 10.1016/S0079-6611(99)00004-X

    CrossRef Google Scholar

    [28] Gordon A L, Orsi A H, Muench R, et al. Western Ross Sea continental slope gravity currents[J]. Deep-Sea Research Part Ⅱ-Topical Studies in Oceanography, 2009, 56(13-14): 796-817. doi: 10.1016/j.dsr2.2008.10.037

    CrossRef Google Scholar

    [29] Orsi A H, Wiederwohl C L. A recount of Ross Sea waters[J]. Deep-Sea Research Part Ⅱ-Topical Studies in Oceanography, 2009, 56(13-14): 778-795. doi: 10.1016/j.dsr2.2008.10.033

    CrossRef Google Scholar

    [30] Tamura T, Ohshima K I, Nihashi S. Mapping of sea ice production for Antarctic coastal polynyas[J]. Geophysical Research Letters, 2008, 35(7): 284-298.

    Google Scholar

    [31] Ferrari R, Jansen M F, Adkins J F, et al. Antarctic sea ice control on ocean circulation in present and glacial climates[J]. Proceedings of the National Academy of Sciences of America, 2014, 111(24): 8753-8758. doi: 10.1073/pnas.1323922111

    CrossRef Google Scholar

    [32] Whitworth T, Orsi A H. Antarctic Bottom Water production and export by tides in the Ross Sea[J]. Geophysical Research Letters, 2006, 33(12): 285-293.

    Google Scholar

    [33] Rivaro P, Massolo S, Bergamasco A, et al. Chemical evidence of the changes of the Antarctic Bottom Water ventilation in the western Ross Sea between 1997 and 2003[J]. Deep-Sea Research Part I-Oceanographic Research Papers, 2010, 57(5): 639-652. doi: 10.1016/j.dsr.2010.03.005

    CrossRef Google Scholar

    [34] Van Wijk E M, Rintoul S R. Freshening drives contraction of Antarctic Bottom Water in the Australian Antarctic Basin[J]. Geophysical Research Letters, 2014, 41(5): 1657-1664. doi: 10.1002/2013GL058921

    CrossRef Google Scholar

    [35] Parker M L, Donnelly J, Torres J J. Invertebrate micronekton and macrozooplankton in the Marguerite Bay region of the Western Antarctic Peninsula[J]. Deep-Sea Research Part Ⅱ-Topical Studies in Oceanography, 2011, 58(13-16): 1580-1598. doi: 10.1016/j.dsr2.2010.08.020

    CrossRef Google Scholar

    [36] Truesdale G A, Downing A L, Lowden G F. The solubility of oxygen in pure water and sea-water[J]. Journal of Chemical Technology & Biotechnology, 1955, 5(2): 53-62.

    Google Scholar

    [37] Merlin O H, Salvador G L, Vitturi L M, et al. Geochemical characteristics of western Ross Sea (Antarctica) sediments[J]. Marine Geology, 1991, 99(1-2): 209-229. doi: 10.1016/0025-3227(91)90092-I

    CrossRef Google Scholar

    [38] Brumsack H J. Geochemistry of recent toc-rich sediments from the gulf of California and the Black-Sea[J]. Geologische Rundschau, 1989, 78(3): 851-882. doi: 10.1007/BF01829327

    CrossRef Google Scholar

    [39] Middelburg J J, Delange G J, Vanderweijden C H. Manganese solubility control in marine pore waters[J]. Geochimica Et Cosmochimica Acta, 1987, 51(3): 759-763. doi: 10.1016/0016-7037(87)90086-X

    CrossRef Google Scholar

    [40] Morford J L, Russell A D, Emerson S. Trace metal evidence for changes in the redox environment associated with the transition from terrigenous clay to diatomaceous sediment, Saanich Inlet, BC[J]. Marine Geology, 2001, 174(1-4): 355-369. doi: 10.1016/S0025-3227(00)00160-2

    CrossRef Google Scholar

    [41] Algeo T J, Maynard J B. Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems[J]. Chemical Geology, 2004, 206(3-4): 289-318. doi: 10.1016/j.chemgeo.2003.12.009

    CrossRef Google Scholar

    [42] Boyle E A. Cadmium: chemical tracer of deepwater paleoceanography[J]. Paleoceanography, 1988, 3(4): 471-489. doi: 10.1029/PA003i004p00471

    CrossRef Google Scholar

    [43] Rosenthal Y, Lam P, Boyle E A, et al. Authigenic cadmium enrichments in suboxic sediments-precipitation and postdepositional mobility[J]. Earth and Planetary Science Letters, 1995, 132(1-4): 99-111. doi: 10.1016/0012-821X(95)00056-I

    CrossRef Google Scholar

    [44] Piper D Z, Perkins R B. A modern vs. Permian black shale—the hydrography, primary productivity, and water-column chemistry of deposition[J]. Chemical Geology, 2004, 206(3-4): 177-197. doi: 10.1016/j.chemgeo.2003.12.006

    CrossRef Google Scholar

    [45] Pujol F, Berner Z, Stüben D. Palaeoenvironmental changes at the Frasnian/Famennian boundary in key European sections: Chemostratigraphic constraints[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 240(1-2): 120-145. doi: 10.1016/j.palaeo.2006.03.055

    CrossRef Google Scholar

    [46] Morford J L, Emerson S R, Breckel E J, et al. Diagenesis of oxyanions (V, U, Re, and Mo) in pore waters and sediments from a continental margin[J]. Geochimica et Cosmochimica Acta, 2005, 69(21): 5021-5032. doi: 10.1016/j.gca.2005.05.015

    CrossRef Google Scholar

    [47] Piper D Z. The metal-oxide fraction of pelagic sediment in the equatorial north Pacific-Ocean-a source of metals in ferromanganese nodules[J]. Geochimica Et Cosmochimica Acta, 1988, 52(8): 2127-2145. doi: 10.1016/0016-7037(88)90193-7

    CrossRef Google Scholar

    [48] Krishnaswami S. Authigenic transition-elements in Pacific pelagic clays[J]. Geochimica Et Cosmochimica Acta, 1976, 40(4): 425-434. doi: 10.1016/0016-7037(76)90007-7

    CrossRef Google Scholar

    [49] Grill P B E. The effect of manganese oxide scavenging on molybdenum in saanich inlet, British Columbia[J]. Marine Chemistry, 1974, 2(2): 125-148. doi: 10.1016/0304-4203(74)90033-4

    CrossRef Google Scholar

    [50] Li Y H. Ultimate removal mechanisms of elements from the ocean[J]. Geochimica Et Cosmochimica Acta, 1981, 45: 1659-1664. doi: 10.1016/0016-7037(81)90001-6

    CrossRef Google Scholar

    [51] Ceccaroni L, Frank M, Frignani M, et al. Late Quaternary fluctuations of biogenic component fluxes on the continental slope of the Ross Sea, Antarctica[J]. Journal of Marine Systems, 1998, 17(1-4): 515-525. doi: 10.1016/S0924-7963(98)00061-X

    CrossRef Google Scholar

    [52] Martinson D G. Evolution of the southern ocean winter mixed layer and sea ice: Open ocean deepwater formation and ventilation[J]. Journal of Geophysical Research, 1990, 95(C7): 11641-11654. doi: 10.1029/JC095iC07p11641

    CrossRef Google Scholar

    [53] Picco P, Bergamasco A, Demicheli L, et al. Large-scale circulation features in the central and western Ross Sea (Antarctica)[J]. Ross Sea Ecology: Springer, 2000: 95-105.

    Google Scholar

    [54] Li Y H. Geochemical cycles of elements and human perturbation[J]. Geochimica Et Cosmochimica Acta, 1981, 45(11): 2073-2084. doi: 10.1016/0016-7037(81)90061-2

    CrossRef Google Scholar

    [55] Ullermann J, Lamy F, Ninnemann U, et al. Pacific-Atlantic Circumpolar Deep Water coupling during the last 500ka[J]. Paleoceanography, 2016, 31(6): 639-650. doi: 10.1002/2016PA002932

    CrossRef Google Scholar

    [56] Yamamoto A, Abe-Ouchi A, Shigemitsu M, et al. Global deep ocean oxygenation by enhanced ventilation in the Southern Ocean under long-term global warming[J]. Global Biogeochemical Cycles, 2015, 29(10): 1801-1815. doi: 10.1002/2015GB005181

    CrossRef Google Scholar

    [57] Galbraith E D, Jaccard S L. Deglacial weakening of the oceanic soft tissue pump: global constraints from sedimentary nitrogen isotopes and oxygenation proxies[J]. Quaternary Science Reviews, 2015, 109: 38-48. doi: 10.1016/j.quascirev.2014.11.012

    CrossRef Google Scholar

    [58] Xiao W S, Esper O, Gersonde R. Last Glacial - Holocene climate variability in the Atlantic sector of the Southern Ocean[J]. Quaternary Science Reviews, 2016, 135: 115-137. doi: 10.1016/j.quascirev.2016.01.023

    CrossRef Google Scholar

    [59] Wagner M, Hendy I L. Trace metal evidence for a poorly ventilated glacial Southern Ocean[J]. Quaternary Science Reviews, 2017, 170(2): 109-120.

    Google Scholar

    [60] Toggweiler J R. Variation of atmospheric CO2 by ventilation of the ocean's deepest water[J]. Paleoceanography, 1999, 14(5): 571-588. doi: 10.1029/1999PA900033

    CrossRef Google Scholar

    [61] Wu L, Wang R, Xiao W, et al. Productivity-climate coupling recorded in Pleistocene sediments off Prydz Bay (East Antarctica)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 485: 260-270. doi: 10.1016/j.palaeo.2017.06.018

    CrossRef Google Scholar

    [62] Mcmillan D G, Constable C G, Parker R L. Assessing the dipolar signal in stacked paleointensity records using a statistical error model and geodynamo simulations[J]. Physics of the Earth and Planetary Interiors, 2004, 145(1-4): 37-54. doi: 10.1016/j.pepi.2004.02.011

    CrossRef Google Scholar

    [63] Prokopenko A A, Khursevich G K. Plio-Pleistocene transition in the continental record from Lake Baikal: Diatom biostratigraphy and age model[J]. Quaternary International, 2010, 219(1-2): 26-36. doi: 10.1016/j.quaint.2009.09.027

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Tables(1)

Article Metrics

Article views(2985) PDF downloads(101) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint