2018 Vol. 38, No. 2
Article Contents

JIANG Hong, RAO Zhiguo. Research progress on fire history reconstruction and its implications for climate change and human activities[J]. Marine Geology & Quaternary Geology, 2018, 38(2): 185-197. doi: 10.16562/j.cnki.0256-1492.2018.02.019
Citation: JIANG Hong, RAO Zhiguo. Research progress on fire history reconstruction and its implications for climate change and human activities[J]. Marine Geology & Quaternary Geology, 2018, 38(2): 185-197. doi: 10.16562/j.cnki.0256-1492.2018.02.019

Research progress on fire history reconstruction and its implications for climate change and human activities

  • Fire plays an paroxysmal-driving role in the earth ecosystem, and is of great significance in the evolution of human civilization. This review has roundly summarized the principles, methods and achievements of fire history reconstruction in a global scale, taking biofuel imcomplete combustion remains as proxies, which include charcoal, black carbon, tree-ring fire scar, polycyclic aromatic hydrocarbons and levoglucosan. In general, on the time scale, charcoal, black carbon and levoglucosan are mostly used as proxies of millennial-scale fire history or longer, tree-ring fire scar is often used for reconstructing forest fire history, and polycyclic aromatic hydrocarbons are usually used for reconstructing the fire usage history in human production and living after the Industrial Revolution 200 years ago, which demonstrate the quick increasing in human population and rapid development of the social economy. These proxies are compared, and their complexity analyzed in this paper. Fire have close affinities with processes of rapid climate change and wet-dry level of climate, while in the Holocene, they are closely related to human activities of producing and living. In the future research, efforts should be made to reduce the uncertainty of fire history reconstruction. Meanwhile, the relationship between fire history and human activities needs further research.

  • 加载中
  • [1] Hao W M, Ward D E, Olbu G, et al. Emissions of CO2, CO, and hydrocarbons from fires in diverse African savanna ecosystems[J]. Journal of Geophysical Research: Atmospheres, 1996, 101(D19): 23577-23584. doi: 10.1029/95JD02198

    CrossRef Google Scholar

    [2] Blomqvist P, Persson B, Simonson M. Fire emissions of organics into the atmosphere[J]. Fire Technology, 2007, 43(3): 213-231. doi: 10.1007/s10694-007-0011-y

    CrossRef Google Scholar

    [3] Al-Naiema I, Estillore A D, Mudunkotuwa I A, et al. Impacts of co-firing biomass on emissions of particulate matter to the atmosphere[J]. Fuel, 2015, 162: 111-120. doi: 10.1016/j.fuel.2015.08.054

    CrossRef Google Scholar

    [4] Bowman D M J S, Balch J K, Artaxo P, et al. Fire in the earth system[J]. Science, 2009, 324(5926): 481-484. doi: 10.1126/science.1163886

    CrossRef Google Scholar

    [5] 吕爱锋, 田汉勤.气候变化、火干扰与生态系统生产力[J].植物生态学报, 2007, 31(2): 242-251. doi: 10.3321/j.issn:1005-264X.2007.02.007

    CrossRef Google Scholar

    Aifeng, TIAN Hanqin. Interaction among climatic change, fire disturbance and ecosystem productivity[J]. Journal of Plant Ecology, 2007, 31(2): 242-251. doi: 10.3321/j.issn:1005-264X.2007.02.007

    CrossRef Google Scholar

    [6] Li F, Bond-Lamberty B, Levis S. Quantifying the role of fire in the Earth system - Part 2: Impact on the net carbon balance of global terrestrial ecosystems for the 20th Century[J]. Biogeosciences, 2014, 11(5): 1345-1360. doi: 10.5194/bg-11-1345-2014

    CrossRef Google Scholar

    [7] 周道玮.草地火的生态学意义[J].草业科学, 1994, 11(2): 10-14.

    Google Scholar

    ZHOU Daowei. The ecological sionificance of grassland fire[J]. Pratacultural Science, 1994, 11(2): 10-14.

    Google Scholar

    [8] 黄文几.火的生态学意义[J].自然杂志, 1983, 6(6): 425-430, 480.

    Google Scholar

    HUANG Wenji. The eco-significance of fire[J]. Nature Magazine, 1983, 6(6): 425-429, 480.

    Google Scholar

    [9] Van Langevelde F, Van De Vijver C A D M, Kumar L, et al. Effects of fire and herbivory on the stability of savanna ecosystems[J]. Ecology, 2003, 84(2): 337-350. doi: 10.1890/0012-9658(2003)084[0337:EOFAHO]2.0.CO;2

    CrossRef Google Scholar

    [10] 周振宇, 关莹, 王春雪, 等.旧石器时代的火塘与古人类用火[J].人类学学报, 2012, 31(1): 24-40.

    Google Scholar

    ZHOU Zhenyu, GUAN Ying, WANG Chunxue, et al. Remains of human Fire-use: An overview of paleolithic hearth and human fire-use behavior[J]. Acta Anthropologica Sinica, 2012, 31(1): 24-40.

    Google Scholar

    [11] Blarquez O, Ali A A, Girardin M P, et al. Regional paleofire regimes affected by non-uniform climate, vegetation and human drivers[J]. Scientific Reports, 2015, 5: 13356. doi: 10.1038/srep13356

    CrossRef Google Scholar

    [12] Jolly W M, Cochrane M A, Freeborn P H, et al. Climate-induced variations in global wildfire danger from 1979 to 2013[J]. Nature Communications, 2015, 6: 7537. doi: 10.1038/ncomms8537

    CrossRef Google Scholar

    [13] Marlon J, Bartlein P J, Whitlock C. Fire-fuel-climate linkages in the northwestern USA during the Holocene[J]. The Holocene, 2006, 16(8): 1059-1071. doi: 10.1177/0959683606069396

    CrossRef Google Scholar

    [14] Marlon J R, Bartlein P J, Gavin D G, et al. Long-term perspective on wildfires in the western USA[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(9): 3203-3204.

    Google Scholar

    [15] Boer M M, Price O F, Bradstock R A. Wildfires: Weigh policy effectiveness[J]. Science, 2015, 350(6263): 920.

    Google Scholar

    [16] Huang C C, Pang J L, Chen S E, et al. Charcoal records of fire history in the Holocene loess-soil sequences over the southern Loess Plateau of China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 239(1-2): 28-44. doi: 10.1016/j.palaeo.2006.01.004

    CrossRef Google Scholar

    [17] Zou S L, Li R C, Xie S C, et al. Paleofire indicated by polycyclic aromatic hydrocarbons in soil of Jinluojia archaeological site, Hubei, China[J]. Journal of Earth Science, 2010, 21(3): 247-256. doi: 10.1007/s12583-010-0089-x

    CrossRef Google Scholar

    [18] Musa Bandowe B A, Srinivasan P, Seelge M, et al. A 2600-year record of past polycyclic aromatic hydrocarbons (PAHs) deposition at Holzmaar (Eifel, Germany)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 401: 111-121. doi: 10.1016/j.palaeo.2014.02.021

    CrossRef Google Scholar

    [19] Maxwell A L. Fire regimes in north-eastern Cambodian monsoonal forests, with a 9300-year sediment charcoal record[J]. Journal of Biogeography, 2004, 31(2): 225-239. doi: 10.1046/j.0305-0270.2003.01015.x

    CrossRef Google Scholar

    [20] 谭志海, 黄春长, 庞奖励, 等.周原全新世土壤剖面木炭屑与野火活动的关系研究[J].中国生态农业学报, 2005, 13(2): 31-33.

    Google Scholar

    TAN Zhihai, HUANG Chunchang, PANG Jiangli, et al. Relationship between soil charcoal in Holocene and wildfire in the Zhouyuan Region[J]. Chinese Journal of Eco-Agriculture, 2005, 13(2): 31-33.

    Google Scholar

    [21] Daniau A L, Sanchez Goni M F, Martinez P, et al. Orbital-scale climate forcing of grassland burning in southern Africa[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(13): 5069-5073. doi: 10.1073/pnas.1214292110

    CrossRef Google Scholar

    [22] Daniau A L, Sánchez-Goni M F, Beaufort L, et al. Dansgaard-Oeschger climatic variability revealed by fire emissions in southwestern Iberia[J]. Quaternary Science Reviews, 2007, 26(9-10): 1369-1383. doi: 10.1016/j.quascirev.2007.02.005

    CrossRef Google Scholar

    [23] 沈吉, 薛滨, 吴敬禄, 等.湖泊沉积与环境演化[M].北京:科学出版社, 2010: 282-286

    Google Scholar

    SHEN Ji, XUE Bin, WU Jinglu, et al.Lake Deposition and Environmental Evolution[M].Beijing:Science Press, 2012:282-286.

    Google Scholar

    [24] 李小强, 周新郢, 尚雪, 等.黄土炭屑分级统计方法及其在火演化研究中的意义[J].湖泊科学, 2006, 18(5): 540-544. doi: 10.3321/j.issn:1003-5427.2006.05.017

    CrossRef Google Scholar

    LI Xiaoqiang, ZHOU Xinying, SHANG Xue, et al. Different-(kPa/℃) size method of charcoal analysis in loess and its significance in the study of fire variation[J]. Journal of Lake Sciences, 2006, 18(5): 540-544. doi: 10.3321/j.issn:1003-5427.2006.05.017

    CrossRef Google Scholar

    [25] Power M J, Marlon J, Ortiz N, et al. Changes in fire regimes since the Last Glacial Maximum: An assessment based on a global synthesis and analysis of charcoal data[J]. Climate Dynamics, 2008, 30(7-8): 887-907. doi: 10.1007/s00382-007-0334-x

    CrossRef Google Scholar

    [26] Tinner W, Conedera M, Ammann B, et al. Pollen and charcoal in lake sediments compared with historically documented forest fires in southern Switzerland since AD 1920[J]. The Holocene, 1998, 8(1): 31-42. doi: 10.1191/095968398667205430

    CrossRef Google Scholar

    [27] Behling H. Late glacial and Holocene vegetation, climate and fire history inferred from Lagoa Nova in the southeastern Brazilian lowland[J]. Vegetation History and Archaeobotany, 2003, 12(4): 263-270. doi: 10.1007/s00334-003-0020-9

    CrossRef Google Scholar

    [28] Behling H. A 2860-year high-resolution pollen and charcoal record from the Cordillera de Talamanca in Panama: a history of human and volcanic forest disturbance[J]. The Holocene, 2000, 10(3): 387-393. doi: 10.1191/095968300668797683

    CrossRef Google Scholar

    [29] Tinner W, Hu F S, Beer R, et al. Postglacial vegetational and fire history: Pollen, plant macrofossil and charcoal records from two Alaskan lakes[J]. Vegetation History and Archaeobotany, 2006, 15(4): 279-293. doi: 10.1007/s00334-006-0052-z

    CrossRef Google Scholar

    [30] Tan Z H, Han Y M, Cao J J, et al. Holocene wildfire history and human activity from high-resolution charcoal and elemental black carbon records in the Guanzhong Basin of the Loess Plateau, China[J]. Quaternary Science Reviews, 2015, 109: 76-87. doi: 10.1016/j.quascirev.2014.11.013

    CrossRef Google Scholar

    [31] Kitzberger T, Brown P M, Heyrdahl E K, et al. Contingent Pacific-Atlantic Ocean influence on multicentury wildfire synchrony over western North America[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(2): 543-548. doi: 10.1073/pnas.0606078104

    CrossRef Google Scholar

    [32] 王晓春, 及莹.树木年轮火历史研究进展[J].植物生态学报, 2009, 33(3): 587-597. doi: 10.3773/j.issn.1005-264x.2009.03.018

    CrossRef Google Scholar

    WANG Xiaochun, JI Ying. Review of advances in dendropyrochronology[J]. Chinese Journal of Plant Ecology, 2009, 33(3): 587-597. doi: 10.3773/j.issn.1005-264x.2009.03.018

    CrossRef Google Scholar

    [33] Trouet V, Taylor A H, Wahl E R, et al. Fire-climate interactions in the American West since 1400 CE[J]. Geophysical Research Letters, 2010, 37(4): L04702.

    Google Scholar

    [34] Niklasson M, Zin E, Zielonka T, et al. A 350-year tree-ring fire record from Bialowieza Primeval Forest, Poland: Implications for Central European lowland fire history[J]. Journal of Ecology, 2010, 98(6): 1319-1329. doi: 10.1111/j.1365-2745.2010.01710.x

    CrossRef Google Scholar

    [35] Bird M I, Cali J A. A million-year record of fire in sub-Saharan Africa[J]. Nature, 1998, 394(6695): 767-769. doi: 10.1038/29507

    CrossRef Google Scholar

    [36] Wang X, Xiao J L, Cui L L, et al. Holocene changes in fire frequency in the Daihai Lake region (North-Central China): indications and implications for an important role of human activity[J]. Quaternary Science Reviews, 2013, 59: 18-29. doi: 10.1016/j.quascirev.2012.10.033

    CrossRef Google Scholar

    [37] 明镜, 效存德, 孙俊英.雪冰中黑碳的测试分析方法综述[J].地球物理学进展, 2005, 20(3): 859-863. doi: 10.3969/j.issn.1004-2903.2005.03.046

    CrossRef Google Scholar

    MING Jing, XIAO Cunde, SUN Junying. The general statement on the measuring methods for black carbon in snow and ice[J]. Progress in Geophysics, 2005, 20(3): 859-863. doi: 10.3969/j.issn.1004-2903.2005.03.046

    CrossRef Google Scholar

    [38] 王旭, 于赤灵, 彭平安, 等.沉积物中黑碳的提取和测定方法:误差分析和回收率实验[J].地球化学, 2001, 30(5): 439-444. doi: 10.3321/j.issn:0379-1726.2001.05.005

    CrossRef Google Scholar

    WANG Xu, YU Chiling, PENG Pingan, et al. Extraction and determination of black carbon in sediments: Error analysis and recovery ratio experiment[J]. Geochimica, 2001, 30(5): 439-444. doi: 10.3321/j.issn:0379-1726.2001.05.005

    CrossRef Google Scholar

    [39] Lehndorff E, Wolf M, Litt T, et al. 15, 000 years of black carbon deposition - A post-glacial fire record from maar lake sediments (Germany)[J]. Quaternary Science Reviews, 2015, 110: 15-22. doi: 10.1016/j.quascirev.2014.12.014

    CrossRef Google Scholar

    [40] Bird M I, Ascough P L. Isotopes in pyrogenic carbon: A review[J]. Organic Geochemistry, 2012, 42(12): 1529-1539. doi: 10.1016/j.orggeochem.2010.09.005

    CrossRef Google Scholar

    [41] Jia G D, Peng P A, Zhao Q H, et al. Changes in terrestrial ecosystem since 30 Ma in East Asia: Stable isotope evidence from black carbon in the South China Sea[J]. Geology, 2003, 31(12): 1093-1096. doi: 10.1130/G19992.1

    CrossRef Google Scholar

    [42] Zhang E L, Sun W W, Zhao C, et al. Linkages between climate, fire and vegetation in southwest China during the last 18.5 ka based on a sedimentary record of black carbon and its isotopic composition[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 435: 86-94. doi: 10.1016/j.palaeo.2015.06.004

    CrossRef Google Scholar

    [43] 贾国东, 彭平安, 盛国英, 等.南沙海区末次冰期以来黑碳的沉积记录[J].科学通报, 2000, 45(6): 646-650.

    Google Scholar

    JIA Guodong, PENG Pingan, SHENG Guoying, et al. Sedimentary records of black carbon in the sea area of the Nansha Islands since the last glaciation[J]. Chinese Science Bulletin, 2000, 45(17): 1594-1597.

    Google Scholar

    [44] Sun X S, Peng P A, Song J Z, et al. Sedimentary record of black carbon in the Pearl River estuary and adjacent northern South China Sea[J]. Applied Geochemistry, 2008, 23(12): 3464-3472. doi: 10.1016/j.apgeochem.2008.08.006

    CrossRef Google Scholar

    [45] Venkatesan M I, Dahl J. Organic geochemical evidence for global fires at the Cretaceous/Tertiary Boundary[J]. Nature, 1989, 338(6210): 57-60. doi: 10.1038/338057a0

    CrossRef Google Scholar

    [46] Nabbefeld B, Grice K, Summons R E, et al. Significance of polycyclic aromatic hydrocarbons (PAHs) in Permian/Triassic boundary sections[J]. Applied Geochemistry, 2010, 25(9): 1374-1382. doi: 10.1016/j.apgeochem.2010.06.008

    CrossRef Google Scholar

    [47] Jiang C Q, Alexander R, Kagi R I, et al. Polycyclic aromatic hydrocarbons in ancient sediments and their relationships to palaeoclimate[J]. Organic Geochemistry, 1998, 29(5-7): 1721-1735. doi: 10.1016/S0146-6380(98)00083-7

    CrossRef Google Scholar

    [48] Jiang C Q, Alexander R, Kagi R I, et al. Origin of perylene in ancient sediments and its geological significance[J]. Organic Geochemistry, 2000, 31(12): 1545-1559. doi: 10.1016/S0146-6380(00)00074-7

    CrossRef Google Scholar

    [49] Arinobu T, Ishiwatari R, Kaiho K, et al. Spike of pyrosynthetic polycyclic aromatic hydrocarbons associated with an abrupt decrease in δ13C of a terrestrial biomarker at the Cretaceous-Tertiary boundary at Caravaca, Spain[J]. Geology, 1999, 27(8): 723-726. doi: 10.1130/0091-7613(1999)027<0723:SOPPAH>2.3.CO;2

    CrossRef Google Scholar

    [50] Hossain H M Z, Sampei Y, Roser B P. Polycyclic aromatic hydrocarbons (PAHs) in late Eocene to early Pleistocene mudstones of the Sylhet succession, NE Bengal Basin, Bangladesh: Implications for source and paleoclimate conditions during Himalayan uplift[J]. Organic Geochemistry, 2013, 56: 25-39. doi: 10.1016/j.orggeochem.2012.12.001

    CrossRef Google Scholar

    [51] Sun L, Zang S Y. History of fuel consumption inferred from polycyclic aromatic hydrocarbons in sediments from the South Lianhuan Lake, Northeast China[J]. Bulletin of Environmental Contamination and Toxicology, 2012, 88(6): 1027-1032. doi: 10.1007/s00128-012-0600-4

    CrossRef Google Scholar

    [52] Barra R, Popp P, Quiroz R, et al. Polycyclic aromatic hydrocarbons fluxes during the past 50 years observed in dated sediment cores from Andean mountain lakes in central south Chile[J]. Ecotoxicology and Environmental Safety, 2006, 63(1): 52-60. doi: 10.1016/j.ecoenv.2005.07.025

    CrossRef Google Scholar

    [53] Denis E H, Toney J L, Tarozo R, et al. Polycyclic aromatic hydrocarbons (PAHs) in lake sediments record historic fire events: Validation using HPLC-fluorescence detection[J]. Organic Geochemistry, 2012, 45: 7-17. doi: 10.1016/j.orggeochem.2012.01.005

    CrossRef Google Scholar

    [54] Mai B X, Qi S H, Zeng E Y, et al. Distribution of polycyclic aromatic hydrocarbons in the coastal region off Macao, China: Assessment of input sources and transport pathways using compositional analysis[J]. Environmental Science & Technology, 2003, 37(21): 4855-4863.

    Google Scholar

    [55] Yunker M B, Macdonald R W, Vingarzan R, et al. PAHs in the Fraser River basin: A critical appraisal of PAH ratios as indicators of PAH source and composition[J]. Organic Geochemistry, 2002, 33(4): 489-515. doi: 10.1016/S0146-6380(02)00002-5

    CrossRef Google Scholar

    [56] Yuan Z J, Liu G J, Wang R W, et al. Polycyclic aromatic hydrocarbons in sediments from the Old Yellow River Estuary, China: Occurrence, sources, characterization and correlation with the relocation history of the Yellow River[J]. Ecotoxicology and Environmental Safety, 2014, 109: 169-176. doi: 10.1016/j.ecoenv.2014.08.024

    CrossRef Google Scholar

    [57] Liu Y, Yu N, Li Z, et al. Sedimentary record of PAHs in the Liangtan River and its relation to socioeconomic development of Chongqing, Southwest China[J]. Chemosphere, 2012, 89(7): 893-899. doi: 10.1016/j.chemosphere.2012.05.016

    CrossRef Google Scholar

    [58] Guo J Y, Wu F C, Luo X J, et al. Anthropogenic input of polycyclic aromatic hydrocarbons into five lakes in Western China[J]. Environmental Pollution, 2010, 158(6): 2175-2180. doi: 10.1016/j.envpol.2010.02.018

    CrossRef Google Scholar

    [59] Guo W, Pei Y S, Yang Z F, et al. Historical changes in polycyclic aromatic hydrocarbons (PAHs) input in Lake Baiyangdian related to regional socio-economic development[J]. Journal of Hazardous Materials, 2011, 187(1-3): 441-449. doi: 10.1016/j.jhazmat.2011.01.052

    CrossRef Google Scholar

    [60] Bakhtiari A R, Zakaria M P, Yaziz M I, et al. Vertical distribution and source identification of polycyclic aromatic hydrocarbons in anoxic sediment cores of Chini Lake, Malaysia: Perylene as indicator of land plant-derived hydrocarbons[J]. Applied Geochemistry, 2009, 24(9): 1777-1787. doi: 10.1016/j.apgeochem.2009.05.008

    CrossRef Google Scholar

    [61] Marynowski L, Kubik R, Uhl D, et al. Molecular composition of fossil charcoal and relationship with incomplete combustion of wood[J]. Organic Geochemistry, 2014, 77: 22-31. doi: 10.1016/j.orggeochem.2014.09.003

    CrossRef Google Scholar

    [62] 刘建华, 祁士华, 张干, 等.湖北梁子湖沉积物正构烷烃与多环芳烃对环境变迁的记录[J].地球化学, 2004, 33(5): 501-506. doi: 10.3321/j.issn:0379-1726.2004.05.010

    CrossRef Google Scholar

    LIU Jianhua, QI Shihua, ZHANG Gan, et al. Response of the n-alkanes and polycyclic aromatic hydrocarbons records in sediments from Lake Liangzi to the environmental change[J]. Geochimica, 2004, 33(5): 501-506. doi: 10.3321/j.issn:0379-1726.2004.05.010

    CrossRef Google Scholar

    [63] Liu L Y, Wang J Z, Wei G L, et al. Sediment records of polycyclic aromatic hydrocarbons (PAHs) in the continental shelf of China: Implications for evolving anthropogenic impacts[J]. Environmental Science & Technology, 2012, 46(12): 6497-6504.

    Google Scholar

    [64] 刘军利.木质纤维类生物质定向热解行为研究[D].中国林业科学研究院博士学位论文, 2011.http://cdmd.cnki.com.cn/Article/CDMD-82201-1011247031.htm

    Google Scholar

    LIU Junli. Study on directed pyrolysis of lignocellulose biomass[D]. Doctor Dissertation of Chinese Academy of Forestry, 2011.]

    Google Scholar

    [65] Elias V O, Simoneit B R T, Cordeiro R C, et al. Evaluating levoglucosan as an indicator of biomass burning in Carajás, amazônia: A comparison to the charcoal record[J]. Geochimica et Cosmochimica Acta, 2001, 65(2): 267-272. doi: 10.1016/S0016-7037(00)00522-6

    CrossRef Google Scholar

    [66] Simoneit B R T, Schauer J J, Nolte C G, et al. Levoglucosan, a tracer for cellulose in biomass burning and atmospheric particles[J]. Atmospheric Environment, 1999, 33(2): 173-182. doi: 10.1016/S1352-2310(98)00145-9

    CrossRef Google Scholar

    [67] Schüpbach S, Kirchgeorg T, Colombaroli D, et al. Combining charcoal sediment and molecular markers to infer a Holocene fire history in the Maya Lowlands of Petén, Guatemala[J]. Quaternary Science Reviews, 2015, 115: 123-131. doi: 10.1016/j.quascirev.2015.03.004

    CrossRef Google Scholar

    [68] Zennaro P, Kehrwald N, Marlon J, et al. Europe on fire three thousand years ago: Arson or climate?[J]. Geophysical Research Letters, 2015, 42(12): 5023-5033. doi: 10.1002/2015GL064259

    CrossRef Google Scholar

    [69] 赵致奎.基于树轮火疤重建大兴安岭北部林区火历史[D].东北林业大学硕士学位论文, 2010.http://cdmd.cnki.com.cn/Article/CDMD-10225-2010242610.htm

    Google Scholar

    ZHAO Zhikui. Reconstruction of tree-ring fire history in the North Daxing'an Mountains[D]. Master Dissertation of Northeast Forestry University, 2010.

    Google Scholar

    [70] 占长林, 曹军骥, 韩永明, 等.古火灾历史重建的研究进展[J].地球科学进展, 2011, 26(12): 1248-1259.

    Google Scholar

    ZHAN Changlin, CAO Junji, HAN Yongming, et al. Research progress on reconstruction of paleofire history[J]. Advances in Earth Science, 2011, 26(12): 1248-1259.

    Google Scholar

    [71] 穆燕, 秦小光, 刘嘉麒, 等.黑碳的研究历史与现状[J].海洋地质与第四纪地质, 2011, 31(1): 143-155.

    Google Scholar

    MU Yan, QIN Xiaoguang, LIU Jiaqi, et al. A review of black carbon study: History and current status[J]. Marine Geology & Quaternary Geology, 2011, 31(1): 143-155.

    Google Scholar

    [72] Haritash A K, Kaushik C P. Biodegradation aspects of Polycyclic Aromatic Hydrocarbons (PAHs): A review[J]. Journal of Hazardous Materials, 2009, 169(1-3): 1-15. doi: 10.1016/j.jhazmat.2009.03.137

    CrossRef Google Scholar

    [73] Tinner W, Hofstetter S, Zeugin F, et al. Long-distance transport of macroscopic charcoal by an intensive crown fire in the Swiss Alps - Implications for fire history reconstruction[J]. The Holocene, 2006, 16(2): 287-292. doi: 10.1191/0959683606hl925rr

    CrossRef Google Scholar

    [74] 曹军骥, 占长林.黑碳在全球气候和环境系统中的作用及其在相关研究中的意义[J].地球科学与环境学报, 2011, 33(2): 177-184. doi: 10.3969/j.issn.1672-6561.2011.02.013

    CrossRef Google Scholar

    CAO Junji, ZHAN Changlin. Research significance and role of black carbon in the global climate and environmental systems[J]. Journal of Earth Sciences and Environment, 2011, 33(2): 177-184. doi: 10.3969/j.issn.1672-6561.2011.02.013

    CrossRef Google Scholar

    [75] Manahan S E.环境化学[M].孙红文, 汪磊, 王翠萍, 等译. 9版.北京: 高等教育出版社, 2013: 284.

    Google Scholar

    Manahan S E. Environmental Chemistry[M]. SUN Hongwen, WANG Lei, WANG Cuiping, et al, Trans. 9th ed. Beijing: Higher Education Press, 2013: 284.

    Google Scholar

    [76] Lai C Y, Liu Y C, Ma J Z, et al. Degradation kinetics of levoglucosan initiated by hydroxyl radical under different environmental conditions [J]. Atmospheric Environment, 2014, 91: 32-39. doi: 10.1016/j.atmosenv.2014.03.054

    CrossRef Google Scholar

    [77] Major J, Lehmann J, Rondon M, et al. Fate of soil-applied black carbon: Downward migration, leaching and soil respiration[J]. Global Change Biology, 2010, 16(4): 1366-1379. doi: 10.1111/j.1365-2486.2009.02044.x

    CrossRef Google Scholar

    [78] Hockaday W C, Grannas A M, Kim S, et al. Direct molecular evidence for the degradation and mobility of black carbon in soils from ultrahigh-resolution mass spectral analysis of dissolved organic matter from a fire-impacted forest soil[J]. Organic Geochemistry, 2006, 37(4): 501-510. doi: 10.1016/j.orggeochem.2005.11.003

    CrossRef Google Scholar

    [79] Johnsen A R, Karlson U. PAH degradation capacity of soil microbial communities - Does it depend on PAH exposure?[J]. Microbial Ecology, 2005, 50(4): 488-495. doi: 10.1007/s00248-005-0022-5

    CrossRef Google Scholar

    [80] Sayara T, Pognani M, Sarrà M, et al. Anaerobic degradation of PAHs in soil: Impacts of concentration and amendment stability on the PAHs degradation and biogas production[J]. International Biodeterioration & Biodegradation, 2010, 64(4): 286-292.

    Google Scholar

    [81] Ghosal D, Ghosh S, Dutta T K, et al. Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHs): A review[J]. Frontiers in Microbiology, 2016, 7: 1369.

    Google Scholar

    [82] Baker W L, Ehle D. Uncertainty in surface-fire history: The case of ponderosa pine forests in the western United States[J]. Canadian Journal of Forest Research, 2001, 31(7): 1205-1226. doi: 10.1139/x01-046

    CrossRef Google Scholar

    [83] Westerling A L, Hidalgo H G, Cayan D R, et al. Warming and earlier spring increase western U.S. forest wildfire activity[J]. Science, 2006, 313(5789): 940-943. doi: 10.1126/science.1128834

    CrossRef Google Scholar

    [84] Liu Y Q, Goodrick S L, Stanturf J A. Future U.S. wildfire potential trends projected using a dynamically downscaled climate change scenario[J]. Forest Ecology And Management, 2013, 294: 120-135. doi: 10.1016/j.foreco.2012.06.049

    CrossRef Google Scholar

    [85] Clark J S. Effect of climate change on fire regimes in northwestern Minnesota[J]. Nature, 1988, 334(6179): 233-235. doi: 10.1038/334233a0

    CrossRef Google Scholar

    [86] Parisien M A, Moritz M A. Environmental controls on the distribution of wildfire at multiple spatial scales[J]. Ecological Monographs, 2009, 79(1): 127-154. doi: 10.1890/07-1289.1

    CrossRef Google Scholar

    [87] Oris F, Asselin H, Ali A A, et al. Effect of increased fire activity on global warming in the boreal forest[J]. Environmental Reviews, 2014, 22(3): 206-219. doi: 10.1139/er-2013-0062

    CrossRef Google Scholar

    [88] Goetz S J, Mack M C, Gurney K R, et al. Ecosystem responses to recent climate change and fire disturbance at northern high latitudes: Observations and model results contrasting northern Eurasia and North America[J]. Environmental Research Letters, 2007, 2(4): 045031. doi: 10.1088/1748-9326/2/4/045031

    CrossRef Google Scholar

    [89] Wolbach W S, Gilmour I, Anders E, et al. Global fire at the Cretaceous-Tertiary boundary[J]. Nature, 1988, 334(6184): 665-669. doi: 10.1038/334665a0

    CrossRef Google Scholar

    [90] Marlon J R, Bartlein P J, Walsh M K, et al. Wildfire responses to abrupt climate change in North America[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(8): 2519-2524. doi: 10.1073/pnas.0808212106

    CrossRef Google Scholar

    [91] Wolbach W S, Lewis R S, Andeers E. Cretaceous extinctions: Evidence for wildfires and search for meteoritic material[J]. Science, 1985, 230(4722): 167-170. doi: 10.1126/science.230.4722.167

    CrossRef Google Scholar

    [92] Belcher C M. Impacts and wildfires - An analysis of the K-T event[M]//Cockell C, Gilmour I, Koeberl C. Biological Processes Associated with Impact Events. Berlin, Heidelberg: Springer, 2006: 221-243.

    Google Scholar

    [93] Scott A C, Lomax B H, Collinson M E, et al. Fire across the K-T boundary: Initial results from the Sugarite Coal, New Mexico, USA[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2000, 164(1-4): 381-395. doi: 10.1016/S0031-0182(00)00182-6

    CrossRef Google Scholar

    [94] Power M J, Marlon J R, Bartlein P J, et al. Fire history and the Global Charcoal Database: A new tool for hypothesis testing and data exploration[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 291(1-2): 52-59. doi: 10.1016/j.palaeo.2009.09.014

    CrossRef Google Scholar

    [95] Montoya E, Rull V. Gran Sabana fires (SE Venezuela): A paleoecological perspective[J]. Quaternary Science Reviews, 2011, 30(23-24): 3430-3444. doi: 10.1016/j.quascirev.2011.09.005

    CrossRef Google Scholar

    [96] Schoennagel T, Veblen T T, Romme W H, et al. Enso and PDO variability affect drought-induced fire occurrence in Rocky Mountain subalpine forests[J]. Ecological Applications, 2005, 15(6): 2000-2014. doi: 10.1890/04-1579

    CrossRef Google Scholar

    [97] 万里鹏, 关兴民, 万正奎, 等.大兴安岭森林火灾的气候背景[J].森林防火, 1996(2): 18-20.

    Google Scholar

    WAN Lipeng, GUAN Xingmin, WAN Zhengkui, et al. The climate conditions of forest fire in Great Khingan[J]. Forest Fire Prevention, 1996(2): 18-20.

    Google Scholar

    [98] Tan Z H, Huang C C, Pang J L, et al. Wildfire history and climatic change in the semi-arid loess tableland in the middle reaches of the Yellow River of China during the Holocene: Evidence from charcoal records[J]. The Holocene, 2013, 23(10): 1466-1476. doi: 10.1177/0959683613493936

    CrossRef Google Scholar

    [99] Wang X, Peng P A, Ding Z L. Black carbon records in Chinese Loess Plateau over the last two glacial cycles and implications for paleofires[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 223(1-2): 9-19. doi: 10.1016/j.palaeo.2005.03.023

    CrossRef Google Scholar

    [100] Zhang Z Q, Zhong J J, Lv X G, et al. Climate, vegetation, and human influences on late-Holocene fire regimes in the Sanjiang plain, northeastern China [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 438: 1-8. doi: 10.1016/j.palaeo.2015.07.028

    CrossRef Google Scholar

    [101] 李兴华, 武文杰, 张存厚, 等.气候变化对内蒙古东北部森林草原火灾的影响[J].干旱区资源与环境, 2011, 25(11): 114-119.

    Google Scholar

    LI Xinghua, WU Wenjie, ZHANG Cunhou, et al. Influence of climate change on north-eastern of Inner Mongolia grassland forest fire[J] Journal of Arid Land Resources and Environment, 2011, 25(11): 114-119.

    Google Scholar

    [102] 李兴华, 任丽媛, 刘秀荣.气候变化对内蒙古草原火灾的影响[J].干旱区资源与环境, 2014, 28(4): 129-133.

    Google Scholar

    LI Xinghua, REN Liyuan, LIU Xiurong. Impact of climate change on the grassland fires in Inner Mongolia[J]. Journal of Arid Land Resources and Environment, 2014, 28(4): 129-133.

    Google Scholar

    [103] 陶玉柱, 邸雪颖, 金森.我国森林火灾发生的时空规律研究[J].世界林业研究, 2013, 26(5): 75-80.

    Google Scholar

    TAO Yuzhu, DI Xueying, JIN Sen. Research on temporal and spatial distribution of forest fire in China[J]. World Forestry Research, 2013, 26(5): 75-80.

    Google Scholar

    [104] 狄丽颖, 张爱国, 张艳丽, 等.山西省森林火灾的年变化特点和致灾原因分析[J].森林防火, 2007(2): 19-22. doi: 10.3969/j.issn.1002-2511.2007.02.008

    CrossRef Google Scholar

    DI Liying, ZHANG Aiguo, ZHANG Yanli, et al. Analyses on annual change characteristics and causes of forest fires happened in Shanxi Province[J]. Forest Fire Prevention, 2007(2): 19-22. doi: 10.3969/j.issn.1002-2511.2007.02.008

    CrossRef Google Scholar

    [105] Gu Y S, Pearsall D M, Xie S C, et al. Vegetation and fire history of a Chinese site in southern tropical Xishuangbanna derived from phytolith and charcoal records from Holocene sediments[J]. Journal of Biogeography, 2008, 35(2): 325-341.

    Google Scholar

    [106] Vannière B, Blarquez O, Rius D, et al. 7000-year human legacy of elevation-dependent European fire regimes[J]. Quaternary Science Reviews, 2016, 132: 206-212. doi: 10.1016/j.quascirev.2015.11.012

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(1)

Tables(2)

Article Metrics

Article views(3929) PDF downloads(163) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint