2018 Vol. 38, No. 2
Article Contents

DU Jing, LU Ruijie, LIU Xiaokang, LV Zhiqiang, CHEN Lu. Magnetic susceptibility of aeolian sediments deposited since Holocene in the East of Qinghai Lake and its environmental implications[J]. Marine Geology & Quaternary Geology, 2018, 38(2): 175-184. doi: 10.16562/j.cnki.0256-1492.2018.02.018
Citation: DU Jing, LU Ruijie, LIU Xiaokang, LV Zhiqiang, CHEN Lu. Magnetic susceptibility of aeolian sediments deposited since Holocene in the East of Qinghai Lake and its environmental implications[J]. Marine Geology & Quaternary Geology, 2018, 38(2): 175-184. doi: 10.16562/j.cnki.0256-1492.2018.02.018

Magnetic susceptibility of aeolian sediments deposited since Holocene in the East of Qinghai Lake and its environmental implications

More Information
  • Corresponding author: LU Ruijie  
  • Magnetic susceptibility is an efficient indicator to the intensity of pedogenesis and depositional environment for a loess-palaeosol sequence under the Asian monsoon. However, its paleoclimatic implications still need to be revealed for an aeolian-sand-palaeosol sequence. Within the time framework established by AMS 14C and OSL dating, we studied the magnetic susceptibility characteristics of the aeolian deposits to the east of the Qinghai Lake. Taking the traditional pedogenetic indicators used in soil sciences as references, we found that the magnetic susceptibility is closely related to the intensity of soil development in the sandy land to the East of Qinghai Lake. The results show that: (1) The highest magnetic susceptibility occurs in the palaeosol layer, followed by the weakly developed palaeosol and the aeolian sand. Compared to χlf, χfd% is more efficient to reflect environmental changes; (2) The variation in magnetic susceptibility exhibits a positive correlation with pedogenesis, and is positively correlated with the content of clay and silt; (3) On the basis of comprehensive analysis, the climatic change in Qinghai Lake since Holocene could be divided into three main phases as follows: Before 10kaBP, the climate was cold and dry and the weathering process weaker. In the period of 10~8.5 kaBP, the climate turned to warm and wet. Optimum period took place from 8.5 kaBP to 4 kaBP, while the climate was warm and humid and the aeolian activity was weakened and pedogenesis became stronger. The climate was colder and drier between 4 to 1.3 kaBP. There possibly existed an abrupt climate cooling event during 3.1~2.4 kaBP. Since1.3 kaBP, the climate became colder and drier further and similar to the modern climate.

  • 加载中
  • [1] Heller F, Liu T S. Magnetostratigraphical dating of loess deposits in China[J]. Nature, 1982, 300(5891): 431-433. doi: 10.1038/300431a0

    CrossRef Google Scholar

    [2] 刘东生.黄土与环境[M].北京:科学出版社, 1985: 10.

    Google Scholar

    LIU Tungsheng. Loess and Environment[M]. Beijing: Science Press, 1985: 10.

    Google Scholar

    [3] 刘秀铭, 刘东生, Heller F, 等.黄土频率磁化率与古气候冷暖变换[J].第四纪研究, 1990, 10(1): 42-50. doi: 10.3321/j.issn:1001-7410.1990.01.005

    CrossRef Google Scholar

    LIU Xiuming, LIU Tungsheng, Heller F, et al. Frequency-dependent susceptibility of loess and Quaternary paleoclimate[J]. Quaternary Sciences, 1990, 10(1): 42-50. doi: 10.3321/j.issn:1001-7410.1990.01.005

    CrossRef Google Scholar

    [4] Maher B A, Thompson R. Paleoclimatic significance of the mineral magnetic record of the Chinese loess and paleosols[J]. Quaternary Research, 1992, 37(2): 155-170. doi: 10.1016/0033-5894(92)90079-X

    CrossRef Google Scholar

    [5] 王心源, 吴立, 张广胜, 等.安徽巢湖全新世湖泊沉积物磁化率与粒度组合的变化特征及其环境意义[J].地理科学, 2008, 28(4): 548-553. doi: 10.3969/j.issn.1000-0690.2008.04.016

    CrossRef Google Scholar

    WANG Xinyuan, WU Li, ZHANG Guangsheng, et al. Characteristics and environmental significance of magnetic susceptibility and grain size of lake sediments since Holocene in Chaohu lake, Anhui province[J]. Scientia Geographica Sinica, 2008, 28(4): 548-553. doi: 10.3969/j.issn.1000-0690.2008.04.016

    CrossRef Google Scholar

    [6] 杨建强, 崔之久, 易朝露, 等.云南点苍山冰川湖泊沉积物磁化率的影响因素及其环境意义[J].第四纪研究, 2004, 24(5): 591-597. doi: 10.3321/j.issn:1001-7410.2004.05.017

    CrossRef Google Scholar

    YANG Jianqiang, CUI Zhijiu, YI Chaolu, et al. The influencing factors and environmental significance of magnetic susceptibility in the glacio-lacustrinal sediments on the Diancang mountains, Yunnan province[J]. Quaternary Sciences, 2004, 24(5): 591-597. doi: 10.3321/j.issn:1001-7410.2004.05.017

    CrossRef Google Scholar

    [7] 鲍锟山, 贾琳, 王国平.长白山区泥炭沼泽磁化率特征及其环境意义[J].湿地科学, 2009, 7(4): 321-326.

    Google Scholar

    BAO Kunshan, JIA Lin, WANG Guoping. Characteristic and environmental significance of magnetic susceptibility of peat bog sediments in Changbai mountains[J]. Wetland Science, 2009, 7(4): 321-326.

    Google Scholar

    [8] Feng Z D. Gobi dynamics in the Northern Mongolian Plateau during the past 20, 000yr: preliminary results[J]. Quaternary International, 2001, 76-77: 77-83. doi: 10.1016/S1040-6182(00)00091-4

    CrossRef Google Scholar

    [9] 凌智永, 李志忠, 武胜利, 等.新疆伊犁晚全新世风成沙—古土壤序列磁化率特征及气候变化[J].沉积学报, 2012, 30(5): 928-936.

    Google Scholar

    LIN Zhiyong, LI Zhizhong, WU Shengli, et al. Late Holocene climate change revealed by the magnetic susceptibility of paleoaeolian sand-paleosol sedimentary sequence in Yili valley of Xinjiang[J]. Acta Sedimentologica Sinica, 2012, 30(5): 928-936.

    Google Scholar

    [10] 王建, 刘泽纯, 姜文英, 等.磁化率与粒度、矿物的关系及其古环境意义[J].地理学报, 1996, 51(2): 155-163. doi: 10.3321/j.issn:0375-5444.1996.02.009

    CrossRef Google Scholar

    WANG Jian, LIU Zechun, JIANG Wenying, et al. A relationship between susceptibility and grain-size and minerals, and their paleo-environmental implications[J]. Acta Geographica Sinica, 1996, 51(2): 155-163. doi: 10.3321/j.issn:0375-5444.1996.02.009

    CrossRef Google Scholar

    [11] 吉云平, 夏正楷.不同类型沉积物磁化率的比较研究和初步解释[J].地球学报, 2007, 28(6): 541-549. doi: 10.3321/j.issn:1006-3021.2007.06.005

    CrossRef Google Scholar

    JI Yunping, XIA Zhengkai. Comparison and primarily interpretation of magnetic susceptibilities in different sediments[J]. Acta Geoscientica Sinica, 2007, 28(6): 541-549. doi: 10.3321/j.issn:1006-3021.2007.06.005

    CrossRef Google Scholar

    [12] 刘秀铭, 刘东生, 夏敦胜, 等.中国与西伯利亚黄土磁化率古气候记录-氧化和还原条件下的两种成土模式分析[J].中国科学:地球科学, 2007, 37(10): 1382-1391.

    Google Scholar

    LIU Xiuming, LIU Tungsheng, XIA Dunsheng, et al. Two pedogenic models for paleoclimatic records of magnetic susceptibility from Chinese and Siberian Loess[J]. Science China: Earth Sciences, 2008, 51(2): 284-293.

    Google Scholar

    [13] An Z S, Colman S M, Zhou W J, et al. Interplay between the Westerlies and Asian monsoon recorded in Lake Qinghai sediments since 32 ka[J]. Scientific Reports, 2012, 2: 619. doi: 10.1038/srep00619

    CrossRef Google Scholar

    [14] 徐叔鹰, 徐德馥.青海湖东岸的风沙堆积[J].中国沙漠, 1983, 3(3): 11-17.

    Google Scholar

    XU Shuying, XU Defu. A primary observation of Aeolian sand deposits on eastern shore of the Qinghai Lake[J]. Journal of Desert Research, 1983, 3(3): 11-17.

    Google Scholar

    [15] 申红艳, 余锦华.环青海湖地区风的气候变化特征分析[J].青海环境, 2007, 17(4): 170-172. doi: 10.3969/j.issn.1007-2454.2007.04.005

    CrossRef Google Scholar

    SHEN Hongyan, YU Jinhua. Analysis on the climate change features of the wind around Qinghai Lake[J]. Qinghai Environment, 2007, 17(4): 170-172. doi: 10.3969/j.issn.1007-2454.2007.04.005

    CrossRef Google Scholar

    [16] 赵以莲, 周国英, 陈桂琛.青海湖区东部沙地植被及其特征研究[J].中国沙漠, 2007, 27(5): 820-825.

    Google Scholar

    ZHAO Yilian, ZHOU Guoying, CHEN Guichen. Sandy vegetation and its characteristics in east of Qinghai lake area[J]. Journal of Desert Research, 2007, 27(5): 820-825.

    Google Scholar

    [17] 施雅风, 陈梦熊, 李维质, 等.青海湖及其附近地区自然地理(着重地貌)的初步考察[J].地理学报, 1958, 24(1): 33-48.

    Google Scholar

    SHI Yafeng, CHEN Mengxiong, LI Weizhi, et al. Proliminary survey on physical geography (especially geomorphology) in the Qinghai Lake region and adjacent areas[J]. Acta Geographica Sinica, 1958, 24(1): 33-48.

    Google Scholar

    [18] Lu R J, Jia F F, Gao S Y, et al. Holocene aeolian activity and climatic change in Qinghai lake basin, northeastern Qinghai-Tibetan plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 430: 1-10. doi: 10.1016/j.palaeo.2015.03.044

    CrossRef Google Scholar

    [19] Liu X J, Lai Z P, Yu L P, et al. Luminescence chronology of aeolian deposits from the Qinghai Lake area in the Northeastern Qinghai-Tibetan Plateau and its palaeoenvironmental implications[J]. Quaternary Geochronology, 2012, 10: 37-43. doi: 10.1016/j.quageo.2012.01.016

    CrossRef Google Scholar

    [20] Lu H Y, Zhao C F, Mason J, et al. Holocene climatic changes revealed by aeolian deposits from the Qinghai Lake area (northeastern Qinghai-Tibetan Plateau) and possible forcing mechanisms[J]. Holocene, 2010, 21(2): 297-304.

    Google Scholar

    [21] Reimer P J, Bard E, Bayliss A, et al. IntCal13 and marine13 radiocarbon age calibration curves 0-50, 000 years cal BP[J]. Radiocarbon, 2013, 55(4): 1869-1887. doi: 10.2458/azu_js_rc.55.16947

    CrossRef Google Scholar

    [22] Thompson R, Oldfield F. Environmental magnetism[M]. London: Allen and Unwin, 1986.

    Google Scholar

    [23] 吉云平.不同类型沉积物中磁化率的解释[D].北京大学硕士学位论文, 2007.

    Google Scholar

    JI Yunping. Interpretation of magnetic susceptibility in different sediments[D]. Master's Thesis of Peking University, 2007.

    Google Scholar

    [24] 丁仲礼, 孙继敏, 刘东生.联系沙漠-黄土演变过程中耦合关系的沉积学指标[J].中国科学(D辑), 1999, 29(1): 82-87.

    Google Scholar

    DING Zhongli, SUN Jimin, LIU Tungsheng. A sedimentological proxy indicator linking changes in loess and deserts in the Quaternary[J]. Science in China (Series D), 1999, 42(2): 146-152.

    Google Scholar

    [25] 鄂崇毅, 曹广超, 侯光良, 等.青海湖江西沟黄土记录的环境演变[J].海洋地质与第四纪地质, 2013, 33(4): 193-200.

    Google Scholar

    E Chongyi, CAO Guangchao, HOU Guangliang, et al. The environmental change recorded in Jiangxigou loess sections in Qinghai lake region[J]. Marine Geology & Quaternary Geology, 2013, 33(4): 193-200.

    Google Scholar

    [26] 何毓蓉, 张丹.土壤微形态研究理论与实践[M].北京:地质出版社, 2015: 3-4.

    Google Scholar

    HE Yurong, ZHANG Dan. Theory and Practice of Soil Micromorphology[M]. Beijing: Geological Publishing House, 2015: 3-4.

    Google Scholar

    [27] 张岩青, 庞奖励, 黄春长, 等.宁夏长城塬全新世黄土-古土壤序列微形态特征及意义[J].中国沙漠, 2010, 30(6): 1491-1496.

    Google Scholar

    ZHANG Yanqing, PANG Jiangli, HUANG Chunchang, et al. Significance of micro-morphological features of the Holocene loess-paleosol profile in loess plateau[J]. Journal of Desert Research, 2010, 30(6): 1491-1496.

    Google Scholar

    [28] 刘进峰, 乔彦松, 郭正堂.风尘堆积全岩和石英粒度变化对风化成壤强度的指示[J].第四纪研究, 2007, 27(2): 270-276. doi: 10.3321/j.issn:1001-7410.2007.02.012

    CrossRef Google Scholar

    LIU Jinfeng, QIAO Yansong, GUO Zhengtang. The differences of grain size of quartz and bulk samples as an indicator of weathering intensity in the Aeolian deposits[J]. Quaternary Sciences, 2007, 27(2): 270-276. doi: 10.3321/j.issn:1001-7410.2007.02.012

    CrossRef Google Scholar

    [29] Berger A, Loutre M F. Insolation values for the climate of the last 10 million years[J]. Quaternary Science Reviews, 1991, 10(4): 297-317. doi: 10.1016/0277-3791(91)90033-Q

    CrossRef Google Scholar

    [30] Ji J F, Shen J, Balsam W, et al. Asian monsoon oscillations in the northeastern Qinghai-Tibet Plateau since the late glacial as interpreted from visible reflectance of Qinghai Lake sediments[J]. Earth and Planetary Science Letters, 2005, 233(1-2): 61-70. doi: 10.1016/j.epsl.2005.02.025

    CrossRef Google Scholar

    [31] An Z S, Kukla J C, Porter S C, et al. Magnetic susceptibility evidence of monsoon variation on the loess plateau of central China during the last 130000 years[J]. Quaternary Research, 1991, 36(1): 29-36. doi: 10.1016/0033-5894(91)90015-W

    CrossRef Google Scholar

    [32] 苏志珠, 杨宗园, 李晋昌.距今220 ka以来大同盆地沉积物磁化率反映的气候变化[J].冰川冻土, 2015, 37(2): 401-407.

    Google Scholar

    SU Zhizhu, YANG Zongyuan, LI Jinchang. Climate change reflected by the magnetic susceptibility within the deposit sediment in Datong basin, north China, since 220 ka BP[J]. Journal of Glaciology and Geocryology, 2015, 37(2): 401-407.

    Google Scholar

    [33] Chen F H, Wu D, Chen J H, et al. Holocene moisture and East Asian summer monsoon evolution in the northeastern Tibetan Plateau recorded by Lake Qinghai and its environs: A review of conflicting proxies[J]. Quaternary Science Reviews, 2016, 154: 111-129. doi: 10.1016/j.quascirev.2016.10.021

    CrossRef Google Scholar

    [34] LIU X Q, SHEN J, WANG S M, et al. Southwest monsoon changes indicated by oxygen isotope of ostracode shells from sediments in Qinghai Lake since the late Glacial[J]. Chinese Science Bulletin, 2007, 52(44): 539-544.

    Google Scholar

    [35] 刘兴起, 沈吉, 王苏民, 等.青海湖16 ka以来的花粉记录及其古气候古环境演化[J].科学通报, 2002, 47(17): 1351-1355.

    Google Scholar

    LIU Xingqi, SHEN Ji, WANG Suming, et al. A 16000-year pollen record of Qinghai Lake and its paleoclimate and paleoenvironment[J]. Chinese Science Bulletin, 2002, 47(22): 1931-1936.

    Google Scholar

    [36] 胡梦珺, 李森, 高尚玉, 等.风成沉积物粒度特征及其反映的青海湖周边近32 ka以来土地沙漠化演变过程[J].中国沙漠, 2012, 32(5): 1240-1247.

    Google Scholar

    HU Mengjun, LI Sen, GAO Shangyu, et al. Evolution process of land desertification around Qinghai lake since 32 kaBP reflected by sediment grain-size features[J]. Journal of Desert Research, 2012, 32(5): 1240-1247.

    Google Scholar

    [37] 王建国, 马海州, 谭红兵, 等.青海湖南岸黑马河黄土剖面碳酸盐含量与记录的古气候变化[J].盐湖研究, 2005, 13(4): 5-8. doi: 10.3969/j.issn.1008-858X.2005.04.002

    CrossRef Google Scholar

    WANG Jianguo, MA Haizhou, TAN Hongbing, et al. Change of carbonate content and record on palaeoclimate fluctuations in Heimahe loess section on southern Qinghai lake shore[J]. Journal of Salt Lake Research, 2005, 13(4): 5-8. doi: 10.3969/j.issn.1008-858X.2005.04.002

    CrossRef Google Scholar

    [38] 高尚玉, 王贵勇, 哈斯, 等.末次冰期以来中国季风区西北边缘沙漠演化研究[J].第四纪研究, 2001, 21(1): 66-71. doi: 10.3321/j.issn:1001-7410.2001.01.008

    CrossRef Google Scholar

    GAO Shangyu, WANG Guiyong, HA Si, et al. A case study on desert evolution in the northwestern fringe of monsoon area, China since the Last Glacial epoch[J]. Quaternary Sciences, 2001, 21(1): 66-71. doi: 10.3321/j.issn:1001-7410.2001.01.008

    CrossRef Google Scholar

    [39] Feng Z D, An C B, Wang H B. Holocene climatic and environmental changes in the arid and semi-arid areas of China: a review[J]. Holocene, 2006, 16(1), 119-130. doi: 10.1191/0959683606hl912xx

    CrossRef Google Scholar

    [40] 杨龙, 孙永娟, 鄂崇毅, 等.江西沟1号风成剖面地球化学元素特征及古环境意义[J].盐湖研究, 2016, 24(2): 44-53.

    Google Scholar

    YANG Long, SUN Yongjuan, E Chongyi, et al. Geochemical element characteristics and paleoenvironmental significance of aeolian sediments in JXG1 section[J]. Journal of Salt Lake Research, 2016, 24(2): 44-53.

    Google Scholar

    [41] 刘思丝, 黄小忠, 强明瑞, 等.孢粉记录的青藏高原东北部更尕海地区中晚全新世植被和气候变化[J].第四纪研究, 2016, 36(2): 247-256.

    Google Scholar

    LIU Sisi, HUANG Xiaozhong, QIANG Mingrui, et al. Vegetation and climate change during the Mid-Late Holocene reflected by the pollen record from Lake Genggahai, northeastern Tibetan plateau[J]. Quaternary Sciences, 2016, 36(2): 247-256.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Tables(3)

Article Metrics

Article views(2825) PDF downloads(60) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint