2018 Vol. 38, No. 1
Article Contents

LIU Ben, ZHANG Xiaoyu, ZENG Jiangning, DU Wen. The origin and process of hypoxia in the Yangtze River Estuary[J]. Marine Geology & Quaternary Geology, 2018, 38(1): 187-194. doi: 10.16562/j.cnki.0256-1492.2018.01.019
Citation: LIU Ben, ZHANG Xiaoyu, ZENG Jiangning, DU Wen. The origin and process of hypoxia in the Yangtze River Estuary[J]. Marine Geology & Quaternary Geology, 2018, 38(1): 187-194. doi: 10.16562/j.cnki.0256-1492.2018.01.019

The origin and process of hypoxia in the Yangtze River Estuary

More Information
  • The Yangtze Estuary is one of the most typical hypoxic regions in the world. The aggravation and expansion of the hypoxia are obvious in the past few years. This paper aims to synthetically analyze the origin of the hypoxia, its biogeochemical processes and its hazardous influence on the local ecological system. By comparing with other hypoxic areas in the world, the hypoxia of the Yangtze Estuary is found rather different geographically and oceanographically from those in the Gulf of Mexico, the Baltic Sea, the Black Sea and Tokyo Bay. The study of the case would greatly help the deeper research of marine ecology in this area. By briefly combining geochemistry, ecology, oceanography and other subjects, the necessity of developing hypoxia ecology is proposed by the authors to fill the blank in this field.

  • 加载中
  • [1] Diaz R J. Overview of hypoxia around the world[J]. Journal of Environmental Quality, 2001, 30(2):275. doi: 10.2134/jeq2001.302275x

    CrossRef Google Scholar

    [2] Chen C C, Gong G C, Shiah F K. Hypoxia in the East China Sea: One of the largest coastal low-oxygen areas in the world[J]. Marine Environmental Research, 2007, 64(4):399-408. doi: 10.1016/j.marenvres.2007.01.007

    CrossRef Google Scholar

    [3] 刘志国, 徐韧, 刘材材, 等.长江口外低氧区特征及其影响研究[J].海洋通报, 2012, 31(5):588-593.

    Google Scholar

    LIU Zhiguo, XU Ren, LIU Caicai, et al. Characters of hypoxia area off the Yangtze River Estuary and its influence[J]. Marine Science Bulletin, 2012, 31(5):588-593.

    Google Scholar

    [4] 韦钦胜, 于志刚, 夏长水, 等.夏季长江口外低氧区的动态特征分析[J].海洋学报, 2011, 33(6):100-109.

    Google Scholar

    WEI Qinsheng, YU Zhigang, XIA Changshui, et al. A preliminary analysis on the dynamic characteristics of the hypoxic zone adjacent to the Changjiang Estuary in summer[J]. Acta Oceanologica Sinica, 2011, 33(6):100-109.

    Google Scholar

    [5] Chen C C, Gong G C, Shiah F K. Hypoxia in the East China Sea: one of the largest coastal low-oxygen areas in the world[J]. Marine Environmental Research, 2007, 64(4):399-408. doi: 10.1016/j.marenvres.2007.01.007

    CrossRef Google Scholar

    [6] Wei H, He Y, Li Q, et al. Summer hypoxia adjacent to the Changjiang Estuary[J]. Journal of Marine Systems, 2007, 67(3):292-303.

    Google Scholar

    [7] 张莹莹, 张经, 吴莹, 等.长江口溶解氧的分布特征及影响因素研究[J].环境科学, 2007, 28(8):1649-1654. doi: 10.3321/j.issn:0250-3301.2007.08.001

    CrossRef Google Scholar

    ZHANG Yingying, ZHANG Jing, WU Ying, et al. Characteristics of Dissolved Oxygen and Its Affecting Factors in the Yangtze Estuary[J]. Chinese Journal of Environmental Science, 2007, 28(8):1649-1654. doi: 10.3321/j.issn:0250-3301.2007.08.001

    CrossRef Google Scholar

    [8] Chi L, Song X, Yuan Y, et al. Distribution and key influential factors of dissolved oxygen off the Changjiang River Estuary (CRE) and its adjacent waters in China[J]. Marine Pollution Bulletin, 2017, in press.https://www.ncbi.nlm.nih.gov/pubmed/29029983

    Google Scholar

    [9] Chen N, Bianchi T S, Mckee B A, et al. Historical trends of hypoxia on the Louisiana shelf: application of pigments as biomarkers[J]. Organic Geochemistry, 2001, 32(4):543-561. doi: 10.1016/S0146-6380(00)00194-7

    CrossRef Google Scholar

    [10] Rabalais N N, Atilla N, Normandeau C, et al. Ecosystem history of Mississippi river-influenced continental shelf revealed through preserved phytoplankton pigments[J]. Marine Pollution Bulletin, 2004, 49(7-8):537-547. doi: 10.1016/j.marpolbul.2004.03.017

    CrossRef Google Scholar

    [11] Raymond P A, Bauer J E. Use of 14C and 13C natural abundances for evaluating riverine, estuarine, and coastal DOC and POC sources and cycling: a review and synthesis[J]. Organic Geochemistry, 2001, 32(4):469-485. doi: 10.1016/S0146-6380(00)00190-X

    CrossRef Google Scholar

    [12] Zhang J, Wu Y, Jennerjahn T C, et al. Distribution of organic matter in the Changjiang (Yangtze River) Estuary and their stable carbon and nitrogen isotopic ratios: Implications for source discrimination and sedimentary dynamics[J]. Marine Chemistry, 2007, 106(1):111-126.

    Google Scholar

    [13] Cearreta A, Irabien M J, Leorri E, et al. Recent anthropogenic impacts on the Bilbao Estuary, Northern Spain: Geochemical and microfaunal evidence[J]. Estuarine Coastal & Shelf Science, 2000, 50(4):571-592.

    Google Scholar

    [14] 柴小平, 胡宝兰, 魏娜, 等.杭州湾及邻近海域表层沉积物重金属的分布、来源及评价[J].环境科学学报, 2015, 35(12):3906-3916.

    Google Scholar

    CHAI Xiaoping, HU Baolan, WEI Na, et al. Distribution, sources and assessment of heavy metals in surface sediments of the Hangzhou Bay and its adjacent areas[J]. Acta Scientiae Circumstantiae, 2015, 35(12):3906-3916.

    Google Scholar

    [15] Banks J L, Ross D J, Keough M J, et al. Measuring hypoxia induced metal release from highly contaminated estuarine sediments during a 40 day laboratory incubation experiment[J]. Science of the Total Environment, 2012, 420(6):229-237.

    Google Scholar

    [16] Li L, Ren J L, Yan Z, et al. Behavior of arsenic in the coastal area of the Changjiang (Yangtze River) Estuary: Influences of water mass mixing, the spring bloom and hypoxia[J]. Continental Shelf Research, 2014, 80(2):67-78.

    Google Scholar

    [17] Vegasvilarrúbia T, Corella J P, Pérezzanón N, et al. Historical shifts in oxygenation regime as recorded in the laminated sediments of lake Montcortès (Central Pyrenees) support hypoxia as a continental-scale phenomenon[J]. Science of the Total Environment, 2017, 612:1577-1592.

    Google Scholar

    [18] Zhao J, Feng X, Shi X, et al. Sedimentary organic and inorganic records of eutrophication and hypoxia in and off the Changjiang Estuary over the last century[J]. Marine Pollution Bulletin, 2015, 99(1-2):76-84. doi: 10.1016/j.marpolbul.2015.07.060

    CrossRef Google Scholar

    [19] 马永存, 徐韧, 何培民, 等.长江口低氧区及邻近海域浮游植物群落初步研究[J].上海海洋大学学报, 2013, 22(6):903-911.

    Google Scholar

    MA Yongcun, XU Ren, HE Peimin, et al. Preliminary study on phytoplankton community of Yangtze River estuary hypoxia area and the adjacent East China Sea[J]. Journal of Shanghai University, 2013, 22(6):903-911.

    Google Scholar

    [20] Sonthiphand P, Cejudo E, Schiff S L, et al. Wastewater effluent impacts ammonia-oxidizing prokaryotes of the Grand River, Canada[J]. Applied & Environmental Microbiology, 2013, 79(23):7454.

    Google Scholar

    [21] Platon E, Gupta B K S, Rabalais N N, et al. Effect of seasonal hypoxia on the benthic foraminiferal community of the Louisiana inner continental shelf: The 20th century record[J]. Marine Micropaleontology, 2005, 54(3-4):263-283. doi: 10.1016/j.marmicro.2004.12.004

    CrossRef Google Scholar

    [22] Osterman L E, Poore R Z, Swarzenski P W. The last 1000 years of natural and anthropogenic low-oxygen bottom-water on the Louisiana shelf, Gulf of Mexico[J]. Marine Micropaleontology, 2008, 66(3):291-303.

    Google Scholar

    [23] Chen N, Bianchi T S, Mckee B A, et al. Historical trends of hypoxia on the Louisiana shelf: application of pigments as biomarkers[J]. Organic Geochemistry, 2001, 32(4):543-561. doi: 10.1016/S0146-6380(00)00194-7

    CrossRef Google Scholar

    [24] Li X, Bianchi T S, Yang Z, et al. Historical trends of hypoxia in Changjiang River estuary: Applications of chemical biomarkers and microfossils[J]. Journal of Marine Systems, 2011, 86(3-4):57-68. doi: 10.1016/j.jmarsys.2011.02.003

    CrossRef Google Scholar

    [25] Wang B, Wei Q, Chen J, et al. Annual cycle of hypoxia off the Changjiang (Yangtze River) Estuary[J]. Marine Environmental Research, 2012, 77(10):1-5.

    Google Scholar

    [26] 暨卫东.中国近海海洋.海洋化学[M].海洋出版社, 2012.

    Google Scholar

    JI Weidong. Offshore ocean of China. Marine Chemistry[M]. China Ocean Press, 2012.

    Google Scholar

    [27] Wang B. Hydromorphological mechanisms leading to hypoxia off the Changjiang estuary[J]. Marine Environmental Research, 2009, 67(1):53. doi: 10.1016/j.marenvres.2008.11.001

    CrossRef Google Scholar

    [28] 张竹琦.黄海和东海北部夏季底层溶解氧最大值和最小值特征分析[J].海洋通报, 1990(4):22-26.

    Google Scholar

    ZHANG Zhuqi. On maxium and minmum dissolved oxygen with bottom layer in Yellow Sea and northern East China Sea in summer[J] Marine Science bulletin, 1990(4):22-26.

    Google Scholar

    [29] Li D, Wu Y, Zhang J, et al. Oxygen depletion off the Changjiang (Yangtze River) Estuary[J]. Science in China(Series D:Earth Sciences), 2002(12):1137-1146.

    Google Scholar

    [30] Chi L, Song X, Yuan Y, et al. Distribution and key influential factors of dissolved oxygen off the Changjiang River Estuary (CRE) and its adjacent waters in China[J]. Marine Pollution Bulletin, 2017, 125(1-2).

    Google Scholar

    [31] 赵保仁, 任广法, 曹德明, 等.长江口上升流海区的生态环境特征[J].海洋与湖沼, 2001, 32(3):327-333. doi: 10.3321/j.issn:0029-814X.2001.03.014

    CrossRef Google Scholar

    ZHAO Baoren, REN Guangfa, CAO Deming, et al. Characteristics of the ecological environmental in upwelling area adjacent to the Changjiang river esturary. Oceanologia et Limnologia Sinica, 2001, 32(3):327-333.] doi: 10.3321/j.issn:0029-814X.2001.03.014

    CrossRef Google Scholar

    [32] 蔡榕硕, 陈际龙, 黄荣辉.我国近海和邻近海的海洋环境对最近全球气候变化的响应[J].大气科学, 2006, 30(5):1019-1033. doi: 10.3878/j.issn.1006-9895.2006.05.28

    CrossRef Google Scholar

    CAI Rongshuo, CHEN Jilong, HUANG Ronghui. The response of marine environment in the offshore area of China and its adjacent ocean to recent global climate change[J]. Chinese Journal of Atmospheric Sciences, 2006, 30(5):1019-1033. doi: 10.3878/j.issn.1006-9895.2006.05.28

    CrossRef Google Scholar

    [33] Hu B, Shen L, Ping D, et al. The influence of intense chemical pollution on the community composition, diversity and abundance of anammox bacteria in the Jiaojiang Estuary (China)[J]. Plos One, 2012, 7(3):e33826.

    Google Scholar

    [34] Liu S, Ren H, Shen L, et al. pH levels drive bacterial community structure in sediments of the Qiantang River as determined by 454 pyrosequencing[J]. Front Microbiol, 2015, 6:285.

    Google Scholar

    [35] Hu B L, Shen L D, Zheng P, et al. Distribution and diversity of anaerobic ammonium-oxidizing bacteria in the sediments of the Qiantang River[J]. Environ Microbiol Rep, 2012, 4(5):540-547. doi: 10.1111/j.1758-2229.2012.00360.x

    CrossRef Google Scholar

    [36] Li-Dong S, Qun Z, Shuai L, et al. Molecular evidence for nitrite-dependent anaerobic methane-oxidising bacteria in the Jiaojiang Estuary of the East Sea (China)[J]. Applied Microbiology & Biotechnology, 2014, 98(11):5029-5038.

    Google Scholar

    [37] 杜萍, 刘晶晶, 曾江宁, 等.长江口低氧区异养细菌及氮磷细菌分布[J].应用生态学报, 2011, 22(5):1316-1324.

    Google Scholar

    DU Ping, LIU Jingjing, ZENG Jiangning, et al. Spatial distribution patterns of heterotrophic, nitrogen, and phosphate bacteria in hypoxic zone of Yangtze River Estuary[J]. Chinese Journal of Applied Ecology, 2011, 22(5):1316-1324.

    Google Scholar

    [38] Duce R A, Laroche J, Altieri K, et al. Impacts of atmospheric anthropogenic nitrogen on the open ocean[J]. Science, 2008, 320(5878):893. doi: 10.1126/science.1150369

    CrossRef Google Scholar

    [39] Diaz R J, Rosenberg R. Spreading dead zones and consequences for marine ecosystems[J]. Science, 2008, 321(5891):926. doi: 10.1126/science.1156401

    CrossRef Google Scholar

    [40] Elmgren R. Man's impact on the ecosystem of the baltic sea: Energy flows today and at the turn of the century[J]. Ambio, 1989, 18(6):326-332.

    Google Scholar

    [41] Conley D J, Björck S, Bonsdorff E, et al. Hypoxia-related processes in the Baltic Sea[J]. Environmental Science & Technology, 2009, 43(10):3412.

    Google Scholar

    [42] Nakayama K, Sivapalan M, Sato C, et al. Stochastic characterization of the onset of and recovery from hypoxia in Tokyo Bay, Japan: derived distribution analysis based on "strong wind" events.[J]. Water Resources Research, 2010, 46(12).

    Google Scholar

    [43] Turner R E, Rabalais N N, Justic D. Gulf of Mexico hypoxia: alternate states and a legacy[J]. Environmental Science & Technology, 2008, 42(7):2323.

    Google Scholar

    [44] Paulmier A, RuizPino D. Oxygen minimum zones (OMZs) in the modern ocean[J]. Progress in Oceanography, 2009, 80(3-4):113-128. doi: 10.1016/j.pocean.2008.08.001

    CrossRef Google Scholar

    [45] Larson R L, Erba E. Onset of the Mid-Cretaceous greenhouse in the Barremian-Aptian: Igneous events and the biological, sedimentary, and geochemical responses[J]. Paleoceanography, 1999, 14(6):663-678. doi: 10.1029/1999PA900040

    CrossRef Google Scholar

    [46] 黄永建, 王成善, 顾健.白垩纪大洋缺氧事件:研究进展与未来展望[J].地质学报, 2008, 82(1):21-30. doi: 10.3321/j.issn:0001-5717.2008.01.003

    CrossRef Google Scholar

    HUANG Yongjian, WANG Chengshan, GU Jian. Cretaceous oceanic anoxic events: Research progress and forthcoming prospects[J]. Acta Geologica Sinica, 2008, 82(1):21-30. doi: 10.3321/j.issn:0001-5717.2008.01.003

    CrossRef Google Scholar

    [47] Zhu Z Y, Wu H, Liu S M, et al. Hypoxia off the Changjiang (Yangtze River) estuary and in the adjacent East China Sea: Quantitative approaches to estimating the tidal impact and nutrient regeneration[J]. Marine Pollution Bulletin, 2017, DOI:10.1016/j.marpolbul.2017.07.029.

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Tables(2)

Article Metrics

Article views(1950) PDF downloads(136) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint