2018 Vol. 38, No. 1
Article Contents

DENG Kai, YANG Shouye, HUANG Xiangtong, XU Juan. The comparison of detrital zircon geochronology between mountainous rivers in Eastern China and its implications for marine sediment provenance[J]. Marine Geology & Quaternary Geology, 2018, 38(1): 178-186. doi: 10.16562/j.cnki.0256-1492.2018.01.018
Citation: DENG Kai, YANG Shouye, HUANG Xiangtong, XU Juan. The comparison of detrital zircon geochronology between mountainous rivers in Eastern China and its implications for marine sediment provenance[J]. Marine Geology & Quaternary Geology, 2018, 38(1): 178-186. doi: 10.16562/j.cnki.0256-1492.2018.01.018

The comparison of detrital zircon geochronology between mountainous rivers in Eastern China and its implications for marine sediment provenance

More Information
  • The detrital zircon geochronology is commonly applied to trace the sediment provenance, reconstruct the paleogeography, and reveal the tectono-sedimentary evolution history. Although zircon is an extremly tiny mineral (10-5~10-4m), it may provide geological information of such a large spatial scale (> 1010m2) as the India-Asia collision, the birth of the Yangtze River and the tecotono-sedimentary evolution of Taiwan Island. The aim of this study is to reveal the characteristics and controlling factors of the detrital zircon geochronology of mountainous rivers by comparing zircon U-Pb ages of river sands between two kinds of river basins drainning through different lithology (sedimentary rocks and igneous rocks) in southeastern China.

    In this contribution, we measured the detrital zircon U-Pb ages of the river sands from the Zhuoshui and Lanyang Rivers of Taiwan, and collected zircon age data of four small mountianous rivers in southeastern mainland from literatures. It is found that there is a huge discrepancy in the detrital zircon geochronology of small mountainous rivers in southeastern China. The zircon age populations of the Jiulong and Ou Rivers are very simple, with a dominant peak in late Mesozoic age. As the basin area becomes larger, the North and Min Rivers show more zircon age groups, including Mesozoic, Paleozoic and Precambrain peaks. In comparison, although the basin areas of Taiwanese mountainous rivers are extremly small ((1~3)×103 km2), the zircon age distributions are very complex. Especially, the Zhuoshui River owns a high proportion of Precambrain zircons.

    In order to reveal the controlling factors of the detrital zircon geochronology, the zircon U-Pb age distributions of river sands in southeastern China are compared with the bedrock characteristics in related river basins. It shows that the detrital zircon geochronology of river sands in southeastern mainland corresponds well to regional tectono-igneous activities. By contrast, the detrital zircon geochronology of river sands in Taiwan is closely related to the tectono-sedimentary evolution of this lsland.

    In addition, based on the characteristics of the detrital zircon geochronology of river sands, the medium- and samll- sized mountainous rivers in southeastern China can be divided into three end-members. The first is the small rivers along the southeastern coast, which have an intense Yanshanian age peak. The second is the medium-sized rivers in southeastern mainland with an obvious Caledonian age peak. As to the third, the western rivers in Taiwan own not only a high proportion of Precambrain zircons, but also obvious Jinningian and Lüliangian age peaks. To sum up, characterizing these end-members can provide important instructions for tracing the provenance of coarse sediments deposited in the Taiwan Strait and the inner shelf of the East China Sea during the last glacial period.

  • 加载中
  • [1] Lee J K, Williams I S, Ellis D J. Pb, U and Th diffusion in natural zircon[J]. Nature, 1997, 390(6656): 159-162. doi: 10.1038/36554

    CrossRef Google Scholar

    [2] Fedo C M, Sircombe K N, Rainbird R H. Detrital zircon analysis of the sedimentary record[J]. Reviews in Mineralogy and Geochemistry, 2003, 53(1): 277-303. doi: 10.2113/0530277

    CrossRef Google Scholar

    [3] Alizai A, Carter A, Clift P D, et al. Sediment provenance, reworking and transport processes in the Indus River by U-Pb dating of detrital zircon grains[J]. Global and Planetary Change, 2011, 76(1-2): 33-55. doi: 10.1016/j.gloplacha.2010.11.008

    CrossRef Google Scholar

    [4] Amidon W H, Burbank D W, Gehrels G E. Construction of detrital mineral populations: insights from mixing of U-Pb zircon ages in Himalayan rivers[J]. Basin Research, 2005, 17(4): 463-485. doi: 10.1111/j.1365-2117.2005.00279.x

    CrossRef Google Scholar

    [5] Cawood P A, Nemchin A A, Freeman M, et al. Linking source and sedimentary basin: detrital zircon record of sediment flux along a modern river system and implications for provenance studies[J]. Earth and Planetary Science Letters, 2003, 210(1-2): 259-268. doi: 10.1016/S0012-821X(03)00122-5

    CrossRef Google Scholar

    [6] Gehrels G. Detrital zircon U-Pb geochronology applied to tectonics[J]. Annual Review of Earth and Planetary Sciences, 2014, 42(1): 127-149. doi: 10.1146/annurev-earth-050212-124012

    CrossRef Google Scholar

    [7] Hu X M, Garzanti E, Moore T, et al. Direct stratigraphic dating of India-Asia collision onset at the Selandian (middle Paleocene, 59±1 Ma)[J]. Geology, 2015, 43(10): 859-862. doi: 10.1130/G36872.1

    CrossRef Google Scholar

    [8] Zheng H, Clift P D, Wang P, et al. Pre-Miocene birth of the Yangtze River[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(19): 7556-7561. doi: 10.1073/pnas.1216241110

    CrossRef Google Scholar

    [9] Deng K, Yang S Y, Li C, et al. Detrital zircon geochronology of river sands from Taiwan: Implications for sedimentary provenance of Taiwan and its source link with the east China mainland[J]. Earth-Science Reviews, 2017, 164: 31-47. doi: 10.1016/j.earscirev.2016.10.015

    CrossRef Google Scholar

    [10] Andersen T. Detrital zircons as tracers of sedimentary provenance: limiting conditions from statistics and numerical simulation[J]. Chemical Geology, 2005, 216(3-4): 249-270. doi: 10.1016/j.chemgeo.2004.11.013

    CrossRef Google Scholar

    [11] Vermeesch P. How many grains are needed for a provenance study?[J]. Earth and Planetary Science Letters, 2004, 224(3-4): 441-451. doi: 10.1016/j.epsl.2004.05.037

    CrossRef Google Scholar

    [12] Moecher D P, Samson S D. Differential zircon fertility of source terranes and natural bias in the detrital zircon record: Implications for sedimentary provenance analysis[J]. Earth and Planetary Science Letters, 2006, 247(3-4): 252-266. doi: 10.1016/j.epsl.2006.04.035

    CrossRef Google Scholar

    [13] Malusà M G, Resentini A, Garzanti E. Hydraulic sorting and mineral fertility bias in detrital geochronology[J]. Gondwana Research, 2016, 31: 1-19. doi: 10.1016/j.gr.2015.09.002

    CrossRef Google Scholar

    [14] Lawrence R L, Cox R, Mapes R W, et al. Hydrodynamic fractionation of zircon age populations[J]. Geological Society of America Bulletin, 2011, 123(1-2): 295-305. doi: 10.1130/B30151.1

    CrossRef Google Scholar

    [15] Yang S Y, Zhang F, Wang Z B. Grain size distribution and age population of detrital zircons from the Changjiang (Yangtze) River system, China[J]. Chemical Geology, 2012, 296-297: 26-38. doi: 10.1016/j.chemgeo.2011.12.016

    CrossRef Google Scholar

    [16] Vermeesch P. On the visualisation of detrital age distributions[J]. Chemical Geology, 2012, 312-313: 190-194. doi: 10.1016/j.chemgeo.2012.04.021

    CrossRef Google Scholar

    [17] Gehrels G. Detrital zircon U-Pb geochronology: current methods and new opportunities[M]//Busby C, Azor A, eds. Tectonics of Sedimentary Basins: Recent Advances. Chichester, West Sussex: Blackwell Publishing Ltd, 2011: 45-62.

    Google Scholar

    [18] Yu J H, Wang L, O'Reilly S Y, et al. A Paleoproterozoic orogeny recorded in a long-lived cratonic remnant (Wuyishan terrane), eastern Cathaysia Block, China[J]. Precambrian Research, 2009, 174(3-4): 347-363. doi: 10.1016/j.precamres.2009.08.009

    CrossRef Google Scholar

    [19] Yu J H, O'Reilly S Y, Zhou M F, et al. U-Pb geochronology and Hf-Nd isotopic geochemistry of the Badu Complex, Southeastern China: Implications for the Precambrian crustal evolution and paleogeography of the Cathaysia Block[J]. Precambrian Research, 2012, 222-223: 424-449.

    Google Scholar

    [20] 舒良树.华南构造演化的基本特征[J].地质通报, 2012, 31(7): 1035-1053. doi: 10.3969/j.issn.1671-2552.2012.07.003

    CrossRef Google Scholar

    SHU Liangshu. An analysis of principal features of tectonic evolution in South China Block[J]. Geological Bulletin of China, 2012, 31(7): 1035-1053. doi: 10.3969/j.issn.1671-2552.2012.07.003

    CrossRef Google Scholar

    [21] Li Z, Qiu J S, Zhou J C. Geochronology, geochemistry, and Nd-Hf isotopes of early Palaeozoic-early Mesozoic I-type granites from the Hufang composite pluton, Fujian, South China: crust-mantle interactions and tectonic implications[J]. International Geology Review, 2012, 54(1): 15-32. doi: 10.1080/00206814.2010.496542

    CrossRef Google Scholar

    [22] Zhou X M, Li W X. Origin of Late Mesozoic igneous rocks in Southeastern China: implications for lithosphere subduction and underplating of mafic magmas[J]. Tectonophysics, 2000, 326(3-4): 269-287. doi: 10.1016/S0040-1951(00)00120-7

    CrossRef Google Scholar

    [23] Zhou X M, Sun T, Shen W Z, et al. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: A response to tectonic evolution[J]. Episodes, 2006, 29(1): 26-33. doi: 10.18814/epiiugs/2006/v29i1/004

    CrossRef Google Scholar

    [24] Huang C Y, Yen Y, Zhao Q H, et al. Cenozoic stratigraphy of Taiwan: Window into rifting, stratigraphy and paleoceanography of South China Sea[J]. Chinese Science Bulletin, 2012, 57(24): 3130-3149. doi: 10.1007/s11434-012-5349-y

    CrossRef Google Scholar

    [25] He C. The Outline of Taiwan Geology: Geological Map Instruction of Taiwan[M]. Taiwan: The Central Geological Survey of the Ministry of Economic Affairs (Taiwan), 1986.

    Google Scholar

    [26] 孙涛.新编华南花岗岩分布图及其说明[J].地质通报, 2006, 25(3): 332-335. doi: 10.3969/j.issn.1671-2552.2006.03.002

    CrossRef Google Scholar

    SUN Tao. A new map showing the distribution of granites in South China and its explanatory notes[J]. Geological Bulletin of China, 2006, 25(3): 332-335. doi: 10.3969/j.issn.1671-2552.2006.03.002

    CrossRef Google Scholar

    [27] Dadson S J, Hovius N, Chen H G, et al. Links between erosion, runoff variability and seismicity in the Taiwan orogen[J]. Nature, 2003, 426(6967): 648-651. doi: 10.1038/nature02150

    CrossRef Google Scholar

    [28] Milliman J D, Farnsworth K L. River Discharge to the Coastal Ocean——A Global Synthesis[M]. Cambridge: Cambridge University Press, 2011.

    Google Scholar

    [29] 中华人民共和国水利部.中国河流泥沙公报-2015[M].北京:中国水利水电出版社, 2016.

    Google Scholar

    China's Ministry of Water Resources. The Bulletin of River Sediment Discharge in China, 2015[M]. Beijing: China Water & Power Press, 2016.

    Google Scholar

    [30] Kao S J, Milliman J D. Water and sediment discharge from small mountainous rivers, taiwan: the roles of lithology, episodic events, and Human activities[J]. Journal of Geology, 2008, 116(5): 431-448. doi: 10.1086/590921

    CrossRef Google Scholar

    [31] Liu Y S, Hu Z C, Zong K Q, et al. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J]. Chinese Science Bulletin, 2010, 55(15): 1535-1546. doi: 10.1007/s11434-010-3052-4

    CrossRef Google Scholar

    [32] Compston W, Williams I S, Kirschvink J L, et al. Zircon U-Pb ages for the early cambrian time-scale[J]. Journal of the Geological Society, 1992, 149(2): 171-184. doi: 10.1144/gsjgs.149.2.0171

    CrossRef Google Scholar

    [33] Xu X S, O'Reilly S Y, Griffin W L, et al. The crust of Cathaysia: age, assembly and reworking of two terranes[J]. Precambrian Research, 2007, 158(1-2): 51-78. doi: 10.1016/j.precamres.2007.04.010

    CrossRef Google Scholar

    [34] Xu Y H, Sun Q Q, Yi L, et al. Detrital Zircons U-Pb age and Hf isotope from the western side of the Taiwan Strait: implications for sediment provenance and crustal evolution of the northeast cathaysia block[J]. Terrestrial Atmospheric and Oceanic Sciences, 2014, 25(4): 505-535. doi: 10.3319/TAO.2014.02.18.01(TT)

    CrossRef Google Scholar

    [35] Xu Y H, Wang C Y, Zhao T P. Using detrital zircons from river sands to constrain major tectono-thermal events of the Cathaysia Block, SE China[J]. Journal of Asian Earth Sciences, 2016, 124: 1-13. doi: 10.1016/j.jseaes.2016.04.012

    CrossRef Google Scholar

    [36] He M Y, Zheng H B, Clift P D. Zircon U-Pb geochronology and Hf isotope data from the Yangtze River sands: Implications for major magmatic events and crustal evolution in Central China[J]. Chemical Geology, 2013, 360-361: 186-203. doi: 10.1016/j.chemgeo.2013.10.020

    CrossRef Google Scholar

    [37] Rino S, Komiya T, Windley B F, et al. Major episodic increases of continental crustal growth determined from zircon ages of river sands; implications for mantle overturns in the Early Precambrian[J]. Physics of the Earth and Planetary Interiors, 2004, 146(1-2): 369-394. doi: 10.1016/j.pepi.2003.09.024

    CrossRef Google Scholar

    [38] Li Z X, Li X H, Wartho J A, et al. Magmatic and metamorphic events during the early Paleozoic Wuyi-Yunkai orogeny, southeastern South China: New age constraints and pressure-temperature conditions[J]. Geological Society of America Bulletin, 2010, 122(5-6): 772-793. doi: 10.1130/B30021.1

    CrossRef Google Scholar

    [39] Feng S J, Zhao K D, Ling H F, et al. Geochronology, elemental and Nd-Hf isotopic geochemistry of Devonian A-type granites in central Jiangxi, South China: Constraints on petrogenesis and post-collisional extension of the Wuyi-Yunkai orogeny[J]. Lithos, 2014, 206-207: 1-18. doi: 10.1016/j.lithos.2014.07.007

    CrossRef Google Scholar

    [40] Lan Q, Yan Y, Huang C Y, et al. Topographic architecture and drainage reorganization in Southeast China: Zircon U-Pb chronology and Hf isotope evidence from Taiwan[J]. Gondwana Research, 2016, 36: 376-389. doi: 10.1016/j.gr.2015.07.008

    CrossRef Google Scholar

    [41] Deng K, Yang S Y, Bi L. Reply to comment by Yonghang Xu on "Detrital zircon geochronology of river sands from Taiwan: Implications for sedimentary provenance of Taiwan and its source link with the east China mainland"[J]. Earth-Science Reviews, 2017, 168: 235-239. doi: 10.1016/j.earscirev.2017.03.009

    CrossRef Google Scholar

    [42] Clift P D, Schouten H, Draut A E. A general model of arc-continent collision and subduction polarity reversal from Taiwan and the Irish Caledonides[J]. Geological Society, London, Special Publications, 2003, 219(1): 81-98. doi: 10.1144/GSL.SP.2003.219.01.04

    CrossRef Google Scholar

    [43] 邓凯, 杨守业, 王中波, 等.台湾山溪性小河流碎屑重矿物组成及其示踪意义[J].沉积学报, 2016, 34(3): 531-542.

    Google Scholar

    DENG Kai, YANG Shouye, WANG Zhongbo, et al. Detrital heavy mineral assemblages in the river sediments from taiwan and its implications for sediment provenance[J]. Acta Sedimentologica Sinica, 2016, 34(3): 531-542.

    Google Scholar

    [44] Yang S Y, Wang Z B, Guo Y, et al. Heavy mineral compositions of the Changjiang (Yangtze River) sediments and their provenance-tracing implication[J]. Journal of Asian Earth Sciences, 2009, 35(1): 56-65. doi: 10.1016/j.jseaes.2008.12.002

    CrossRef Google Scholar

    [45] He M Y, Zheng H B, Huang X T, et al. Yangtze River sediments from source to sink traced with clay mineralogy[J]. Journal of Asian Earth Sciences, 2013, 69: 60-69. doi: 10.1016/j.jseaes.2012.10.001

    CrossRef Google Scholar

    [46] 梁小龙, 杨守业, 印萍, 等.黄海与东海周边河流及泥质区沉积物黏土矿物的分布特征和控制因素[J].海洋地质与第四纪地质, 2015, 35(6): 1-15.

    Google Scholar

    LIANG Xiaolong, YANG Shouye, YIN Ping, et al. Distribution of clay mineral assemblages in the rivers entering yellow sea and east china sea and the muddy shelve deposits and control factors[J]. Marine Geology & Quaternary Geology, 2015, 35(6): 1-15.

    Google Scholar

    [47] Bi L, Yang S Y, Li C, et al. Geochemistry of river-borne clays entering the East China Sea indicates two contrasting types of weathering and sediment transport processes[J]. Geochemistry, Geophysics, Geosystems, 2015, 16(9): 3034-3052. doi: 10.1002/2015GC005867

    CrossRef Google Scholar

    [48] Bi L, Yang S Y, Zhao Y, et al. Provenance study of the Holocene sediments in the Changjiang (Yangtze River) estuary and inner shelf of the East China sea[J]. Quaternary International, 2017, 441: 147-161. doi: 10.1016/j.quaint.2016.12.004

    CrossRef Google Scholar

    [49] Dou Y G, Yang S Y, Shi X F, et al. Provenance weathering and erosion records in southern Okinawa Trough sediments since 28 ka: Geochemical and Sr-Nd-Pb isotopic evidences[J]. Chemical Geology, 2016, 425: 93-109. doi: 10.1016/j.chemgeo.2016.01.029

    CrossRef Google Scholar

    [50] Liu J P, Li A C, Xu K H, et al. Sedimentary features of the Yangtze River-derived along-shelf clinoform deposit in the East China Sea[J]. Continental Shelf Research, 2006, 26(17-18): 2141-2156. doi: 10.1016/j.csr.2006.07.013

    CrossRef Google Scholar

    [51] Xu K H, Li A C, Liu J P, et al. Provenance, structure, and formation of the mud wedge along inner continental shelf of the East China Sea: A synthesis of the Yangtze dispersal system[J]. Marine Geology, 2012, 291-294: 176-191. doi: 10.1016/j.margeo.2011.06.003

    CrossRef Google Scholar

    [52] Xu K H, Milliman J D, Li A C, et al. Yangtze- and Taiwan-derived sediments on the inner shelf of East China Sea[J]. Continental Shelf Research, 2009, 29(18): 2240-2256. doi: 10.1016/j.csr.2009.08.017

    CrossRef Google Scholar

    [53] Yang S, Bi L, Li C, et al. Major sinks of the Changjiang (Yangtze River)-derived sediments in the East China Sea during the late Quaternary[J]. Geological Society, London, Special Publications, 2015, 429: SP429.6.

    Google Scholar

    [54] Saito Y, Katayama H, Ikehara K, et al. Transgressive and highstand systems tracts and post-glacial transgression, the East China Sea[J]. Sedimentary Geology, 1998, 122(1-4): 217-232. doi: 10.1016/S0037-0738(98)00107-9

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Tables(2)

Article Metrics

Article views(1493) PDF downloads(96) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint