Citation: | DENG Kai, YANG Shouye, HUANG Xiangtong, XU Juan. The comparison of detrital zircon geochronology between mountainous rivers in Eastern China and its implications for marine sediment provenance[J]. Marine Geology & Quaternary Geology, 2018, 38(1): 178-186. doi: 10.16562/j.cnki.0256-1492.2018.01.018 |
The detrital zircon geochronology is commonly applied to trace the sediment provenance, reconstruct the paleogeography, and reveal the tectono-sedimentary evolution history. Although zircon is an extremly tiny mineral (10-5~10-4m), it may provide geological information of such a large spatial scale (> 1010m2) as the India-Asia collision, the birth of the Yangtze River and the tecotono-sedimentary evolution of Taiwan Island. The aim of this study is to reveal the characteristics and controlling factors of the detrital zircon geochronology of mountainous rivers by comparing zircon U-Pb ages of river sands between two kinds of river basins drainning through different lithology (sedimentary rocks and igneous rocks) in southeastern China.
In this contribution, we measured the detrital zircon U-Pb ages of the river sands from the Zhuoshui and Lanyang Rivers of Taiwan, and collected zircon age data of four small mountianous rivers in southeastern mainland from literatures. It is found that there is a huge discrepancy in the detrital zircon geochronology of small mountainous rivers in southeastern China. The zircon age populations of the Jiulong and Ou Rivers are very simple, with a dominant peak in late Mesozoic age. As the basin area becomes larger, the North and Min Rivers show more zircon age groups, including Mesozoic, Paleozoic and Precambrain peaks. In comparison, although the basin areas of Taiwanese mountainous rivers are extremly small ((1~3)×103 km2), the zircon age distributions are very complex. Especially, the Zhuoshui River owns a high proportion of Precambrain zircons.
In order to reveal the controlling factors of the detrital zircon geochronology, the zircon U-Pb age distributions of river sands in southeastern China are compared with the bedrock characteristics in related river basins. It shows that the detrital zircon geochronology of river sands in southeastern mainland corresponds well to regional tectono-igneous activities. By contrast, the detrital zircon geochronology of river sands in Taiwan is closely related to the tectono-sedimentary evolution of this lsland.
In addition, based on the characteristics of the detrital zircon geochronology of river sands, the medium- and samll- sized mountainous rivers in southeastern China can be divided into three end-members. The first is the small rivers along the southeastern coast, which have an intense Yanshanian age peak. The second is the medium-sized rivers in southeastern mainland with an obvious Caledonian age peak. As to the third, the western rivers in Taiwan own not only a high proportion of Precambrain zircons, but also obvious Jinningian and Lüliangian age peaks. To sum up, characterizing these end-members can provide important instructions for tracing the provenance of coarse sediments deposited in the Taiwan Strait and the inner shelf of the East China Sea during the last glacial period.
[1] | Lee J K, Williams I S, Ellis D J. Pb, U and Th diffusion in natural zircon[J]. Nature, 1997, 390(6656): 159-162. doi: 10.1038/36554 |
[2] | Fedo C M, Sircombe K N, Rainbird R H. Detrital zircon analysis of the sedimentary record[J]. Reviews in Mineralogy and Geochemistry, 2003, 53(1): 277-303. doi: 10.2113/0530277 |
[3] | Alizai A, Carter A, Clift P D, et al. Sediment provenance, reworking and transport processes in the Indus River by U-Pb dating of detrital zircon grains[J]. Global and Planetary Change, 2011, 76(1-2): 33-55. doi: 10.1016/j.gloplacha.2010.11.008 |
[4] | Amidon W H, Burbank D W, Gehrels G E. Construction of detrital mineral populations: insights from mixing of U-Pb zircon ages in Himalayan rivers[J]. Basin Research, 2005, 17(4): 463-485. doi: 10.1111/j.1365-2117.2005.00279.x |
[5] | Cawood P A, Nemchin A A, Freeman M, et al. Linking source and sedimentary basin: detrital zircon record of sediment flux along a modern river system and implications for provenance studies[J]. Earth and Planetary Science Letters, 2003, 210(1-2): 259-268. doi: 10.1016/S0012-821X(03)00122-5 |
[6] | Gehrels G. Detrital zircon U-Pb geochronology applied to tectonics[J]. Annual Review of Earth and Planetary Sciences, 2014, 42(1): 127-149. doi: 10.1146/annurev-earth-050212-124012 |
[7] | Hu X M, Garzanti E, Moore T, et al. Direct stratigraphic dating of India-Asia collision onset at the Selandian (middle Paleocene, 59±1 Ma)[J]. Geology, 2015, 43(10): 859-862. doi: 10.1130/G36872.1 |
[8] | Zheng H, Clift P D, Wang P, et al. Pre-Miocene birth of the Yangtze River[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(19): 7556-7561. doi: 10.1073/pnas.1216241110 |
[9] | Deng K, Yang S Y, Li C, et al. Detrital zircon geochronology of river sands from Taiwan: Implications for sedimentary provenance of Taiwan and its source link with the east China mainland[J]. Earth-Science Reviews, 2017, 164: 31-47. doi: 10.1016/j.earscirev.2016.10.015 |
[10] | Andersen T. Detrital zircons as tracers of sedimentary provenance: limiting conditions from statistics and numerical simulation[J]. Chemical Geology, 2005, 216(3-4): 249-270. doi: 10.1016/j.chemgeo.2004.11.013 |
[11] | Vermeesch P. How many grains are needed for a provenance study?[J]. Earth and Planetary Science Letters, 2004, 224(3-4): 441-451. doi: 10.1016/j.epsl.2004.05.037 |
[12] | Moecher D P, Samson S D. Differential zircon fertility of source terranes and natural bias in the detrital zircon record: Implications for sedimentary provenance analysis[J]. Earth and Planetary Science Letters, 2006, 247(3-4): 252-266. doi: 10.1016/j.epsl.2006.04.035 |
[13] | Malusà M G, Resentini A, Garzanti E. Hydraulic sorting and mineral fertility bias in detrital geochronology[J]. Gondwana Research, 2016, 31: 1-19. doi: 10.1016/j.gr.2015.09.002 |
[14] | Lawrence R L, Cox R, Mapes R W, et al. Hydrodynamic fractionation of zircon age populations[J]. Geological Society of America Bulletin, 2011, 123(1-2): 295-305. doi: 10.1130/B30151.1 |
[15] | Yang S Y, Zhang F, Wang Z B. Grain size distribution and age population of detrital zircons from the Changjiang (Yangtze) River system, China[J]. Chemical Geology, 2012, 296-297: 26-38. doi: 10.1016/j.chemgeo.2011.12.016 |
[16] | Vermeesch P. On the visualisation of detrital age distributions[J]. Chemical Geology, 2012, 312-313: 190-194. doi: 10.1016/j.chemgeo.2012.04.021 |
[17] | Gehrels G. Detrital zircon U-Pb geochronology: current methods and new opportunities[M]//Busby C, Azor A, eds. Tectonics of Sedimentary Basins: Recent Advances. Chichester, West Sussex: Blackwell Publishing Ltd, 2011: 45-62. |
[18] | Yu J H, Wang L, O'Reilly S Y, et al. A Paleoproterozoic orogeny recorded in a long-lived cratonic remnant (Wuyishan terrane), eastern Cathaysia Block, China[J]. Precambrian Research, 2009, 174(3-4): 347-363. doi: 10.1016/j.precamres.2009.08.009 |
[19] | Yu J H, O'Reilly S Y, Zhou M F, et al. U-Pb geochronology and Hf-Nd isotopic geochemistry of the Badu Complex, Southeastern China: Implications for the Precambrian crustal evolution and paleogeography of the Cathaysia Block[J]. Precambrian Research, 2012, 222-223: 424-449. |
[20] | 舒良树.华南构造演化的基本特征[J].地质通报, 2012, 31(7): 1035-1053. doi: 10.3969/j.issn.1671-2552.2012.07.003 SHU Liangshu. An analysis of principal features of tectonic evolution in South China Block[J]. Geological Bulletin of China, 2012, 31(7): 1035-1053. doi: 10.3969/j.issn.1671-2552.2012.07.003 |
[21] | Li Z, Qiu J S, Zhou J C. Geochronology, geochemistry, and Nd-Hf isotopes of early Palaeozoic-early Mesozoic I-type granites from the Hufang composite pluton, Fujian, South China: crust-mantle interactions and tectonic implications[J]. International Geology Review, 2012, 54(1): 15-32. doi: 10.1080/00206814.2010.496542 |
[22] | Zhou X M, Li W X. Origin of Late Mesozoic igneous rocks in Southeastern China: implications for lithosphere subduction and underplating of mafic magmas[J]. Tectonophysics, 2000, 326(3-4): 269-287. doi: 10.1016/S0040-1951(00)00120-7 |
[23] | Zhou X M, Sun T, Shen W Z, et al. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: A response to tectonic evolution[J]. Episodes, 2006, 29(1): 26-33. doi: 10.18814/epiiugs/2006/v29i1/004 |
[24] | Huang C Y, Yen Y, Zhao Q H, et al. Cenozoic stratigraphy of Taiwan: Window into rifting, stratigraphy and paleoceanography of South China Sea[J]. Chinese Science Bulletin, 2012, 57(24): 3130-3149. doi: 10.1007/s11434-012-5349-y |
[25] | He C. The Outline of Taiwan Geology: Geological Map Instruction of Taiwan[M]. Taiwan: The Central Geological Survey of the Ministry of Economic Affairs (Taiwan), 1986. |
[26] | 孙涛.新编华南花岗岩分布图及其说明[J].地质通报, 2006, 25(3): 332-335. doi: 10.3969/j.issn.1671-2552.2006.03.002 SUN Tao. A new map showing the distribution of granites in South China and its explanatory notes[J]. Geological Bulletin of China, 2006, 25(3): 332-335. doi: 10.3969/j.issn.1671-2552.2006.03.002 |
[27] | Dadson S J, Hovius N, Chen H G, et al. Links between erosion, runoff variability and seismicity in the Taiwan orogen[J]. Nature, 2003, 426(6967): 648-651. doi: 10.1038/nature02150 |
[28] | Milliman J D, Farnsworth K L. River Discharge to the Coastal Ocean——A Global Synthesis[M]. Cambridge: Cambridge University Press, 2011. |
[29] | 中华人民共和国水利部.中国河流泥沙公报-2015[M].北京:中国水利水电出版社, 2016. China's Ministry of Water Resources. The Bulletin of River Sediment Discharge in China, 2015[M]. Beijing: China Water & Power Press, 2016. |
[30] | Kao S J, Milliman J D. Water and sediment discharge from small mountainous rivers, taiwan: the roles of lithology, episodic events, and Human activities[J]. Journal of Geology, 2008, 116(5): 431-448. doi: 10.1086/590921 |
[31] | Liu Y S, Hu Z C, Zong K Q, et al. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J]. Chinese Science Bulletin, 2010, 55(15): 1535-1546. doi: 10.1007/s11434-010-3052-4 |
[32] | Compston W, Williams I S, Kirschvink J L, et al. Zircon U-Pb ages for the early cambrian time-scale[J]. Journal of the Geological Society, 1992, 149(2): 171-184. doi: 10.1144/gsjgs.149.2.0171 |
[33] | Xu X S, O'Reilly S Y, Griffin W L, et al. The crust of Cathaysia: age, assembly and reworking of two terranes[J]. Precambrian Research, 2007, 158(1-2): 51-78. doi: 10.1016/j.precamres.2007.04.010 |
[34] | Xu Y H, Sun Q Q, Yi L, et al. Detrital Zircons U-Pb age and Hf isotope from the western side of the Taiwan Strait: implications for sediment provenance and crustal evolution of the northeast cathaysia block[J]. Terrestrial Atmospheric and Oceanic Sciences, 2014, 25(4): 505-535. doi: 10.3319/TAO.2014.02.18.01(TT) |
[35] | Xu Y H, Wang C Y, Zhao T P. Using detrital zircons from river sands to constrain major tectono-thermal events of the Cathaysia Block, SE China[J]. Journal of Asian Earth Sciences, 2016, 124: 1-13. doi: 10.1016/j.jseaes.2016.04.012 |
[36] | He M Y, Zheng H B, Clift P D. Zircon U-Pb geochronology and Hf isotope data from the Yangtze River sands: Implications for major magmatic events and crustal evolution in Central China[J]. Chemical Geology, 2013, 360-361: 186-203. doi: 10.1016/j.chemgeo.2013.10.020 |
[37] | Rino S, Komiya T, Windley B F, et al. Major episodic increases of continental crustal growth determined from zircon ages of river sands; implications for mantle overturns in the Early Precambrian[J]. Physics of the Earth and Planetary Interiors, 2004, 146(1-2): 369-394. doi: 10.1016/j.pepi.2003.09.024 |
[38] | Li Z X, Li X H, Wartho J A, et al. Magmatic and metamorphic events during the early Paleozoic Wuyi-Yunkai orogeny, southeastern South China: New age constraints and pressure-temperature conditions[J]. Geological Society of America Bulletin, 2010, 122(5-6): 772-793. doi: 10.1130/B30021.1 |
[39] | Feng S J, Zhao K D, Ling H F, et al. Geochronology, elemental and Nd-Hf isotopic geochemistry of Devonian A-type granites in central Jiangxi, South China: Constraints on petrogenesis and post-collisional extension of the Wuyi-Yunkai orogeny[J]. Lithos, 2014, 206-207: 1-18. doi: 10.1016/j.lithos.2014.07.007 |
[40] | Lan Q, Yan Y, Huang C Y, et al. Topographic architecture and drainage reorganization in Southeast China: Zircon U-Pb chronology and Hf isotope evidence from Taiwan[J]. Gondwana Research, 2016, 36: 376-389. doi: 10.1016/j.gr.2015.07.008 |
[41] | Deng K, Yang S Y, Bi L. Reply to comment by Yonghang Xu on "Detrital zircon geochronology of river sands from Taiwan: Implications for sedimentary provenance of Taiwan and its source link with the east China mainland"[J]. Earth-Science Reviews, 2017, 168: 235-239. doi: 10.1016/j.earscirev.2017.03.009 |
[42] | Clift P D, Schouten H, Draut A E. A general model of arc-continent collision and subduction polarity reversal from Taiwan and the Irish Caledonides[J]. Geological Society, London, Special Publications, 2003, 219(1): 81-98. doi: 10.1144/GSL.SP.2003.219.01.04 |
[43] | 邓凯, 杨守业, 王中波, 等.台湾山溪性小河流碎屑重矿物组成及其示踪意义[J].沉积学报, 2016, 34(3): 531-542. DENG Kai, YANG Shouye, WANG Zhongbo, et al. Detrital heavy mineral assemblages in the river sediments from taiwan and its implications for sediment provenance[J]. Acta Sedimentologica Sinica, 2016, 34(3): 531-542. |
[44] | Yang S Y, Wang Z B, Guo Y, et al. Heavy mineral compositions of the Changjiang (Yangtze River) sediments and their provenance-tracing implication[J]. Journal of Asian Earth Sciences, 2009, 35(1): 56-65. doi: 10.1016/j.jseaes.2008.12.002 |
[45] | He M Y, Zheng H B, Huang X T, et al. Yangtze River sediments from source to sink traced with clay mineralogy[J]. Journal of Asian Earth Sciences, 2013, 69: 60-69. doi: 10.1016/j.jseaes.2012.10.001 |
[46] | 梁小龙, 杨守业, 印萍, 等.黄海与东海周边河流及泥质区沉积物黏土矿物的分布特征和控制因素[J].海洋地质与第四纪地质, 2015, 35(6): 1-15. LIANG Xiaolong, YANG Shouye, YIN Ping, et al. Distribution of clay mineral assemblages in the rivers entering yellow sea and east china sea and the muddy shelve deposits and control factors[J]. Marine Geology & Quaternary Geology, 2015, 35(6): 1-15. |
[47] | Bi L, Yang S Y, Li C, et al. Geochemistry of river-borne clays entering the East China Sea indicates two contrasting types of weathering and sediment transport processes[J]. Geochemistry, Geophysics, Geosystems, 2015, 16(9): 3034-3052. doi: 10.1002/2015GC005867 |
[48] | Bi L, Yang S Y, Zhao Y, et al. Provenance study of the Holocene sediments in the Changjiang (Yangtze River) estuary and inner shelf of the East China sea[J]. Quaternary International, 2017, 441: 147-161. doi: 10.1016/j.quaint.2016.12.004 |
[49] | Dou Y G, Yang S Y, Shi X F, et al. Provenance weathering and erosion records in southern Okinawa Trough sediments since 28 ka: Geochemical and Sr-Nd-Pb isotopic evidences[J]. Chemical Geology, 2016, 425: 93-109. doi: 10.1016/j.chemgeo.2016.01.029 |
[50] | Liu J P, Li A C, Xu K H, et al. Sedimentary features of the Yangtze River-derived along-shelf clinoform deposit in the East China Sea[J]. Continental Shelf Research, 2006, 26(17-18): 2141-2156. doi: 10.1016/j.csr.2006.07.013 |
[51] | Xu K H, Li A C, Liu J P, et al. Provenance, structure, and formation of the mud wedge along inner continental shelf of the East China Sea: A synthesis of the Yangtze dispersal system[J]. Marine Geology, 2012, 291-294: 176-191. doi: 10.1016/j.margeo.2011.06.003 |
[52] | Xu K H, Milliman J D, Li A C, et al. Yangtze- and Taiwan-derived sediments on the inner shelf of East China Sea[J]. Continental Shelf Research, 2009, 29(18): 2240-2256. doi: 10.1016/j.csr.2009.08.017 |
[53] | Yang S, Bi L, Li C, et al. Major sinks of the Changjiang (Yangtze River)-derived sediments in the East China Sea during the late Quaternary[J]. Geological Society, London, Special Publications, 2015, 429: SP429.6. |
[54] | Saito Y, Katayama H, Ikehara K, et al. Transgressive and highstand systems tracts and post-glacial transgression, the East China Sea[J]. Sedimentary Geology, 1998, 122(1-4): 217-232. doi: 10.1016/S0037-0738(98)00107-9 |
Geological background of southeastern China and distribution of sample locations
KDE plots for zircon U-Pb ages of small- and medium-sized rivers in southeastern China.
Comparison between granite ages[26] and zircon U-Pb age groups of river sands in southeastern mainland
The comparison between zircon U-Pb age groups of sedimentary rocks[40] and river sands in Taiwan