Citation: | ZHANG Huodai, ZHU Benduo, GUAN Yongxian, YANG Shengxiong. TOPOGRAPHIC FEATURES OF THE SEAMOUNTS IN THECENTRAL BASIN OF THE SOUTH CHINA SEA:BASED ON MULTI-BEAM BATHYMETRIC DATA[J]. Marine Geology & Quaternary Geology, 2017, 37(6): 149-157. doi: 10.16562/j.cnki.0256-1492.2017.06.016 |
Upon the multi-beam bathymetric survey of the central basin of the SCS (South China Sea) in the past decades, submarine topography of the basin has become clearer. This paper is devoted to the study of the topographic features of seamounts and knolls in SCS central basin based on the multi-beam bathymetric data from Guangzhou Marine Geological Survey. Three dimensional topographic maps of typical seamounts and knolls are exhibited to reveal how the seamounts and knolls in SCS central basin look like. Statistics suggest that there are about 46 seamounts, 90 knolls with height difference in 1000-500m and about 100 knolls with height difference in 500-200m in the SCS central basin. Multi-beam bathymetric data shows finer terrain information than ever before. For examples, volcanic vents on the top of seamounts and knolls are discovered and steep slopes observed on some seamounts and knolls, probably caused by faults. Based on the distribution pattern of steep slopes, we inferred that the Zhongnan fault is actually a fault zone, consisting of two parallel N-S faults and the region between them.
[1] | 曾成开, 王小波.南海海盆中的海山海丘及其成因[J].东海海洋, 1987, 5(1-2): 1-9. ZENG Chengkai, WANG Xiaobo. Distribution and genesis of the seamounts and hills in the South China Sea[J]. Donghai Marine Science, 1987, 5(1-2): 1-9. |
[2] | 鲍才旺, 薛万俊.南海深海平原海山、海丘分布规律及形成环境[J].海洋学报, 1993, 15(6): 83-90. BAO Caiwang, XUE Wanjun. Distribution and formation environment of seamounts and knolls in the abysmal plain of the South China Sea[J]. Acta Oceanologica Sinica, 1993, 15(6): 83-90. |
[3] | Taylor B, Hayes D E. Origin and history of the South China Sea Basin[M]//Hayes D E. The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands: Part 2. Washington, DC: American Geophysical Union, 1983: 23-56. |
[4] | Franke I, Savva D, Pubellier M, et al. The final rifting evolution in the South China Sea[J]. Marine and Petroleum Geology, 2014, 58: 704-720. doi: 10.1016/j.marpetgeo.2013.11.020 |
[5] | Clift P, Lin J, Barckhausen U. Evidence of low flexural rigidity and low viscosity lower continental crust during continental break-up in the South China Sea[J]. Marine and Petroleum Geology, 2002, 19(8): 951-970. doi: 10.1016/S0264-8172(02)00108-3 |
[6] | 李家彪.南海大陆边缘动力学:科学实验与研究进展[J].地球物理学报, 2011, 54(12): 2993-3003. doi: 10.3969/j.issn.0001-5733.2011.12.002 LI Jiabiao. Dynamics of the continental margins of South China Sea: scientific experiments and research progresses[J]. Chinese Journal of Geophysics, 2011, 54(12): 2993-3003. doi: 10.3969/j.issn.0001-5733.2011.12.002 |
[7] | Briais A, Patriat P, Tapponnier P. Updated interpretation of magnetic anomalies and seafloor spreading stages in the South China Sea: implications for the tertiary tectonics of Southeast Asia[J]. Journal of Geophysical Research, 1993, 98(B4): 6299-6328. doi: 10.1029/92JB02280 |
[8] | 姚伯初.中美合作调研南海地质专报[M].武汉:中国地质大学出版社, 1994. YAO Bochu. The Geological Memoir of South China Sea Surveyed Jointly by China & USA[M]. Wuhan: China University of Geoscience Press, 1994. |
[9] | Hsu S K, Yeh Y C, Doo W B, et al. New bathymetry and magnetic lineations identifications in the northernmost South China Sea and their tectonic implications[J]. Marine Geophysical Researches, 2004, 25(1-2): 29-44. doi: 10.1007/s11001-005-0731-7 |
[10] | Li C F, Song T R. Magnetic recording of the Cenozoic oceanic crustal accretion and evolution of the South China Sea Basin[J]. Chinese Science Bulletin, 2012, 57(14): 3165-3181. |
[11] | Barckhausen U, Engels M, Franke D, et al. Evolution of the South China Sea: revised ages for breakup and seafloor spreading[J]. Marine and Petroleum Geology, 2014, 58: 599-611. doi: 10.1016/j.marpetgeo.2014.02.022 |
[12] | Li C F, Xu X, Lin J, et al. Ages and magnetic structures of the South China Sea constrained by deep tow magnetic surveys and IODP Expedition 349[J]. Geochemistry, Geophysics, Geosystems, 2014, 15(12): 4958-4983. doi: 10.1002/2014GC005567 |
[13] |
Koppers A A P. On the 40Ar/39Ar dating of low-potassium ocean crust basalt from IODP Expedition 349, South China Sea[C]//Proceedings of 2014 AGU Fall Meeting. San Francisco: AGU, 2014. |
[14] | 杨胜雄, 邱燕, 朱本铎, 等.南海地质地球物理图系(1:200万)[M].天津:中国航海图书出版社, 2015. YANG Shengxiong, QIU Yan, ZHU Benduo, et al. Atlas of Geology and Geophysics of the South China Sea (1:2000000)[M]. Tianjin: China Navigation Publication Press, 2015. |
[15] | 王贤觉, 吴明清, 梁德华, 等.南海玄武岩的某些地球化学特征[J].地球化学, 1984(4): 332-340. doi: 10.3321/j.issn:0379-1726.1984.04.005 WANG Xianjue, WU Mingqing, LIANG Dehua, et al. Some geochemical characteristics of basalts in the South China Sea[J]. Geochimica, 1984(4): 332-340. doi: 10.3321/j.issn:0379-1726.1984.04.005 |
[16] | Tu K, Flower M F J, Carlson R W, et al. Magmatism in the South China Basin: 1. Isotopic and trace-element evidence for an endogenous Dupal mantle component[J]. Chemical Geology, 1992, 97(1-2): 47-63. |
[17] | 鄢全树, 石学法.海南地幔柱与南海形成演化[J].高校地质学报, 2007, 13(2): 311-322. doi: 10.3969/j.issn.1006-7493.2007.02.014 YAN Quanshu, SHI Xuefa. Hainan mantle plume and the formation and evolution of the South China Sea[J]. Geological Journal of China Universities, 2007, 13(2): 311-322. doi: 10.3969/j.issn.1006-7493.2007.02.014 |
[18] | 鄢全树, 石学法, 王昆山, 等.南海新生代碱性玄武岩主量、微量元素及Sr-Nd-Pb同位素研究[J].中国科学D辑:地球科学, 2008, 38(1): 56-71. YAN Quanshu, SHI Xuefa, WANG Kunshan, et al. Major element, trace element, and Sr, Nd and Pb isotope studies of Cenozoic basalts from the South China Sea[J]. Science in China Series D: Earth Sciences, 2008, 51(4): 550-566. |
[19] | Yan Q S, Shi X F, Yang Y M, et al. Potassium-argon/argon-40-argon-39 geochronology of Cenozoic alkali basalts from the South China Sea[J]. Acta Oceanologica Sinica, 2008, 27(6): 115-123. |
[20] | 王叶剑, 韩喜球, 罗照华, 等.晚中新世南海珍贝-黄岩海山岩浆活动及其演化:岩石地球化学和年代学证据[J].海洋学报, 2009, 31(4): 93-102. WANG Yejian, HAN Xiqiu, LUO Zhaohua, et al. Late Miocene magmatism and evolution of Zhenbei-Huangyan Seamount in the South China Sea: evidence from petrochemistry and chronology[J]. Acta Oceanologica Sinica, 2009, 31(4): 93-102. |
[21] | Lebedev S, Nolet G. Upper mantle beneath southeast Asia from S velocity tomography[J]. Journal of Geophysical Research, 2003, 108(B1): 2048. |
[22] | Montelli R, Nolet G, Dahlen F A, et al. Finite-frequency tomography reveals a variety of plumes in the mantle[J]. Science, 2004, 303(5656): 338-343. doi: 10.1126/science.1092485 |
[23] | Zhao D P. Seismic images under 60 hotspots: search for mantle plumes[J]. Gondwana Research, 2007, 12(4): 335-355. doi: 10.1016/j.gr.2007.03.001 |
[24] | Lei J S, Zhao D P, Steinberger B, et al. New seismic constraints on the upper mantle structure of the Hainan plume[J]. Physics of the Earth and Planetary Interiors, 2009, 173(1-2): 33-50. doi: 10.1016/j.pepi.2008.10.013 |
[25] | 石学法, 鄢全树.南海新生代岩浆活动的地球化学特征及其构造意义[J].海洋地质与第四纪地质, 2011, 31(2): 59-72. SHI Xuefa, YAN Quanshu. Geochemistry of Cenozoic magmatism in the South China Sea and its tectonic implications[J]. Marine Geology & Quaternary Geology, 2011, 31(2): 59-72. |
[26] |
IHO. Standardization of Undersea Feature Names[R]. Bathymetric Publication No.6. Monaco: International Hydrographic Bureau, 2008. |
Location of the study area
3D diagram of Daimao seamount
3D diagram of Guanshi guyot
3D diagram of Longnan seamount
3D diagram of Dazhenzhu seamount
3D diagram of Jiaolong knoll
3D diagram of Liyi knolls