2017 Vol. 37, No. 4
Article Contents

WANG Yongming, LI Sanzhong, LI Xiyao, DAI Liming. DESTRUCTION MECHANISMS OF THE NORTH CHINA CRATON: A REVIEW FROM NUMERICAL SIMULATIONS[J]. Marine Geology & Quaternary Geology, 2017, 37(4): 137-150. doi: 10.16562/j.cnki.0256-1492.2017.04.009
Citation: WANG Yongming, LI Sanzhong, LI Xiyao, DAI Liming. DESTRUCTION MECHANISMS OF THE NORTH CHINA CRATON: A REVIEW FROM NUMERICAL SIMULATIONS[J]. Marine Geology & Quaternary Geology, 2017, 37(4): 137-150. doi: 10.16562/j.cnki.0256-1492.2017.04.009

DESTRUCTION MECHANISMS OF THE NORTH CHINA CRATON: A REVIEW FROM NUMERICAL SIMULATIONS

More Information
  • The North China Craton (NCC) is a typical destroyed craton in China. In the past decades, a number of evidence from geophysical, geochemical and geological studies have proved that the eastern part of the NCC had been significantly destroyed or reactivated in Mesozoic and Cenozoic, indicated by extensive magmatic activities, large-scale tectonic deformation and lithospheric thinning. The dynamic process of the destruction of the NCC has been a hot issue in earth sciences and still remained in debate. Meantime, numerical simulaton has become a powerful mean to reveal the mechanism of the destruction of the NCC. Numerical simulations of NCC destruction have been carried out from the perspectives of delamination, thermal-chemical erosion, subduction dehydration and metasomatism, that have provide model support to various geophysical, geochemical or geological interpretations and helps to understand better of the mechanism of the NCC destruction. However, it has to be pointed out that the destruction of the NCC is quite complicated and the current models are mostly too simplified to sutisfy researchers because of too many limitations. To fully unsderstand the destruction mechanism and dynamic processes of the NCC, some of the following perspectives need to be taken into account: (1) turn the simulation from 2-D to 3-D models, (2) take more realistic rheologic properties of mantle rocks into accont, (3) geological constraints such as plate history be fully considered in plate reconstructions, (4) dynamic couplings of delamination, thermal-chemcial erosion and subduction dehydration be undertaken.

  • 加载中
  • [1] Artemieva I M, Mooney W D. Thermal thickness and evolution of Precambrian lithosphere: a global study[J]. Journal of Geophysical Research, 2001, 106(B8): 16387-16414. doi: 10.1029/2000JB900439

    CrossRef Google Scholar

    [2] Nyblade A A, Pollack H N. A global analysis of heat flow from precambrian terrains: implications for the thermal structure of archean and proterozoic lithosphere[J]. Journal of Geophysical Research, 1993, 98(B7): 12207-12218. doi: 10.1029/93JB00521

    CrossRef Google Scholar

    [3] James D E, Fouch M J, VanDecar J C, et al. Tectospheric structure beneath southern Africa[J]. Geophysical Research Letters, 2001, 28(13): 2485-2488. doi: 10.1029/2000GL012578

    CrossRef Google Scholar

    [4] Lee C T A. Geochemical/petrologic constraints on the origin of cratonic mantle[M]//Benn K, Mareschal J C, Condie K C. Archean Geodynamics and Environments. Washington, DC: American Geophysical Union, 2006: 89-114.

    Google Scholar

    [5] Pollack H N, Hurter S J, Johnson J R. Heat flow from the Earth's interior: analysis of the global data set[J]. Reviews of Geophysics, 1993, 31(3): 267-280. doi: 10.1029/93RG01249

    CrossRef Google Scholar

    [6] Carlson R W, Pearson D G, James D E. Physical, chemical, and chronological characteristics of continental mantle[J]. Reviews of Geophysics, 2005, 43(1), doi: 10.1029/2004RG000156.

    CrossRef Google Scholar

    [7] Lee C T A, Luffi P, Chin E J. Building and destroying continental mantle[J]. Annual Review of Earth and Planetary Sciences, 2011, 39(1): 59-90. doi: 10.1146/annurev-earth-040610-133505

    CrossRef Google Scholar

    [8] Liu D Y, Nutman A P, Compston W, et al. Remnants of ≥3 800 Ma crust in the Chinese part of the sino-korean craton[J]. Geology, 1992, 20(4): 339-342. doi: 10.1130/0091-7613(1992)020<0339:ROMCIT>2.3.CO;2

    CrossRef Google Scholar

    [9] Menzies M, Xu Y G, Zhang H F, et al. Integration of geology, geophysics and geochemistry: a key to understanding the North China Craton[J]. Lithos, 2007, 96(1-2): 1-21. doi: 10.1016/j.lithos.2006.09.008

    CrossRef Google Scholar

    [10] Li S Z, Zhao S J, Liu X, et al. Closure of the Proto-Tethys Ocean and Early Paleozoic amalgamation of microcontinental blocks in East Asia[J]. Earth-Science Reviews, 2017, doi: 10.1016/j.earscirev.2017.01.011.

    CrossRef Google Scholar

    [11] Liu Y S, Gao S, Yuan H L, et al. U-Pb zircon ages and Nd, Sr, and Pb isotopes of lower crustal xenoliths from North China Craton: insights on evolution of lower continental crust[J]. Chemical Geology, 2004, 211(1-2): 87-109. doi: 10.1016/j.chemgeo.2004.06.023

    CrossRef Google Scholar

    [12] Qiu Y M, Gao S, McNaughton N J, et al. First evidence of >3.2 Ga continental crust in the Yangtze craton of South China and its implications for Archean crustal evolution and Phanerozoic tectonics[J]. Geology, 2000, 28(1): 11-14.

    Google Scholar

    [13] Gao S, Rudnick R L, Carlson R W, et al. Re-Os evidence for replacement of ancient mantle lithosphere beneath the North China craton[J]. Earth and Planetary Science Letters, 2002, 198(3-4): 307-322. doi: 10.1016/S0012-821X(02)00489-2

    CrossRef Google Scholar

    [14] Wu F Y, Walker R J, Yang Y H, et al. The chemical-temporal evolution of lithospheric mantle underlying the North China Craton[J]. Geochimica et Cosmochimica Acta, 2006, 70(19): 5013-5034. doi: 10.1016/j.gca.2006.07.014

    CrossRef Google Scholar

    [15] Zhang H F, Goldstein S L, Zhou X H, et al. Evolution of subcontinental lithospheric mantle beneath eastern China: Re-Os isotopic evidence from mantle xenoliths in Paleozoic kimberlites and Mesozoic basalts[J]. Contributions to Mineralogy and Petrology, 2008, 155(3): 271-293. doi: 10.1007/s00410-007-0241-5

    CrossRef Google Scholar

    [16] Wu F Y, Walker R J, Ren X W, et al. Osmium isotopic constraints on the age of lithospheric mantle beneath northeastern China[J]. Chemical Geology, 2003, 196(1-4): 107-129. doi: 10.1016/S0009-2541(02)00409-6

    CrossRef Google Scholar

    [17] Griffin W L, Andi Z, O'Reilly S Y, et al. Phanerozoic evolution of the lithosphere beneath the Sino-Korean Craton[M]//Flower M F J, Chung S L, Lo C H, et al. Mantle Dynamics and Plate Interactions in East Asia. Washington, DC: American Geophysical Union, 1998: 107-126.

    Google Scholar

    [18] 郑建平, 路凤香.胶辽半岛金伯利岩中地幔捕虏体岩石学特征:古生代岩石圈地幔及其不均一性[J].岩石学报, 1999, 15(1): 65-74.

    Google Scholar

    ZHENG Jianping, LU Fengxiang. Mantle xenoliths from kimberlites, Shandong and Liaoning: paleozoic mantle character and its heterogeneity[J]. Acta Petrologica Sinica, 1999, 15(1): 65-74.

    Google Scholar

    [19] Fan Q C, Hooper P R. The mineral chemistry of ultramafic xenoliths of Eastern China: implications for upper mantle composition and the paleogeotherms[J]. Journal of Petrology, 1989, 30(5): 1117-1158. doi: 10.1093/petrology/30.5.1117

    CrossRef Google Scholar

    [20] Fan W M, Zhang H F, Baker J, et al. On and off the North China craton: where is the Archaean keel?[J]. Journal of Petrology, 2000, 41(7): 933-950. doi: 10.1093/petrology/41.7.933

    CrossRef Google Scholar

    [21] Zheng J P, Griffin W L, O'Reilly S Y, et al. A refractory mantle protolith in younger continental crust, east-central China: age and composition of zircon in the Sulu ultrahigh-pressure peridotite[J]. Geology, 2006, 34(9): 705-708. doi: 10.1130/G22569.1

    CrossRef Google Scholar

    [22] Zheng J P, Sun M, Griffin W L, et al. Age and geochemistry of contrasting peridotite types in the Dabie UHP belt, eastern China: petrogenetic and geodynamic implications[J]. Chemical Geology, 2008, 247(1-2): 282-304. doi: 10.1016/j.chemgeo.2007.10.023

    CrossRef Google Scholar

    [23] 吴福元, 葛文春, 孙德有, 等.中国东部岩石圈减薄研究中的几个问题[J].地学前缘, 2003, 10(3): 51-60. doi: 10.3321/j.issn:1005-2321.2003.03.004

    CrossRef Google Scholar

    WU Fuyuan, GE Wenchun, SUN Deyou, et al. Discussions on the lithospheric thinning in eastern China[J]. Earth Science Frontiers, 2003, 10(3): 51-60. doi: 10.3321/j.issn:1005-2321.2003.03.004

    CrossRef Google Scholar

    [24] 郑建平, 路凤香, 余淳梅, 等.华北东部橄榄岩岩石化学特征及其岩石圈地幔演化意义[J].地球科学-中国地质大学学报, 2006, 31(1): 49-56. doi: 10.3321/j.issn:1000-2383.2006.01.007

    CrossRef Google Scholar

    ZHENG Jianping, LU Fengxiang, YU Chunmei, et al. Peridotitic petrochemistry of the eastern North China: significance for lithospheric mantle evolution[J]. Earth Science-Journal of China University of Geosciences, 2006, 31(1): 49-56. doi: 10.3321/j.issn:1000-2383.2006.01.007

    CrossRef Google Scholar

    [25] Xu Y G. Thermo-tectonic destruction of the archaean lithospheric keel beneath the sino-Korean craton in China: evidence, timing and mechanism[J]. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 2001, 26(9-10): 747-757. doi: 10.1016/S1464-1895(01)00124-7

    CrossRef Google Scholar

    [26] Menzies M A, Xu Y G. Geodynamics of the North China craton[M]//Flower M F J, Chung S L, Lo C H, et al. Mantle Dynamics and Plate Interactions in East Asia. Washington, DC: American Geophysical Union, 1998: 155-165.

    Google Scholar

    [27] Chen L. Lithospheric structure variations between the eastern and central North China Craton from S- and P-receiver function migration[J]. Physics of the Earth and Planetary Interiors, 2009, 173(3-4): 216-227. doi: 10.1016/j.pepi.2008.11.011

    CrossRef Google Scholar

    [28] Chen L. Concordant structural variations from the surface to the base of the upper mantle in the North China Craton and its tectonic implications[J]. Lithos, 2010, 120(1-2): 96-115. doi: 10.1016/j.lithos.2009.12.007

    CrossRef Google Scholar

    [29] Chen L, Tao W, Zhao L, et al. Distinct lateral variation of lithospheric thickness in the northeastern North China Craton[J]. Earth and Planetary Science Letters, 2008, 267(1-2): 56-68. doi: 10.1016/j.epsl.2007.11.024

    CrossRef Google Scholar

    [30] Zheng T Y, Chen L, Zhao L, et al. Crust-mantle structure difference across the gravity gradient zone in North China Craton: seismic image of the thinned continental crust[J]. Physics of the Earth and Planetary Interiors, 2006, 159(1-2): 43-58. doi: 10.1016/j.pepi.2006.05.004

    CrossRef Google Scholar

    [31] Zheng T Y, Chen L, Zhao L, et al. Crustal structure across the Yanshan belt at the northern margin of the North China Craton[J]. Physics of the Earth and Planetary Interiors, 2007, 161(1-2): 36-49. doi: 10.1016/j.pepi.2007.01.004

    CrossRef Google Scholar

    [32] Zheng T Y, Zhao L, Xu W W, et al. Insight into modification of North China Craton from seismological study in the Shandong Province[J]. Geophysical Research Letters, 2008, 35(22), doi: 10.1029/2008GL035661.

    CrossRef Google Scholar

    [33] Zheng T Y, Zhao L, Zhu R X. Insight into the geodynamics of cratonic reactivation from seismic analysis of the crust-mantle boundary[J]. Geophysical Research Letters, 2008, 35(8), doi: 10.1029/2008GL033439.

    CrossRef Google Scholar

    [34] Huang J L, Zhao D P. Seismic imaging of the crust and upper mantle under Beijing and surrounding regions[J]. Physics of the Earth and Planetary Interiors, 2009, 173(3-4): 330-348. doi: 10.1016/j.pepi.2009.01.015

    CrossRef Google Scholar

    [35] Xu P F, Zhao D P. Upper-mantle velocity structure beneath the North China Craton: implications for lithospheric thinning[J]. Geophysical Journal International, 2009, 177(3): 1279-1283. doi: 10.1111/j.1365-246X.2009.04120.x

    CrossRef Google Scholar

    [36] Zhu G, Liu G S, Niu M L, et al. Syn-collisional transform faulting of the Tan-Lu fault zone, East China[J]. International Journal of Earth Sciences, 2009, 98(1): 135-155. doi: 10.1007/s00531-007-0225-8

    CrossRef Google Scholar

    [37] Zhu G, Niu M L, Xie C L, et al. Sinistral to normal faulting along the Tan-Lu fault zone: evidence for geodynamic switching of the East China continental margin[J]. The Journal of Geology, 2010, 118(3): 277-293.

    Google Scholar

    [38] Zhu G, Wang Y S, Liu G S, et al. 40Ar/39 Ar dating of strike-slip motion on the Tan-Lu fault zone, East China[J]. Journal of Structural Geology, 2005, 27(8): 1379-1398. doi: 10.1016/j.jsg.2005.04.007

    CrossRef Google Scholar

    [39] Li S Z, Zhao G C, Dai L M, et al. Mesozoic basins in eastern China and their bearing on the deconstruction of the North China Craton[J]. Journal of Asian Earth Sciences, 2012, 47: 64-79. doi: 10.1016/j.jseaes.2011.06.008

    CrossRef Google Scholar

    [40] Li S Z, Zhao G C, Dai L M, et al. Cenozoic faulting of the Bohai Bay Basin and its bearing on the destruction of the eastern North China Craton[J]. Journal of Asian Earth Sciences, 2012, 47: 80-93. doi: 10.1016/j.jseaes.2011.06.011

    CrossRef Google Scholar

    [41] 刘俊来, 关会梅, 纪沫, 等.华北晚中生代变质核杂岩构造及其对岩石圈减薄机制的约束[J].自然科学进展, 2006, 16(1): 21-26. doi: 10.3321/j.issn:1002-008X.2006.01.004

    CrossRef Google Scholar

    LIU Junlai, GUAN Huimei, JI Mo, et al. Tectonic structures of the Late Mesozoic metamorphic core complex in North China and its constraints on mechanisms of lithospheric thinning[J]. Progress in Natural Science, 2006, 16(1): 21-26. doi: 10.3321/j.issn:1002-008X.2006.01.004

    CrossRef Google Scholar

    [42] 李三忠, 张国伟, 周立宏, 等.中、新生代超级汇聚背景下的陆内差异变形:华北伸展裂解和华南挤压逆冲[J].地学前缘, 2011, 18(3): 79-107.

    Google Scholar

    LI Sanzhong, ZHANG Guowei, ZHOU Lihong, et al. The opposite Meso-Cenozoic intracontinental deformations under the super-convergence: rifting and extension in the North China Craton and shortening and thrusting in the South China Craton[J]. Earth Science Frontiers, 2011, 18(3): 79-107.

    Google Scholar

    [43] 李三忠, 索艳慧, 戴黎明, 等.渤海湾盆地形成与华北克拉通破坏[J].地学前缘, 2010, 17(4): 64-89.

    Google Scholar

    LI Sanzhong, SUO Yanhui, DAI Liming, et al. Development of the Bohai Bay Basin and destruction of the North China Craton[J]. Earth Science Frontiers, 2010, 17(4): 64-89.

    Google Scholar

    [44] 朱日祥, 徐义刚, 朱光, 等.华北克拉通破坏[J].中国科学:地球科学, 2012, 42(8): 1135-1159.

    Google Scholar

    ZHU Rixiang, XU Yigang, ZHU Guang, et al. Destruction of the North China craton[J]. Science China Earth Sciences, 2012, 55(10): 1565-1587.

    Google Scholar

    [45] 吴福元, 徐义刚, 高山, 等.华北岩石圈减薄与克拉通破坏研究的主要学术争论[J].岩石学报, 2008, 26(6): 1145-1174.

    Google Scholar

    WU Fuyuan, XU Yigang, GAO Shan, et al. Lithospheric thinning and destruction of the North China Craton[J]. Acta Petrologica Sinica, 2008, 24(6): 1145-1174.

    Google Scholar

    [46] 高山, 金振民.拆沉作用(delamination)及其壳-幔演化动力学意义[J].地质科技情报, 1997, 16(1): 1-9.

    Google Scholar

    GAO Shan, JIN Zhenmin. Delamination and its geodynamical significance for the crust-mantle evolution[J]. Geological Science and Technology Information, 1997, 16(1): 1-9.

    Google Scholar

    [47] 高山, 章军锋, 许文良, 等.拆沉作用与华北克拉通破坏[J].科学通报, 2009, 54(14): 1962-1973.

    Google Scholar

    GAO Shan, ZHANG Junfeng, XU Wenliang, et al. Delamination and destruction of the North China Craton[J]. Chinese Science Bulletin, 2009, 54(19): 3367-3378.

    Google Scholar

    [48] 徐义刚.岩石圈的热-机械侵蚀和化学侵蚀与岩石圈减薄[J].矿物岩石地球化学通报, 1999, 18(1): 1-5.

    Google Scholar

    XU Yigang. Roles of thermo-mechanic and chemical erosion in continental lithospheric thinning[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 1999, 18(1): 1-5.

    Google Scholar

    [49] Gao S, Luo T C, Zhang B R, et al. Chemical composition of the continental crust as revealed by studies in East China[J]. Geochimica et Cosmochimica Acta, 1998, 62(11): 1959-1975. doi: 10.1016/S0016-7037(98)00121-5

    CrossRef Google Scholar

    [50] 高山, Rudnick R L, Carlson R W, 等.华北克拉通岩石圈地幔置换作用和壳幔生长耦合的Re-Os同位素证据[J].地学前缘, 2003, 10(3): 61-67. doi: 10.3321/j.issn:1005-2321.2003.03.005

    CrossRef Google Scholar

    GAO Shan, Rudnick R L, Carlson R W, et al. Removal of lithospheric mantle in the North China Craton: Re-Os isotopic evidence for coupled crust-mantle growth[J]. Earth Science Frontiers, 2003, 10(3): 61-67. doi: 10.3321/j.issn:1005-2321.2003.03.005

    CrossRef Google Scholar

    [51] Gao S, Rudnick R L, Xu W L, et al. Recycling deep cratonic lithosphere and generation of intraplate magmatism in the North China Craton[J]. Earth and Planetary Science Letters, 2008, 270(1-2): 41-53. doi: 10.1016/j.epsl.2008.03.008

    CrossRef Google Scholar

    [52] Wu F Y, Lin J Q, Wilde S A, et al. Nature and significance of the Early Cretaceous giant igneous event in eastern China[J]. Earth and Planetary Science Letters, 2005, 233(1-2): 103-119. doi: 10.1016/j.epsl.2005.02.019

    CrossRef Google Scholar

    [53] Gao S, Rudnick R L, Yuan H L, et al. Recycling lower continental crust in the North China craton[J]. Nature, 2004, 432(7019): 892-897. doi: 10.1038/nature03162

    CrossRef Google Scholar

    [54] 张宏福.橄榄岩-熔体相互作用:克拉通型岩石圈地幔能够被破坏之关键[J].科学通报, 2009, 54(14): 2008-2026.

    Google Scholar

    ZHANG Hongfu. Peridotite-melt interaction: a key point for the destruction of cratonic lithospheric mantle[J]. Chinese Science Bulletin, 2009, 54(19): 3417-3437.

    Google Scholar

    [55] Xia Q K, Liu J, Liu S C, et al. High water content in Mesozoic primitive basalts of the North China Craton and implications on the destruction of cratonic mantle lithosphere[J]. Earth and Planetary Science Letters, 2013, 361: 85-97. doi: 10.1016/j.epsl.2012.11.024

    CrossRef Google Scholar

    [56] Niu Y L. Generation and evolution of basaltic magmas: some basic concepts and a new view on the origin of mesozoic-cenozoic basaltic volcanism in Eastern China[J]. Geological Journal of China Universities, 2005, 11(1): 9-46.

    Google Scholar

    [57] Ames L, Tilton G R, Zhou G Z. Timing of collision of the sino-Korean and Yangtse cratons: U-Pb zircon dating of coesite-bearing eclogites[J]. Geology, 1993, 21(4): 339-342. doi: 10.1130/0091-7613(1993)021<0339:TOCOTS>2.3.CO;2

    CrossRef Google Scholar

    [58] Li S G, Xiao Y L, Liou D L, et al. Collision of the North China and Yangtse blocks and formation of coesite-bearing eclogites: timing and processes[J]. Chemical Geology, 1993, 109(1-4): 89-111. doi: 10.1016/0009-2541(93)90063-O

    CrossRef Google Scholar

    [59] Kusky T M, Windley B F, Zhai M G. Tectonic evolution of the North China Block: from orogen to craton to orogen[M]//Zhai M G, Windley B F, Kusky T M, et al. Mesozoic Sub-Continental Lithospheric Thinning under Eastern Asia. London: Geological Society, Special Publication, 2007, 280: 1-34.

    Google Scholar

    [60] Xiao W J, Windley B F, Hao J, et al. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: termination of the central Asian orogenic belt[J]. Tectonics, 2003, 22(6), doi: 10. 1029/2002TC001484.

    CrossRef Google Scholar

    [61] Seton M, Müller R D, Zahirovic S, et al. Global continental and ocean basin reconstructions since 200 Ma[J]. Earth-Science Reviews, 2012, 113(3-4): 212-270. doi: 10.1016/j.earscirev.2012.03.002

    CrossRef Google Scholar

    [62] 朱日祥, 陈凌, 吴福元, 等.华北克拉通破坏的时间、范围与机制[J].中国科学:地球科学, 2011, 41(5): 583-592.

    Google Scholar

    ZHU Rixiang, CHEN Ling, WU Fuyuan, et al. Timing, scale and mechanism of the destruction of the North China Craton[J]. Science China Earth Sciences, 2011, 54(6): 789-797.

    Google Scholar

    [63] 朱日祥, 郑天愉.华北克拉通破坏机制与古元古代板块构造体系[J].科学通报, 2009, 54(14): 1950-1961.

    Google Scholar

    ZHU Rixiang, ZHENG Tianyu. Destruction geodynamics of the North China Craton and its Paleoproterozoic plate tectonics[J]. Chinese Science Bulletin, 2009, 54(19): 3354-3366.

    Google Scholar

    [64] Bartolini A, Larson R L. Pacific microplate and the Pangea supercontinent in the Early to Middle Jurassic[J]. Geology, 2001, 29(8): 735-738. doi: 10.1130/0091-7613(2001)029<0735:PMATPS>2.0.CO;2

    CrossRef Google Scholar

    [65] Northrup C J, Royden L H, Burchfiel B C. Motion of the pacific plate relative to Eurasia and its potential relation to cenozoic extension along the eastern margin of Eurasia[J]. Geology, 1995, 23(8): 719-722. doi: 10.1130/0091-7613(1995)023<0719:MOTPPR>2.3.CO;2

    CrossRef Google Scholar

    [66] Yang J H, Wu F Y, Chung S L, et al. Rapid exhumation and cooling of the Liaonan metamorphic core complex: inferences from 40Ar/39 Ar thermochronology and implications for Late Mesozoic extension in the eastern North China Craton[J]. Geological Society of America Bulletin, 2007, 119(11-12): 1405-1414. doi: 10.1130/B26085.1

    CrossRef Google Scholar

    [67] Liu J L, Davis G A, Lin Z Y, et al. The Liaonan metamorphic core complex, Southeastern Liaoning Province, North China: a likely contributor to Cretaceous rotation of Eastern Liaoning, Korea and contiguous areas[J]. Tectonophysics, 2005, 407(1-2): 65-80. doi: 10.1016/j.tecto.2005.07.001

    CrossRef Google Scholar

    [68] Ren J Y, Tamaki K, Li S T, et al. Late Mesozoic and Cenozoic rifting and its dynamic setting in Eastern China and adjacent areas[J]. Tectonophysics, 2002, 344(3-4): 175-205. doi: 10.1016/S0040-1951(01)00271-2

    CrossRef Google Scholar

    [69] Sun W D, Ding X, Hu Y H, et al. The golden transformation of the Cretaceous plate subduction in the west Pacific[J]. Earth and Planetary Science Letters, 2007, 262(3-4): 533-542. doi: 10.1016/j.epsl.2007.08.021

    CrossRef Google Scholar

    [70] Yang J H, Wu F Y, Wilde S A. A review of the geodynamic setting of large-scale Late Mesozoic gold mineralization in the North China Craton: an association with lithospheric thinning[J]. Ore Geology Reviews, 2003, 23(3-4): 125-152. doi: 10.1016/S0169-1368(03)00033-7

    CrossRef Google Scholar

    [71] Huang J L, Zhao D P. High-resolution mantle tomography of China and surrounding regions[J]. Journal of Geophysical Research, 2006, 111(B9), doi: 10.1029/2005JB004066.

    CrossRef Google Scholar

    [72] Zhang J J, Zheng Y F, Zhao Z F. Geochemical evidence for interaction between oceanic crust and lithospheric mantle in the origin of Cenozoic continental basalts in east-central China[J]. Lithos, 2009, 110(1-4): 305-326. doi: 10.1016/j.lithos.2009.01.006

    CrossRef Google Scholar

    [73] Wang Y, Zhao Z F, Zheng Y F, et al. Geochemical constraints on the nature of mantle source for Cenozoic continental basalts in east-central China[J]. Lithos, 2011, 125(3-4): 940-955. doi: 10.1016/j.lithos.2011.05.007

    CrossRef Google Scholar

    [74] Xu Z, Zhao Z F, Zheng Y F. Slab-mantle interaction for thinning of cratonic lithospheric mantle in North China: geochemical evidence from Cenozoic continental basalts in central Shandong[J]. Lithos, 2012, 146-147: 202-217. doi: 10.1016/j.lithos.2012.05.019

    CrossRef Google Scholar

    [75] Zhu G, Jiang D Z, Zhang B L, et al. Destruction of the eastern North China Craton in a backarc setting: evidence from crustal deformation kinematics[J]. Gondwana Research, 2012, 22(1): 86-103. doi: 10.1016/j.gr.2011.08.005

    CrossRef Google Scholar

    [76] Jordan T H. Composition and development of the continental tectosphere[J]. Nature, 1978, 274(5671): 544-548. doi: 10.1038/274544a0

    CrossRef Google Scholar

    [77] Jordan T H. Structure and formation of the continental tectosphere[J]. Journal of Petrology, 1988, S(1): 11-37.

    Google Scholar

    [78] Lenardic A, Moresi L N. Some thoughts on the stability of cratonic lithosphere: effects of buoyancy and viscosity[J]. Journal of Geophysical Research, 1999, 104(B6): 12747-12758. doi: 10.1029/1999JB900035

    CrossRef Google Scholar

    [79] Lenardic A, Moresi L N, Mühlhaus H. Longevity and stability of cratonic lithosphere: insights from numerical simulations of coupled mantle convection and continental tectonics[J]. Journal of Geophysical Research, 2003, 108(B6), doi: 10.1029/2002JB001859.

    CrossRef Google Scholar

    [80] Doin M P, Fleitout L, Christensen U. Mantle convection and stability of depleted and undepleted continental lithosphere[J]. Journal of Geophysical Research, 1997, 102(B2): 2771-2787. doi: 10.1029/96JB03271

    CrossRef Google Scholar

    [81] Shapiro S S, Hager B H, Jordan T H. Stability and dynamics of the continental tectosphere[J]. Lithos, 1999, 48(1-4): 115-133. doi: 10.1016/S0024-4937(99)00025-0

    CrossRef Google Scholar

    [82] Sleep N H. Survival of Archean cratonal lithosphere[J]. Journal of Geophysical Research, 2003, 108(B6), doi: 10.1029/2001JB000169.

    CrossRef Google Scholar

    [83] Beuchert M J, Podladchikov Y Y, Simon N S C, et al. Modeling of craton stability using a viscoelastic rheology[J]. Journal of Geophysical Research, 2010, 115(B11), doi: 10.1029/2009JB006482.

    CrossRef Google Scholar

    [84] 乔彦超, 郭子祺, 石耀霖.数值模拟华北克拉通岩石圈减薄的一种可能机制———下地壳榴辉岩重力失稳引起的拆沉[J].地球物理学报, 2012, 55(12): 4249-4256. doi: 10.6038/j.issn.0001-5733.2012.12.036

    CrossRef Google Scholar

    QIAO Yanchao, GUO Ziqi, SHI Yaolin. Numerical simulation of a possible thinning mechanism of the North China Craton-Gravitational instability delamination induced by lower crust eclogite[J]. Chinese Journal of Geophysics, 2012, 55(12): 4249-4256. doi: 10.6038/j.issn.0001-5733.2012.12.036

    CrossRef Google Scholar

    [85] 程华冬, 黄金水.榴辉岩下地壳拆沉的数值模拟[J].中国科学:地球科学, 2017, 47(1): 82-94.

    Google Scholar

    CHENG Huadong, HUANG Jinshui. Numerical simulation on the detachement of eclogitic lower crust[J]. Science China: Earth Sciences, 2017, 47(1): 82-94.

    Google Scholar

    [86] Wang Y M, Huang J S, Zhong S J. Episodic and multistaged gravitational instability of cratonic lithosphere and its implications for reactivation of the North China Craton[J]. Geochemistry, Geophysics, Geosystems, 2015, 16(3): 815-833. doi: 10.1002/2014GC005681

    CrossRef Google Scholar

    [87] Zheng J P, O'Reilly S Y, Griffin W L, et al. Relict refractory mantle beneath the eastern North China block: significance for lithosphere evolution[J]. Lithos, 2001, 57(1): 43-66.

    Google Scholar

    [88] Wang Y M, Huang J S, Zhong S J, et al. Heat flux and topography constraints on thermochemical structure below North China Craton regions and implications for evolution of cratonic lithosphere[J]. Journal of Geophysical Research, 2016, 121(4): 3081-3098.

    Google Scholar

    [89] 乔彦超, 郭子祺, 石耀霖.数值模拟华北克拉通岩石圈热对流侵蚀减薄机制[J].中国科学:地球科学, 2013, 43(4): 642-652.

    Google Scholar

    QIAO Yanchao, GUO Ziqi, SHI Yaolin. Thermal convection thinning of the North China Craton: numerical simulation[J]. Science China: Earth Sciences, 2013, 56(5): 773-782.

    Google Scholar

    [90] 程华冬, 黄金水, 傅容珊.克拉通岩石圈对流减薄的数值模拟[J].地球物理学报, 2016, 59(4): 1293-1308.

    Google Scholar

    CHENG Huadong, HUANG Jinshui, FU Rongshan. Numerical simulation on convective thinning of the cratonic lithosphere[J]. Chinese Journal of Geophysics, 59(4): 1293-1308.

    Google Scholar

    [91] He L J. Numerical modeling of convective erosion and peridotite-melt interaction in big mantle wedge: implications for the destruction of the North China Craton[J]. Journal of Geophysical Research, 2014, 119(4): 3662-3677.

    Google Scholar

    [92] Wang Z S, Kusky T M, Capitanio F A. Lithosphere thinning induced by slab penetration into a hydrous mantle transition zone[J]. Geophysical Research Letters, 2016, 43(22): 11567-11577. doi: 10.1002/2016GL071186

    CrossRef Google Scholar

    [93] Yang J F, Zhao L, Kaus B J P, et al. Slab-triggered wet upwellings produce large volumes of melt: Insights into the destruction of the North China Craton[J]. Tectonophysics, 2017, doi: 10.1016/j.tecto.2017.04.009.

    CrossRef Google Scholar

    [94] Liu M, Cui X J, Liu F T. Cenozoic rifting and volcanism in eastern China: a mantle dynamic link to the Indo-Asian collision?[J]. Tectonophysics, 2004, 393(1-4): 29-42. doi: 10.1016/j.tecto.2004.07.029

    CrossRef Google Scholar

    [95] 吕刚, 赵亮, 郑天愉, 等.变质核杂岩形成的关键条件及其对华北克拉通破坏过程的约束:数值模拟研究[J].中国科学:地球科学, 2016, 46(9): 1278-1290.

    Google Scholar

    LV Gang, ZHAO Liang, ZHENG Tianyu, et al. Determining the key conditions for the formation of metamorphic core complexes by geodynamic modeling and insights into the destruction of North China Craton[J]. Science China: Earth Sciences, 2016, 59(9): 1873-1884.

    Google Scholar

    [96] Wang Y H, Houseman G A, Lin G, et al. Mesozoic lithospheric deformation in the North China block: numerical simulation of evolution from orogenic belt to extensional basin system[J]. Tectonophysics, 2005, 405(1-4): 47-63. doi: 10.1016/j.tecto.2005.05.012

    CrossRef Google Scholar

    [97] Schellart W P, Stegman D R, Farrington R J, et al. Influence of lateral slab edge distance on plate velocity, trench velocity, and subduction partitioning[J]. Journal of Geophysical Research, 2011, 116(B10), doi: 10.1029/2011JB008535.

    CrossRef Google Scholar

    [98] Kincaid C, Griffiths R W. Variability in flow and temperatures within mantle subduction zones[J]. Geochemistry, Geophysics, Geosystems, 2004, 5(6), doi: 10.1029/2003GC000666.

    CrossRef Google Scholar

    [99] Kincaid C, Griffiths R W. Laboratory models of the thermal evolution of the mantle during rollback subduction[J]. Nature, 2003, 425(6953): 58-62. doi: 10.1038/nature01923

    CrossRef Google Scholar

    [100] Karato S I, Wu P. Rheology of the upper mantle: a synthesis[J]. Science, 1993, 260(5109): 771-778. doi: 10.1126/science.260.5109.771

    CrossRef Google Scholar

    [101] Zhang S Q, Karato S I. Lattice preferred orientation of olivine aggregates deformed in simple shear[J]. Nature, 1995, 375(6534): 774-777. doi: 10.1038/375774a0

    CrossRef Google Scholar

    [102] Hirth G, Kohlstedt D. Rheology of the upper mantle and the mantle wedge: a view from the experimentalists[M]//Eiler J. Inside the Subduction Factory. Washington, DC: American Geophysical Union, 2004: 83-105.

    Google Scholar

    [103] van den berg A P, van Keken P E, Yuen D A. The effects of a composite non-newtonian and newtonian rheology on mantle convection[J]. Geophysical Journal International, 1993, 115(1): 62-78. doi: 10.1111/j.1365-246X.1993.tb05588.x

    CrossRef Google Scholar

    [104] Zhong S J, Gurnis M. Interaction of weak faults and non-newtonian rheology produces plate tectonics in a 3D model of mantle flow[J]. Nature, 1996, 383(6597): 245-247. doi: 10.1038/383245a0

    CrossRef Google Scholar

    [105] Zhong S J, Gurnis M, Moresi L. Role of faults, nonlinear rheology, and viscosity structure in generating plates from instantaneous mantle flow models[J]. Journal of Geophysical Research, 1998, 103(B7): 15255-15268. doi: 10.1029/98JB00605

    CrossRef Google Scholar

    [106] van Keken P E, Kiefer B, Peacock S M. High-resolution models of subduction zones: Implications for mineral dehydration reactions and the transport of water into the deep mantle[J]. Geochemistry, Geophysics, Geosystems, 2002, 3(10), doi: 10.1029/2001GC000256.

    CrossRef Google Scholar

    [107] Sharples W, Jadamec M A, Moresi L N, et al. Overriding plate controls on subduction evolution[J]. Journal of Geophysical Research, 2014, 119(8): 6684-6704.

    Google Scholar

    [108] 余珊, 李三忠, 索艳慧, 等.全球三维古地理重建及其地质意义[J].海洋地质与第四纪地质, 2013, 33(6): 147-163.

    Google Scholar

    YU Shan, LI Sanzhong, SUO Yanhui, et al. Global 3D paleogeographic reconstruction and its geological implications[J]. Marine Geology and Quaternary Geology, 2013, 33(6): 147-163.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Article Metrics

Article views(2583) PDF downloads(81) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint