Citation: | LI Sanzhong, SUO Yanhui, GUO Lingli, DAI Liming, ZHOU Lihong, LOU Da. TRANSFER ZONES AND DIFFERENCES IN INTRA-PLATE DEFORMATION IN GREAT QIKOU SAG OF THE BOHAI BAY BASIN[J]. Marine Geology & Quaternary Geology, 2017, 37(4): 98-109. doi: 10.16562/j.cnki.0256-1492.2017.04.006 |
Based on the newly acquired high-resolution 3D seismic data, we analyzed the transfer zones and their bearing on differences in intra-plate deformation in the Great Qikou Sag of the Bohai Bay Basin. The transfer zones in the Great Qikou Sag can be subdivided into three orders: (1) The first-order N—S-trending major transfer zones from west to east, i.e. the East Kongdian Transfer Zone, the Coastal Transfer Zone, and the Yangerzhuang Transfer Zone, corresponding to three basement-involved strike-slip faults, respectively. The three zones play an important role in reconciling the differences in structural styles of the west and east sides of the Great Qikou Sag. (2) The three second-order transfer zones roughly in E—W trending, including the Hangu, Haihe-Xingang, and Qizhong transfer zones, corresponding to the three subbasin-controlling faults from north to south, respectively. They play a role in adjusting the differences between the south, the middle, and the north parts of the Huanghua Depression. (3) The third-order transfer zones are generally perpendicular to its master fault, with the function to transmit the extension among faults. The origin of transfer zones in the Great Qikou Sag varies. The master boundary faults control over the basement-involved structures and differentiation of Cenozoic extension. The existence and development of different transfer zones in the Great Qikou Sag may cause different deformation in different periods and different faulted-blocks in the Huanghua Depression, resulting in differences in structural styles of the different parts of the Great Qikou Sag. For examples the Huanghua Depression is influenced by the roll-back subduction of the Pacific Plate and the collision between the Indian Plate and the Eurasian Plate. The depression is under a dextral transtensional stress field in the Cenozoic, resulting in rifting during the early evolutionary period, and pull-apart faulting during the later evolutionary period. Its principal regional stress underwent clockwise rotation in Cenozoic, from the NWW—SEE-trending extension during the Kongdian- Shasi period to the NW—SE-trending extension during the Shasan-Dongying period, and near N—S-trending extension during the Neogene. Such an evolutionary process can be used to successfully explain the development and evolution of the pull-apart Great Qikou Sag.
[1] | Dahlstrom C D A. Balanced cross sections[J]. Canadian Journal of Earth Sciences, 1969, 6(4): 743-757. doi: 10.1139/e69-069 |
[2] | Gibbs A D. Structural evolution of extensional basin margins[J]. Journal of the Geological Society, 1984, 141(4): 609-620. doi: 10.1144/gsjgs.141.4.0609 |
[3] | Morley C K, Nelson R A, Patton T L, et al. Transfer zones in the East African Rift System and their relevance to hydrocarbon exploration in rifts[J]. AAPG Bulletin, 1990, 74(8): 1234-1253. |
[4] | Faulds J E, Varga R J. The role of accommodation zones and transfer zones in the regional segmentation of extended terranes[C]//Faulds J E, Stewart J H. Accommodation Zones and Transfer Zone: the Regional Segmentation of the Basin and Range Province. Geological Society of America Special Paper. Geological Society of America, 1998, 323: 1-46. |
[5] | Faulds J E, Olson E L, Harlan S S, et al. Miocene extension and fault-related folding in the Highland Range, southern Nevada: a three-dimensional perspective[J]. Journal of Structural Geology, 2002, 24(4): 861-886. doi: 10.1016/S0191-8141(01)00116-X |
[6] | 陈发景, 汪新文, 张光亚, 等.中国中、新生代含油气盆地构造和动力学背景[J].现代地质, 1992, 6(3): 317-327. CHEN Fajing, WANG Xinwen, ZHANG Guangya, et al. Structure and geodynamic setting of oil and gasbasins in the People's Republic of China[J]. Geoscience, 1992, 6(3): 317-327. |
[7] | 孙思敏.东濮凹陷调节构造特征[J].油气地质与采收率, 2007, 14(2): 38-41, 46. doi: 10.3969/j.issn.1009-9603.2007.02.010 SUN Simin. Characteristics of accommodation structures in Dongpu Sag[J]. Petroleum Geology and Recovery Efficiency, 2007, 14(2): 38-41, 46. doi: 10.3969/j.issn.1009-9603.2007.02.010 |
[8] | 刘剑平, 汪新伟, 汪新文.临清坳陷变换构造研究[J].地质科技情报, 2004, 23(4): 51-54. doi: 10.3969/j.issn.1000-7849.2004.04.011 LIU Jianping, WANG Xinwei, WANG Xinwen. Transition structures in Linqing Depression[J]. Geological Science and Technology Information, 2004, 23(4): 51-54. doi: 10.3969/j.issn.1000-7849.2004.04.011 |
[9] | 刘剑平, 汪新文, 周章保, 等.伸展地区变换构造研究进展[J].地质科技情报, 2000, 19(3): 27-32. doi: 10.3969/j.issn.1000-7849.2000.03.006 LIU Jianping, WANG Xinwen, ZHOU Zhangbao, et al. Research advance in transition structure in extended region[J]. Geological Science and Technology Information, 2000, 19(3): 27-32. doi: 10.3969/j.issn.1000-7849.2000.03.006 |
[10] | 孟庆任, 王战, 王翔, 等.新生代黄骅坳陷构造伸展、沉积作用和岩浆活动[J].地质论评, 1993, 39(6): 535-547. doi: 10.3321/j.issn:0371-5736.1993.06.009 MENG Qingren, WANG Zhan, WANG Xiang, et al. Tectonic extension, sedimentation and magmatism of the Cenozoic Huanghua Depression[J]. Geological Review, 1993, 39(6): 535-547. doi: 10.3321/j.issn:0371-5736.1993.06.009 |
[11] | 李三忠, 索艳慧, 戴黎明, 等.渤海湾盆地形成与华北克拉通破坏[J].地学前缘, 2010, 17(4): 64-89. LI Sanzhong, SUO Yanhui, DAI Liming, et al. Development of the Bohai Bay Basin and destruction of the North China Craton[J]. Earth Science Frontiers, 2010, 17(4): 64-89. |
[12] | 漆家福, 陆克政, 张一伟, 等.渤海湾盆地区新生代构造与油气的关系[J].石油大学学报:自然科学版, 1995, 19(S1): 7-13. QI Jiafu, LU Kezheng, ZHANG Yiwei, et al. Relationship between tectonics and hydrocarbon in Bohai Bay Basin Province[J]. Journal of the University of Petroleum, China, 1995, 19(S1): 7-13. |
[13] | 王光奇, 漆家福, 岳云福.歧口凹陷及周缘新生代构造的成因和演化[J].地质科学, 2003, 38(2): 230-240. doi: 10.3321/j.issn:0563-5020.2003.02.010 WANG Guangqi, QI Jiafu, YUE Yunfu. Formation and evolution of the Cenozoic tectonics within and surrounding the Qikou Sag[J]. Chinese Journal of Geology, 2003, 38(2): 230-240. doi: 10.3321/j.issn:0563-5020.2003.02.010 |
[14] | 漆家福, 杨池银.黄骅盆地南部前第三系基底中的逆冲构造[J].地球科学-中国地质大学学报, 2003, 28(1): 54-60. doi: 10.3321/j.issn:1000-2383.2003.01.010 QI Jiafu, YANG Chiyin. Thrust structure developed in pre-tertiary basement in south area of Huanghua Basin[J]. Earth Science-Journal of China University of Geosciences, 2003, 28(1): 54-60. doi: 10.3321/j.issn:1000-2383.2003.01.010 |
[15] | 高战武, 徐杰, 宋长青, 等.华北沧东断裂的构造特征[J].地震地质, 2000, 22(4): 395-404. doi: 10.3969/j.issn.0253-4967.2000.04.008 GAO Zhanwu, XU Jie, SONG Changqing, et al. Structural characters of the Cangdong Fault in North China[J]. Seismology and Geology, 2000, 22(4): 395-404. doi: 10.3969/j.issn.0253-4967.2000.04.008 |
[16] | 周立宏, 李三忠, 刘建忠, 等.渤海湾盆地区前第三系构造演化与潜山油气成藏模式[M].北京:中国科学技术出版社, 2003. ZHOU Lihong, LI Sanzhong, LIU Jianzhong, et al. Pre-Tertiary Tectonic Evolution and Buried Hill-Type Oil-Gas Development and Reservation Under the Bohai Bay Basin[M]. Beijing: China Science and Technology Press, 2003. |
[17] | 祁鹏, 任建业, 史双双, 等.歧口凹陷沿岸带新生代构造特征及其形成机制[J].石油学报, 2010, 31(6): 900-905. QI Peng, REN Jianye, SHI Shuangshuang, et al. Features of the Cenozoic structure of the coastal zone in Qikou Sag and its formation mechanism[J]. Acta Petrolei Sinica, 2010, 31(6): 900-905. |
[18] | 邬光辉, 漆家福.黄骅盆地一级构造变换带的特征与成因[J].石油与天然气地质, 1996, 20(2): 125-128. WU Guanghui, QI Jiafu. Characteristics and origin of first order transfer zones in Huanghua Basin[J]. Oil & Gas Geology, 1996, 20(2): 125-128. |
[19] | 任建业, 廖前进, 卢刚臣, 等.黄骅坳陷构造变形格局与演化过程分析[J].大地构造与成矿学, 2010, 34(4): 461-472. doi: 10.3969/j.issn.1001-1552.2010.04.002 REN Jianye, LIAO Qianjin, LU Gangchen, et al. Deformation framework and evolution of the Huanghua Depression, Bohai Gulf[J]. Geotectonica et Metallogenia, 2010, 34(4): 461-472. doi: 10.3969/j.issn.1001-1552.2010.04.002 |
Tectonic map of the Huanghua Depression and adjacent areas
Tectonic units of the Great Qikou Sag
The main controlling fault system of the Great Qikou Sag
Typical seismic profiles of the major transfer zones of the Great Qikou Sag
Seismic profiles of the second-order transfer zone of the Great Qikou Sag
Cenozoic evolutionary model of the Great Qikou Sag