2017 Vol. 37, No. 4
Article Contents

KONG Xiangchao, LI Sanzhong, WANG Yongming, SUO Yanhui, Dai Liming, WANG Pengcheng, WANG Qian, GUO Lingli, ZHU Junjiang. TRIGGERING CAUSES OF EARTHQUAKES ALONG THE IZU-BONIN-MARIANA SUBDUCTION ZONE[J]. Marine Geology & Quaternary Geology, 2017, 37(4): 83-97. doi: 10.16562/j.cnki.0256-1492.2017.04.005
Citation: KONG Xiangchao, LI Sanzhong, WANG Yongming, SUO Yanhui, Dai Liming, WANG Pengcheng, WANG Qian, GUO Lingli, ZHU Junjiang. TRIGGERING CAUSES OF EARTHQUAKES ALONG THE IZU-BONIN-MARIANA SUBDUCTION ZONE[J]. Marine Geology & Quaternary Geology, 2017, 37(4): 83-97. doi: 10.16562/j.cnki.0256-1492.2017.04.005

TRIGGERING CAUSES OF EARTHQUAKES ALONG THE IZU-BONIN-MARIANA SUBDUCTION ZONE

More Information
  • The correlation coefficient between shallow earthquakes and plate subduction rates along the IBM is calculated in this paper. It suggests that the plate subduction rate is an important parameter to determine the spatial distribution of earthquakes. Statistic of earthquakes reveals that intermediate to deep (60~300 km) seated earthquakes along the Mariana Arc show an obvious feature of segmentation corresponding to the relief of sea floor. It is inferred to be caused by over supply of fluids during the seamount subduction, which leads to the break and local deformation of the subducting slab and change in coupling of thermal pattern. A counter surface of 8.0 km/s from the global P-wave model beneath the Mariana Arc is extracted and presented by the Paraview software. Two gaps are observed under the north and south ends of the Mariana Arc, owing to the tearing up of the subducting slab, which is stronger in the north and weaker in the south, and the difference in subduction rate in the northern Ogasawara Plateau and the southern Caroline Ridge respectively. The gravity and earthquake data also reveals that in the southern part of the Mariana Arc there may be strong interplate coupling, and 3D P-wave speed map shows that the 410~670 km remanent Pacific Plate beneath the Philippine Sea Plate extend to the southwest and there is an indirect contact with the subducting Pacific plate from the southern Mariana Arc. A preliminary deduction is that the deep structure and the buoyant Caroline Ridge may determine the existence of the rotation pole located at 8°N, 137.3°E in the southern Mariana.

  • 加载中
  • [1] Kanamori H. Great earthquakes at island arcs and the lithosphere[J]. Tectonophysics, 1971, 12(3): 187-198. doi: 10.1016/0040-1951(71)90003-5

    CrossRef Google Scholar

    [2] Lay T, Kanamori H, Ruff L J. The asperity model and the nature of large subduction zone earthquakes[J]. Earthquake Prediction Research, 1982, 1(1): 3-71.

    Google Scholar

    [3] Chiu J M, Isacks B L, Cardwell R K. 3-D configuration of subducted lithosphere in the Western Pacific[J]. Geophysical Journal International, 1991, 106(1): 99-111. doi: 10.1111/j.1365-246X.1991.tb04604.x

    CrossRef Google Scholar

    [4] Jaxybulatov K, Koulakov I, Dobretsov N L. Segmentation of the Izu-Bonin and Mariana slabs based on the analysis of the Benioff seismicity distribution and regional tomography results[J]. Solid Earth, 2013, 4(1): 59-73. doi: 10.5194/se-4-59-2013

    CrossRef Google Scholar

    [5] Kelleher J, McCann W. Buoyant zones, great earthquakes, and unstable boundaries of subduction[J]. Journal of Geophysical Research, 1976, 81(26): 4885-4896. doi: 10.1029/JB081i026p04885

    CrossRef Google Scholar

    [6] Watts A B, Koppers A A P, Robinson D P. Seamount subduction and earthquakes[J]. Oceanography, 2010, 23(1): 166-173. doi: 10.5670/oceanog.2010.68

    CrossRef Google Scholar

    [7] Ruff L J, Kanamori H. Seismicity and the subduction process[J]. Physics of the Earth and Planetary Interiors, 1980, 23(3): 240-252. doi: 10.1016/0031-9201(80)90117-X

    CrossRef Google Scholar

    [8] Cloos M, Shreve R L. Shear-zone thickness and the seismicity of Chilean- and Marianas-type subduction zones[J]. Geology, 1996, 24(2): 107-110.

    Google Scholar

    [9] Gutscher M A, Westbrook G K. Great earthquakes in slow-subduction, low-taper margins[M]//Lallemand S, Funiciello F. Subduction Zone Geodynamics. Frontiers in Earth Sciences. Berlin Heidelberg: Springer, 2009: 119-133.

    Google Scholar

    [10] Syracuse E M, van Keken P E, Abers G A. The global range of subduction zone thermal models[J]. Physics of the Earth and Planetary Interiors, 2010, 183(1-2): 73-90. doi: 10.1016/j.pepi.2010.02.004

    CrossRef Google Scholar

    [11] Heuret A, Lallemand S, Funiciello F, et al. Physical characteristics of subduction interface type seismogenic zones revisited[J]. Geochemistry, Geophysics, Geosystems, 2011, 12(1): Q01004.

    Google Scholar

    [12] 邢健, 郝天珧, 胡立天, 等.对日本俯冲带与IBM俯冲带俯冲特征的地球物理研究:来自重力与震源分布数据的启示[J].地球物理学报, 2016, 59(1): 116-140. doi: 10.3969/j.issn.1672-7940.2016.01.020

    CrossRef Google Scholar

    XING Jian, HAO Tianyao, HU Litian, et al. Characteristics of the Japan and IBM subduction zones: Evidence from gravity and distribution of earthquake sources[J]. Chinese Journal of Geophysics, 2016, 59(1): 116-140. doi: 10.3969/j.issn.1672-7940.2016.01.020

    CrossRef Google Scholar

    [13] Gudmundsson ó, Sambridge M. A regionalized upper mantle (RUM) seismic model[J]. Journal of Geophysical Research, 1998, 103(B4): 7121-7136. doi: 10.1029/97JB02488

    CrossRef Google Scholar

    [14] Miller M S, Kennett B L N, Lister G S. Imaging changes in morphology, geometry, and physical properties of the subducting Pacific plate along the Izu-Bonin-Mariana arc[J]. Earth and Planetary Science Letters, 2004, 224(3-4): 363-370. doi: 10.1016/j.epsl.2004.05.018

    CrossRef Google Scholar

    [15] Miller M S, Gorbatov A, Kennett B L N. Heterogeneity within the subducting Pacific slab beneath the Izu-Bonin-Mariana arc: Evidence from tomography using 3D ray tracing inversion techniques[J]. Earth and Planetary Science Letters, 2005, 235(1-2): 331-342. doi: 10.1016/j.epsl.2005.04.007

    CrossRef Google Scholar

    [16] Wei W, Xu J D, Zhao D P, et al. East Asia mantle tomography: New insight into plate subduction and intraplate volcanism[J]. Journal of Asian Earth Sciences, 2012, 60: 88-103. doi: 10.1016/j.jseaes.2012.08.001

    CrossRef Google Scholar

    [17] Shi X J. Spatial differences of the earthquake distribution along the island-arcs in the Western Pacific and their causes[J]. Seismology and Geology, 1998, 20(4): 399-404.

    Google Scholar

    [18] Stern R J, Fouch M J, Klemperer S L. An overview of the Izu-Bonin-Mariana subduction factory[M]//Eiler J. Inside the Subduction Factory. Washington, DC: American Geophysical Union, 2003: 175-222.

    Google Scholar

    [19] Scholz C H, Small C. The effect of seamount subduction on seismic coupling[J]. Geology, 1997, 25(6): 487-490. doi: 10.1130/0091-7613(1997)025<0487:TEOSSO>2.3.CO;2

    CrossRef Google Scholar

    [20] Das S, Watts A B. Effect of subducting seafloor topography on the rupture characteristics of great subduction zone earthquakes[M]//Lallemand S, Funiciello F. Subduction Zone Geodynamics. Frontiers in Earth Sciences. Berlin Heidelberg: Springer, 2009: 103-118.

    Google Scholar

    [21] Mochizuki K, Yamada T, Shinohara M, et al. Weak interplate coupling by seamounts and repeating M ~7 earthquakes[J]. Science, 2008, 321(5893): 1194-1197. doi: 10.1126/science.1160250

    CrossRef Google Scholar

    [22] Cloos M. Thrust-type subduction-zone earthquakes and seamount asperities: A physical model for seismic rupture[J]. Geology, 1992, 20(7): 601-604. doi: 10.1130/0091-7613(1992)020<0601:TTSZEA>2.3.CO;2

    CrossRef Google Scholar

    [23] Kodaira S, Takahashi N, Nakanishi A, et al. Subducted seamount imaged in the rupture zone of the 1946 Nankaido earthquake[J]. Science, 2000, 289(5476): 104-106. doi: 10.1126/science.289.5476.104

    CrossRef Google Scholar

    [24] Husen S, Kissling E, Quintero R. Tomographic evidence for a subducted seamount beneath the Gulf of Nicoya, Costa Rica: The cause of the 1990 Mw=7.0 Gulf of Nicoya earthquake[J]. Geophysical Research Letters, 2002, 29(8): 79-1-79-4. doi: 10.1029/2001GL014045

    CrossRef Google Scholar

    [25] Oleskevich D A, Hyndman R D, Wang K. The updip and downdip limits to great subduction earthquakes: Thermal and structural models of Cascadia, south Alaska, SW Japan, and Chile[J]. Journal of Geophysical Research, 1999, 104(B7): 14965-14991. doi: 10.1029/1999JB900060

    CrossRef Google Scholar

    [26] Currie C A, Hyndman R D, Wang K, et al. Thermal models of the Mexico subduction zone: Implications for the megathrust seismogenic zone[J]. Journal of Geophysical Research, 2002, 107(B12): ETG 15-1-ETG 15-13. doi: 10.1029/2001JB000886

    CrossRef Google Scholar

    [27] Rosenbaum G, Gasparon M, Lucente F P, et al. Kinematics of slab tear faults during subduction segmentation and implications for Italian magmatism[J]. Tectonics, 2008, 27(2): TC2008.

    Google Scholar

    [28] Gvirtzman Z, Stern R J. Bathymetry of Mariana trench-arc system and formation of the Challenger Deep as a consequence of weak plate coupling[J]. Tectonics, 2004, 23(2): TC2011.

    Google Scholar

    [29] Miller M S, Kennett B L N, Toy V G. Spatial and temporal evolution of the subducting Pacific plate structure along the western Pacific margin[J]. Journal of Geophysical Research, 2006, 111(B2): B02401.

    Google Scholar

    [30] Jarrard R D. Relations among subduction parameters[J]. Reviews of Geophysics, 1986, 24(2): 217-284. doi: 10.1029/RG024i002p00217

    CrossRef Google Scholar

    [31] Pacheco J F, Sykes L R, Scholz C H. Nature of seismic coupling along simple plate boundaries of the subduction type[J]. Journal of Geophysical Research, 1993, 98(B8): 14133-14159. doi: 10.1029/93JB00349

    CrossRef Google Scholar

    [32] Heuret A, Lallemand S. Plate motions, slab dynamics and back-arc deformation[J]. Physics of the Earth and Planetary Interiors, 2005, 149(1-2): 31-51. doi: 10.1016/j.pepi.2004.08.022

    CrossRef Google Scholar

    [33] DeMets C, Gordon R G, Argus D F, et al. Effect of recent revisions to the geomagnetic reversal time scale on estimates of current plate motions[J]. Geophysical Research Letters, 1994, 21(20): 2191-2194. doi: 10.1029/94GL02118

    CrossRef Google Scholar

    [34] Simmons N A, Myers S C, Johannesson G, et al. LLNL-G3Dv3: Global P wave tomography model for improved regional and teleseismic travel time prediction[J]. Journal of Geophysical Research, 2012, 117(B10): B10302.

    Google Scholar

    [35] Seno T, Maruyama S. Paleogeographic reconstruction and origin of the Philippine Sea[J]. Tectonophysics, 1984, 102(1-4): 53-84. doi: 10.1016/0040-1951(84)90008-8

    CrossRef Google Scholar

    [36] Seno T, Stein S, Gripp A E. A model for the motion of the Philippine Sea Plate consistent with NUVEL-1 and geological data[J]. Journal of Geophysical Research, 1993, 98(B10): 17941-17948. doi: 10.1029/93JB00782

    CrossRef Google Scholar

    [37] 臧绍先, 宁杰远.西太平洋俯冲带的研究及其动力学意义[J].地球物理学报, 1996, 39(2): 188-202. doi: 10.3321/j.issn:0001-5733.1996.02.006

    CrossRef Google Scholar

    ZANG Shaoxian, NING Jieyuan. Study on the subduction zone in Western Pacific and its implication for the geodynamics[J]. Chinese Journal of Geophysics, 1996, 39(2): 188-202. doi: 10.3321/j.issn:0001-5733.1996.02.006

    CrossRef Google Scholar

    [38] Oakley A J, Taylor B, Moore G F. Pacific Plate subduction beneath the central Mariana and Izu-Bonin fore arcs: New insights from an old margin[J]. Geochemistry, Geophysics, Geosystems, 2008, 9(6): Q06003.

    Google Scholar

    [39] Hussong D M, Uyeda S. Tectonic processes and the history of the Mariana Arc: A synthesis of the results of Deep Sea Drilling Project Leg[M]//Hussong D M. Initial Report of the Deep Sea Drilling Project. 1982, 60: 909-929.

    Google Scholar

    [40] 石学法, 鄢全树.西太平洋典型边缘海盆的岩浆活动[J].地球科学进展, 2013, 28(7): 737-750.

    Google Scholar

    SHI Xuefa, YAN Quanshu. Magmatism of typical marginal basins (or back-arc basins) in the West Pacific[J]. Advances in Earth Science, 2013, 28(7): 737-750.

    Google Scholar

    [41] Deschamps A, Fujiwara T. Asymmetric accretion along the slow-spreading Mariana Ridge[J]. Geochemistry, Geophysics, Geosystems, 2003, 4(10): 8622.

    Google Scholar

    [42] Yamazaki T, Seama N, Okino K, et al. Spreading process of the northern Mariana Trough: Rifting-spreading transition at 22°N[J]. Geochemistry, Geophysics, Geosystems, 2003, 4(9): 1075.

    Google Scholar

    [43] Seama N, Okino K. Asymmetric seafloor spreading of the southern Mariana trough back-arc basin[M]//Ishibashi J, Okino K, Sunamura M. Subseafloor Biosphere Linked to Hydrothermal Systems. Tokyo, Japan: Springer, 2015: 253-260.

    Google Scholar

    [44] 宋传中, 钱德玲.西北太平洋岛弧系列成因的探讨[J].地质论评, 1993, 39(1): 1-8. doi: 10.3321/j.issn:0371-5736.1993.01.001

    CrossRef Google Scholar

    SONG Chuanzhong, QIAN Deling. The genesis of the Northwest Pacific island arc system[J]. Geological Review, 1993, 39(1): 1-8. doi: 10.3321/j.issn:0371-5736.1993.01.001

    CrossRef Google Scholar

    [45] Amante C, Eakins B W. ETOPO1 1 arc-minute global relief model: Procedures, data sources and analysis[R]. NOAA Technical Memorandum NESDIS NGDC-24, National Geophysical Data Center, NOAA, 2009, doi: 10.7289/V5C8276M.

    Google Scholar

    [46] Fujiwara T, Tamura C, Nishizawa A, et al. Morphology and tectonics of the yap trench[J]. Marine Geophysical Researches, 2000, 21(1-2): 69-86.

    Google Scholar

    [47] Okino K, Ohara Y, Kasuga S, Kato, Y. The Philippine Sea: New survey results reveal the structure and the history of the marginal basins[J]. Geophysical Research Letters, 1999, 26(15): 2287-2290. doi: 10.1029/1999GL900537

    CrossRef Google Scholar

    [48] Fujioka K, Kanamatsu T, Ohara Y, et al. Parece Vela Rift and Central Basin Fault revisited—STEPS-IV (structure, tectonics and evolution of the Philippine Sea)—cruise summary report[J]. InterRidge News, 2000, 9(1): 18-22.

    Google Scholar

    [49] 宋永东, 马小川, 张广旭, 等.西太平洋雅浦海沟区海底热流原位测量[J].海洋地质与第四纪地质, 2016, 36(4): 51-56.

    Google Scholar

    SONG Yongdong, MA Xiaochuan, ZHANG Guangxu, et al. Heat flow in-situ measurement at yap trench of the Western Pacific[J]. Marine Geology and Quaternary Geology, 2016, 36(4): 51-56.

    Google Scholar

    [50] Hayes G P, Wald D J, Johnson R L. Slab1.0: A three-dimensional model of global subduction zone geometries[J]. Journal of Geophysical Research, 2012, 117(B1): B01302.

    Google Scholar

    [51] Nishizawa A, Kaneda K, Watanabe N, et al. Seismic structure of the subducting seamounts on the trench axis: Erimo Seamount and Daiichi-Kashima Seamount, northern and southern ends of the Japan Trench[J]. Earth, Planets and Space, 2009, 61(3): BF03352912.

    Google Scholar

    [52] Singh S C, Hananto N, Mukti M, et al. Aseismic zone and earthquake segmentation associated with a deep subducted seamount in Sumatra[J]. Nature Geoscience, 2011, 4(5): 308-311. doi: 10.1038/ngeo1119

    CrossRef Google Scholar

    [53] 张锦明, 游雄.地形起伏度最佳分析区域研究[J].测绘科学技术学报, 2011, 28(5): 369-373. doi: 10.3969/j.issn.1673-6338.2011.05.014

    CrossRef Google Scholar

    ZHANG Jinming, YOU Xiong. Investigating optimum statistical unit of relief[J]. Journal of Geomatics Science and Technology, 2011, 28(5): 369-373. doi: 10.3969/j.issn.1673-6338.2011.05.014

    CrossRef Google Scholar

    [54] Lallemand S. Active continental margin[M]//Harff J, Meschede M, Petersen S, et al. Encyclopedia of Marine Geosciences. Netherlands: Springer, 2014: 1-6.

    Google Scholar

    [55] Dziewonski A M, Chou T A, Woodhouse J H. Determination of earthquake source parameters from waveform data for studies of global and regional seismicity[J]. Journal of Geophysical Research, 1981, 86(B4): 2825-2852. doi: 10.1029/JB086iB04p02825

    CrossRef Google Scholar

    [56] Watts A B, Ribe N M. On geoid heights and flexure of the lithosphere at seamounts[J]. Journal of Geophysical Research, 1984, 89(B13): 11152-11170. doi: 10.1029/JB089iB13p11152

    CrossRef Google Scholar

    [57] Sandwell D T, Smith W H F. Marine gravity anomaly from GEOSAT and ERS 1 satellite altimetry[J]. Journal of Geophysical Research, 1997, 102(B5): 10039-10054. doi: 10.1029/96JB03223

    CrossRef Google Scholar

    [58] Koppers A A P, Watts A B. Intraplate seamounts as a window into deep earth processes[J]. Oceanography, 2010, 23(1): 42-57. doi: 10.5670/oceanog.2010.61

    CrossRef Google Scholar

    [59] Dominguez S, Lallemand S E, Malavieille J, et al. Upper plate deformation associated with seamount subduction[J]. Tectonophysics, 1998, 293(3-4): 207-224. doi: 10.1016/S0040-1951(98)00086-9

    CrossRef Google Scholar

    [60] Bautista B C, Bautista M L P, Oike K, et al. A new insight on the geometry of subducting slabs in northern Luzon, Philippines[J]. Tectonophysics, 2001, 339(3-4): 279-310. doi: 10.1016/S0040-1951(01)00120-2

    CrossRef Google Scholar

    [61] Ranero C R, Morgan J P, McIntosh K, et al. Bending-related faulting and mantle serpentinization at the Middle America trench[J]. Nature, 2003, 425(6956): 367-373. doi: 10.1038/nature01961

    CrossRef Google Scholar

    [62] Fryer P, Smoot N C. Processes of seamount subduction in the Mariana and Izu-Bonin trenches[J]. Marine Geology, 1985, 64(1-2): 77-90. doi: 10.1016/0025-3227(85)90161-6

    CrossRef Google Scholar

    [63] Fryer P, Becker N, Appelgate B, et al. Why is the challenger deep so deep?[J]. Earth and Planetary Science Letters, 2003, 211(3-4): 259-269. doi: 10.1016/S0012-821X(03)00202-4

    CrossRef Google Scholar

    [64] Chen P F, Chen K X, Cheng H Y. Frequent excitations of T waves by earthquakes in the South Mariana Arc[J]. Journal of Asian Earth Sciences, 2015, 98: 50-60. doi: 10.1016/j.jseaes.2014.10.033

    CrossRef Google Scholar

    [65] Gripp A E, Gordon R G. Young tracks of hotspots and current plate velocities[J]. Geophysical Journal International, 2002, 150(2): 321-361. doi: 10.1046/j.1365-246X.2002.01627.x

    CrossRef Google Scholar

    [66] Peacock S M, Wang K L. Seismic consequences of warm versus cool subduction metamorphism: Examples from Southwest and Northeast Japan[J]. Science, 1999, 286(5441): 937-939. doi: 10.1126/science.286.5441.937

    CrossRef Google Scholar

    [67] Müller R D, Seton M, Zahirovic S, et al. Ocean basin evolution and global-scale plate reorganization events since Pangea breakup[J]. Annual Review of Earth and Planetary Sciences, 2016, 44(1): 107-138. doi: 10.1146/annurev-earth-060115-012211

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(12)

Article Metrics

Article views(2309) PDF downloads(84) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint