2017 Vol. 37, No. 3
Article Contents

ZHAO Song, CHANG Fengming, LI Tiegang, XU Ye. THE APPLICATION OF GRAIN-SIZE END MEMBER ALGORITHM TO PALEOENVIRONMENTAL RECONSTRUCTION ON INNER SHELF OF EAST CHINA SEA[J]. Marine Geology & Quaternary Geology, 2017, 37(3): 187-196. doi: 10.16562/j.cnki.0256-1492.2017.03.019
Citation: ZHAO Song, CHANG Fengming, LI Tiegang, XU Ye. THE APPLICATION OF GRAIN-SIZE END MEMBER ALGORITHM TO PALEOENVIRONMENTAL RECONSTRUCTION ON INNER SHELF OF EAST CHINA SEA[J]. Marine Geology & Quaternary Geology, 2017, 37(3): 187-196. doi: 10.16562/j.cnki.0256-1492.2017.03.019

THE APPLICATION OF GRAIN-SIZE END MEMBER ALGORITHM TO PALEOENVIRONMENTAL RECONSTRUCTION ON INNER SHELF OF EAST CHINA SEA

More Information
  • In order to assess the difference and applicability of different end-member algorithms in paleoenvironmental reconstruction for the inner shelf of the East China Sea (ECS), six common methods, including nonnegative matrix factorization, eigenvector rotation, hierarchical Bayesian algorithm, grain-size class vs. standard deviation, fitting with theoretical function, and factor analysis, are used to extract the grain-size end members of sediments in core DC1 from the ECS inner shelf. Based on comparison and evaluation of different end members extracted from the above six approaches, their deviations and availabilities are discussed. Two sedimentologically meaningful end members (coarse-grained and fine-grained end members) are deduced by all the six methods. Particle size of mode for the end members from five of the six modeling, except that from factor analysis, are consistent with each other, and the content variations of those end members exhibit fairly uniform downcore pattern along the core DC1. The coarse-grained end members for the five modeling represent transgressive sand deposit, and the fine-grained end members represent fluvial fine-silty deposit. However, the coarse-grained end member from factor analysis indicates storm deposits, and the fine one indicates re-suspended deposits induced by current-wave. Although there are some differences in the particle size distribution and content variation in different end members, the six grain-size end-member approaches have good availabilities for the past environment reconstruction on the ECS inner shelf. The variations in end members are effective to indicate the phase change in hydrodynamic environment caused by the sea-level fluctuation since the last glacial maximum.

  • 加载中
  • [1] Folk R L, Ward W C. Brazos river bar [Texas]; a study in the significance of grain size parameter[J]. Journal of Sedimentary Research, 1957, 27(1): 3-26. doi: 10.1306/74D70646-2B21-11D7-8648000102C1865D

    CrossRef Google Scholar

    [2] Mason C C, Folk R L. Differentiation of beach, dune, and Aeolian flat environments by size analysis, Mustang Island, Texas[J]. Journal of Sedimentary Research, 1958, 28(2): 211-226.

    Google Scholar

    [3] Friedman G M. Distinction between dune, beach, and river sands from their textural characteristics[J]. Journal of Sedimentary Research, 1961, 31(4): 514-529.

    Google Scholar

    [4] Friedman G M. Dynamic processes and statistical parameters compared for size frequency distribution of beach and river sands[J]. Journal of Sedimentary Research, 1967, 37(2): 327-354. doi: 10.1306/74D716CC-2B21-11D7-8648000102C1865D

    CrossRef Google Scholar

    [5] Visher G S. Fluvial processes as interpreted from ancient and recent fluvial deposits[C]//Primary Sedimentary Structures and Their Hydrodynamic Interpretation. Tulsa, USA: SEPM, 1965: 116-132.

    Google Scholar

    [6] Visher G S. Grain size distributions and depositional processes[J]. Journal of Sedimentary Research, 1969, 39(3): 1074-1106.

    Google Scholar

    [7] Passega R. Texture as characteristic of clastic deposition[J]. AAPG Bulletin, 1957, 41(9): 1952-1984.

    Google Scholar

    [8] Passega R. Grain size representation by CM patterns as a geologic tool[J]. Journal of Sedimentary Research, 1964, 34(4): 830-847. doi: 10.1306/74D711A4-2B21-11D7-8648000102C1865D

    CrossRef Google Scholar

    [9] Paterson G A, Heslop D. New methods for unmixing sediment grain size data[J]. Geochemistry, Geophysics, Geosystems, 2015, 16(12): 4494-4506, doi: 10.1002/2015GC006070.

    CrossRef Google Scholar

    [10] Weltje G J. End-member modeling of compositional data: numerical-statistical algorithms for solving the explicit mixing problem[J]. Mathematical Geology, 1997, 29(4): 503-549. doi: 10.1007/BF02775085

    CrossRef Google Scholar

    [11] Dietze E, Hartmann K, Diekmann B, et al. An end-member algorithm for deciphering modern detrital processes from lake sediments of Lake Donggi Cona, NE Tibetan Plateau, China[J]. Sedimentary Geology, 2012, 243-244: 169-180. doi: 10.1016/j.sedgeo.2011.09.014

    CrossRef Google Scholar

    [12] Yu S Y, Colman S M, Li L X. BEMMA: a hierarchical Bayesian end-member modeling analysis of sediment grain-size distributions[J]. Mathematical Geosciences, 2016, 48(6): 723-741. doi: 10.1007/s11004-015-9611-0

    CrossRef Google Scholar

    [13] Sun D H, Bloemendal J, Rea D K, et al. Grain-size distribution function of polymodal sediments in hydraulic and Aeolian environments, and numerical partitioning of the sedimentary components[J]. Sedimentary Geology, 2002, 152(3-4): 263-277. doi: 10.1016/S0037-0738(02)00082-9

    CrossRef Google Scholar

    [14] Boulay S, Colin C, Trentesaux A, et al. Mineralogy and Sedimentology of Pleistocene Sediment in the South China Sea (ODP Site 1144)[C]//Prell W L, Wang P, Blum P, et al. Proceedings of the Ocean Drilling Program Scientific Results. College Station, TX: Ocean Drilling Program, 2003.

    Google Scholar

    [15] Zheng X F, Li A C, Wan S M, et al. ITCZ and ENSO pacing on East Asian winter monsoon variation during the Holocene: sedimentological evidence from the Okinawa Trough[J]. Journal of Geophysical Research: Oceans, 2014, 119(7): 4410-4429. doi: 10.1002/2013JC009603

    CrossRef Google Scholar

    [16] Xu K H, Li A C, Liu J P, et al. Provenance, structure, and formation of the mud wedge along inner continental shelf of the East China Sea: a synthesis of the Yangtze dispersal system[J]. Marine Geology, 2012, 291-294: 176-191. doi: 10.1016/j.margeo.2011.06.003

    CrossRef Google Scholar

    [17] Liu J P, Xu K H, Li A C, et al. Flux and fate of Yangtze River sediment delivered to the East China Sea[J]. Geomorphology, 2007, 85(3-4): 208-224. doi: 10.1016/j.geomorph.2006.03.023

    CrossRef Google Scholar

    [18] Hartmann K, Wünnemann B. Hydrological changes and Holocene climate variations in NW China, inferred from lake sediments of Juyanze palaeolake by factor analyses[J]. Quaternary International, 2009, 194(1-2): 28-44. doi: 10.1016/j.quaint.2007.06.037

    CrossRef Google Scholar

    [19] Stuiver M, Reimer P J. Extended 14C data base and revised CALIB 3.0 14C age calibration program[J]. Radiocarbon, 1993, 35(1): 215-230. doi: 10.1017/S0033822200013904

    CrossRef Google Scholar

    [20] Reimer P J, Bard E, Bayliss A, et al. Intcal13 and marine13 radiocarbon age calibration curves 0-50, 000 YEARS CAL BP[J]. Radiocarbon, 2013, 55(4): 1869-1887. doi: 10.2458/azu_js_rc.55.16947

    CrossRef Google Scholar

    [21] Qin J G, Wu G X, Zheng H B, et al. The palynology of the First Hard Clay Layer (late Pleistocene) from the Yangtze delta, China[J]. Review of Palaeobotany and Palynology, 2008, 149(1-2): 63-72. doi: 10.1016/j.revpalbo.2007.10.003

    CrossRef Google Scholar

    [22] 胡刚, 刘健, 时连强. 2008年洪水期长江口滨外区悬浮泥沙特征[J].海洋地质前沿, 2011, 27(9): 6-10.

    Google Scholar

    HU Gang, LIU Jian, SHI Lianqiang. The characteristics of suspended deposits in the offshore area of the Changjiang estuary during flood season[J]. Marine Geology Frontiers, 2011, 27(9): 6-10.

    Google Scholar

    [23] 李军, 高抒, 曾志刚, 等.长江口悬浮体粒度特征及其季节性差异[J].海洋与湖沼, 2003, 34(5): 499-510. doi: 10.3321/j.issn:0029-814X.2003.05.005

    CrossRef Google Scholar

    LI Jun, GAO Shu, ZENG Zhigang, et al. Particle-size characteristics and seasonal variability of suspended particulate matters in the Changjiang river estuary[J]. Oceanologia et Limnologia Sinica, 2003, 34(5): 499-510. doi: 10.3321/j.issn:0029-814X.2003.05.005

    CrossRef Google Scholar

    [24] 李军, 高抒, 贾建军, 等. 1998年11月长江河口悬浮体粒度特征的空间分布[J].海洋通报, 2003, 22(6): 21-29. doi: 10.3969/j.issn.1001-6392.2003.06.004

    CrossRef Google Scholar

    LI Jun, GAO Shu, JIA Jianjun, et al. Spatial variation of the suspended particulate matter grain-size in the Yangtze Estuary[J]. Marine Science Bulletin, 2003, 22(6): 21-29. doi: 10.3969/j.issn.1001-6392.2003.06.004

    CrossRef Google Scholar

    [25] 肖尚斌, 李安春.东海内陆架泥区沉积物的环境敏感粒度组分[J].沉积学报, 2005, 23(1): 122-129. doi: 10.3969/j.issn.1000-0550.2005.01.016

    CrossRef Google Scholar

    XIAO Shangbin, LI Anchun. A study on environmentally sensitive grain-size population in inner shelf of the East China Sea[J]. Acta Sedimentologica Sinica, 2005, 23(1): 122-129. doi: 10.3969/j.issn.1000-0550.2005.01.016

    CrossRef Google Scholar

    [26] 王可, 郑洪波, Prins M, 等.东海内陆架泥质沉积反映的古环境演化[J].海洋地质与第四纪地质, 2008, 28(4): 1-10.

    Google Scholar

    WANG Ke, ZHENG Hongbo, Prins M, et al. High-resolution paleoenvironmental record of the mud sediments of the East China Sea inner shelf[J]. Marine Geology and Quaternary Geology, 2008, 28(4): 1-10.

    Google Scholar

    [27] 胡日军, 吴建政, 朱龙海, 等.东海舟山群岛海域表层沉积物运移特性[J].中国海洋大学学报, 2009, 39(3): 495-500, 442.

    Google Scholar

    HU Rijun, WU Jianzheng, ZHU Longhai, et al. Characteristic of surface sediment transport in Zhoushan Archipelago sea area, East China Sea[J]. Periodical of Ocean University of China, 2009, 39(3): 495-500, 442.

    Google Scholar

    [28] Bian C W, Jiang W S, Greatbatch R J. An exploratory model study of sediment transport sources and deposits in the Bohai Sea, Yellow Sea, and East China Sea[J]. Journal of Geophysical Research: Oceans, 2013, 118(11): 5908-5923. doi: 10.1002/2013JC009116

    CrossRef Google Scholar

    [29] Bian C W, Jiang W S, Greatbatch R J, et al. The Suspended Sediment Concentration Distribution in the Bohai Sea, Yellow Sea and East China Sea[J]. Journal of Ocean University of China, 2013, 12(3): 345-354. doi: 10.1007/s11802-013-1916-3

    CrossRef Google Scholar

    [30] Hoshika A, Tanimoto T, Mishima Y, et al. Variation of turbidity and particle transport in the bottom layer of the East China Sea[J]. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 2003, 50(2): 443-455. doi: 10.1016/S0967-0645(02)00462-9

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(3)

Article Metrics

Article views(1575) PDF downloads(36) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint