2017 Vol. 37, No. 3
Article Contents

ZHANG Peng, XU Jian, YANG Ce, GAO Lianfeng, ZHANG Zhenguo, NIU Yao. PALEOCEANOGRAPHIC RECORDS OF INDONESIAN THROUGHFLOW AT ITS EXIT SINCE THE LAST GLACIAL AND THEIR SIGNIFICANCE[J]. Marine Geology & Quaternary Geology, 2017, 37(3): 129-137. doi: 10.16562/j.cnki.0256-1492.2017.03.013
Citation: ZHANG Peng, XU Jian, YANG Ce, GAO Lianfeng, ZHANG Zhenguo, NIU Yao. PALEOCEANOGRAPHIC RECORDS OF INDONESIAN THROUGHFLOW AT ITS EXIT SINCE THE LAST GLACIAL AND THEIR SIGNIFICANCE[J]. Marine Geology & Quaternary Geology, 2017, 37(3): 129-137. doi: 10.16562/j.cnki.0256-1492.2017.03.013

PALEOCEANOGRAPHIC RECORDS OF INDONESIAN THROUGHFLOW AT ITS EXIT SINCE THE LAST GLACIAL AND THEIR SIGNIFICANCE

More Information
  • The Indonesian Throughflow (ITF), sole conduit between the Pacific and Indian Oceans, plays an important role in regulating heat and fresh water budgets between the two oceans, and in controlling the tropical and global climate. In this study, we investigated records from the Core SO18460 that was drilled at the exit of the ITF into the Timor Sea to reexamine their significance in reflecting the ITF since the last glacial. Records of temperature and salinity of surface and subsurface seawaters, and depth of thermocline (DOT) were reconstructed from δ18O and Mg/Ca ratio of the planktonic foraminifera of Globigerinoides ruber and Pulleniatina obliquiloculata and were then compared with regional paleoclimatic indices. The results show that salinity of both surface and thermocline seawaters co-varied with regional precipitation over the last glacial cycle, likely indicating transmission of precipitation signal by means of seawater salinity from sea surface to thermocline through upper ocean mixing. Sea surface temperature at the coring site of Core SO18460 oscillated centering at 28 ℃, possibly under influence of the Western Pacific Warm Pool since the early Holocene. In contrast, thermcoline seawater temperature (TWT) was always below 22 ℃, probably indicating that El Niño-Southern Oscillation was located in El Niño-like episodes. Decline of TWT and shoal of DOT might be, on the one hand, in response to more frequent El Niño-like events; and on the other hand, resulted from depression of ITF surface flow caused by increased precipitation due to southward shift of the Intertropical Convergence Zone, and/or by intensification of South China Sea surface flow driven by enhanced East Asian winter monsoon during Holocene. On glacial-interglacial timescale, TWT co-varied with the boreal summer insolation, possibly due to influence of North Pacific Tropical Water sourced waters that were carried by the Mindanao Current to the Sulawesi Sea and merged into the ITF.

  • 加载中
  • [1] Gordon A L, Susanto R D, Vranes K. Cool Indonesian throughflow as a consequence of restricted surface layer flow[J]. Nature, 2003, 425(6960): 824-828. doi: 10.1038/nature02038

    CrossRef Google Scholar

    [2] Gordon A L. Oceanography of the Indonesian seas and their throughflow[J]. Oceanography, 2005, 18(4): 14-27. doi: 10.5670/oceanog.2005.01

    CrossRef Google Scholar

    [3] Sprintall J, Wijffels S E, Molcard R, et al. Direct estimates of the Indonesian throughflow entering the Indian Ocean: 2004-2006[J]. Journal of Geophysical Research, 2009, 114(C7): C07001. doi: 10.1029/2008JC005257

    CrossRef Google Scholar

    [4] Trenberth K E. Recent observed interdecadal climate changes in the northern hemisphere[J]. Bulletin of the American Meteorological Society, 1990, 71(7): 988-993. doi: 10.1175/1520-0477(1990)071<0988:ROICCI>2.0.CO;2

    CrossRef Google Scholar

    [5] Gordon A L, Huber B A, Metzger E J, et al. South China Sea throughflow impact on the Indonesian throughflow[J]. Geophysical Research Letters, 2012, 39(11): L11602, doi: 10.1029/2012GL052021.

    CrossRef Google Scholar

    [6] Lee T, Fukumori I, Menemenlis D, et al. Effects of the Indonesian throughflow on the Pacific and Indian oceans[J]. Journal of Physical Oceanography, 2002, 32(5): 1404-1429. doi: 10.1175/1520-0485(2002)032<1404:EOTITO>2.0.CO;2

    CrossRef Google Scholar

    [7] Song Q, Vecchi G A, Rosati A J. The role of the indonesian throughflow in the Indo-Pacific climate variability in the GFDL coupled climate model[J]. Journal of Climate, 2007, 20(11): 2434-2451. doi: 10.1175/jcli4133.1

    CrossRef Google Scholar

    [8] Qu T D, Du Y, Strachan J, et al. Sea surface temperature and its variability in the Indonesian region[J]. Oceanography, 2005, 18(4): 50-61. doi: 10.5670/oceanog.2005.05

    CrossRef Google Scholar

    [9] Holbourn A, Kuhnt W, Xu J. Indonesian throughflow variability during the last 140 Ka: the Timor sea outflow[J]. Geological Society, London, Special Publications, 2011, 355(1): 283-303, doi: 10.1144/SP355.14.

    CrossRef Google Scholar

    [10] Martin P A, Lea D W. A simple evaluation of cleaning procedures on fossil benthic foraminiferal Mg/Ca[J]. Geochemistry, Geophysics, Geosystems, 2002, 3(10): 8401, doi: 10.1029/2001GC000280.

    CrossRef Google Scholar

    [11] Fairbanks R G, Mortlock R A, Chiu T C, et al. Marine radiocarbon calibration curve spanning 0 to 50, 000 years BP based on paired 230Th/234U/238U and 14C dates on pristine corals[J]. Quaternary Science Reviews, 2005, 24(16-17): 1781-1796. doi: 10.1016/j.quascirev.2005.04.007

    CrossRef Google Scholar

    [12] Xu J, Kuhnt W, Holbourn A, et al. Indo-Pacific Warm Pool variability during the Holocene and Last Glacial Maximum[J]. Paleoceanography, 2010, 25(4): PA4230, doi: 10.1029/2010PA001934.

    CrossRef Google Scholar

    [13] Anand P, Elderfield H, Conte M H. Calibration of Mg/Ca thermometry in planktonic foraminifera from a sediment trap time series[J]. Paleoceanography, 2003, 18(2): 1050, doi: 10.1029/2002PA000846.

    CrossRef Google Scholar

    [14] Bemis B E, Spero H J, Bijma J, et al. Reevaluation of the oxygen isotopic composition of planktonic foraminifera: experimental results and revised paleotemperature equations[J]. Paleoceanography, 1998, 13(2): 150-160. doi: 10.1029/98PA00070

    CrossRef Google Scholar

    [15] Waelbroeck C, Labeyrie L, Michel E, et al. Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records[J]. Quaternary Science Reviews, 2002, 21(1-3): 295-305, doi: 10.1016/S0277-3791(01)00101-9.

    CrossRef Google Scholar

    [16] Locarnini R A, Mishonov A V, Antonov J I, et al. World ocean atlas 2009, volume 1: temperature[M]//Levitus S. NOAA Atlas NESDIS 68. Washington, DC: U.S. Government Printing Office, 2010: 184.

    Google Scholar

    [17] Antonov J I, Seidov D, Boyer T P, et al. World ocean atlas 2009, volume 2: salinity[M]//Levitus S. NOAA Atlas NESDIS 69. Washington, DC: U.S. Government Printing Office, 2010: 184.

    Google Scholar

    [18] Schlitzer R. Ocean data view: Version 4.6.2[CP/OL]. (2014-03-31). http://odv.awi.de.

    Google Scholar

    [19] Xu J, Holbourn A, Kuhnt W, et al. Centennial changes in the thermocline structure of the Indonesian outflow during terminations Ⅰ and Ⅱ[J]. Earth and Planetary Science Letters, 2008, 273(1-2): 152-162, doi: 10.1016/j.epsl.2008.06.029.

    CrossRef Google Scholar

    [20] Labeyrie L D, Duplessy J C, Blanc P L. Variations in mode of formation and temperature of oceanic deep waters over the past 1250, 000 years[J]. Nature, 1987, 327(6122): 477-482. doi: 10.1038/327477a0

    CrossRef Google Scholar

    [21] Visser K, Thunell R, Stott L. Magnitude and timing of temperature change in the Indo-Pacific warm pool during deglaciation[J]. Nature, 2003, 421(6919): 152-155. doi: 10.1038/nature01297

    CrossRef Google Scholar

    [22] Sagawa T, Yokoyama Y, Ikehara M, et al. Shoaling of the western equatorial Pacific thermocline during the last glacial maximum inferred from multispecies temperature reconstruction of planktonic foraminifera[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 346-347: 120-129. doi: 10.1016/j.palaeo.2012.06.002

    CrossRef Google Scholar

    [23] Lea D W, Pak D K, Spero H J. Climate impact of late quaternary equatorial Pacific sea surface temperature variations[J]. Science, 2000, 289(5485): 1719-1724. doi: 10.1126/science.289.5485.1719

    CrossRef Google Scholar

    [24] Yan X H, Ho C R, Zheng Q A, et al. Temperature and size variabilities of the western Pacific warm pool[J]. Science, 1992, 258(5088): 1643-1645. doi: 10.1126/science.258.5088.1643

    CrossRef Google Scholar

    [25] Ayliffe L K, Gagan M K, Zhao J X, et al. Rapid interhemispheric climate links via the Australasian monsoon during the last deglaciation[J]. Nature Communications, 2013, 4: 2908, doi: 10.1038/ncomms3908.

    CrossRef Google Scholar

    [26] Sprintall J, Gordon A L, Koch-Larrouy A, et al. The Indonesian seas and their role in the coupled ocean-climate system[J]. Nature, 2014, 7(7): 487-492. doi: 10.1038/ngeo2188

    CrossRef Google Scholar

    [27] Xu J. Change of Indonesian throughflow outflow in response to east asian monsoon and ENSO activities since the Last Glacial[J]. Science China Earth Sciences, 2014, 57(4): 791-801, doi: 10.1007/s11430-014-4845-0.

    CrossRef Google Scholar

    [28] Carton J A, Giese B S. A reanalysis of ocean climate using simple ocean data assimilation (SODA)[J]. Monthly Weather Review, 2008, 136(8): 2999-3017. doi: 10.1175/2007MWR1978.1

    CrossRef Google Scholar

    [29] Rodbell D T, Seltzer G O, Anderson D M, et al. A ~15, 000-year record of El Ni o-driven alluviation in southwestern Ecuador[J]. Science, 1999, 283(5401): 516-520.

    Google Scholar

    [30] Moy C M, Seltzer G O, Rodbell D T, et al. Variability of El Ni o/southern oscillation activity at millennial timescales during the Holocene epoch[J]. Nature, 2002, 420(6912): 162-165. doi: 10.1038/nature01194

    CrossRef Google Scholar

    [31] Koutavas A, deMenocal P B, Olive G C, et al. Mid-Holocene El Ni o-Southern Oscillation (ENSO) attenuation revealed by individual foraminifera in eastern tropical Pacific sediments[J]. Geology, 2006, 34(12): 993-996. doi: 10.1130/G22810A.1

    CrossRef Google Scholar

    [32] Conroy J L, Overpeck J T, Cole J E, et al. Holocene changes in eastern tropical Pacific climate inferred from a Galápagos lake sediment record[J]. Quaternary Science Reviews, 2008, 27(11-12): 1166-1180.

    Google Scholar

    [33] Liu Z Y, Lu Z Y, Wen X Y, et al. Evolution and forcing mechanisms of El Ni o over the past 21, 000 years[J]. Nature, 2014, 515(7528): 550-553, doi: 10.1038/nature13963.

    CrossRef Google Scholar

    [34] Qu T D, Mitsudera H, Yamagata T. A climatology of the circulation and water mass distribution near the Philippine coast[J]. Journal of Physical Oceanography, 1999, 29(7): 1488-1505, doi: 10.1175/1520-0485(1999)029<1488:ACOTCA>2.0.CO; 2.

    CrossRef Google Scholar

    [35] Fine R A, Lukas R, Bingham F M, et al. The western equatorial Pacific: a water mass crossroads[J]. Journal of Geophysical Research, 1994, 99(C12): 25063-25080, doi: 10.1029/94JC02277.

    CrossRef Google Scholar

    [36] Fine R A, Maillet K A, Sullivan K F, et al. Circulation and ventilation flux of the Pacific Ocean[J]. Journal of Geophysical Research, 2001, 106(10): 22159-22178, doi: 10.1029/1999JC000184.

    CrossRef Google Scholar

    [37] Gordon A L. Interocean exchange of thermocline water[J]. Journal of Geophysical Research, 1986, 91(C4): 5037-5046. doi: 10.1029/JC091iC04p05037

    CrossRef Google Scholar

    [38] Mohtadi M, Oppo D W, Lückge A, et al. Reconstructing the thermal structure of the upper ocean: insights from planktic foraminifera shell chemistry and alkenones in modern sediments of the tropical eastern Indian Ocean[J]. Paleoceanography, 2011, 26(3): PA3219, doi: 10.1029/2011PA002132.

    CrossRef Google Scholar

    [39] Dang H W, Jian Z M, Bassinot F, et al. Decoupled Holocene variability in surface and thermocline water temperatures of the Indo-Pacific Warm Pool[J]. Geophysical Research Letters, 2012, 39(1): L01701. doi: 10.1029/2011gl050154

    CrossRef Google Scholar

    [40] Fan W J, Jian Z M, Bassinot F, et al. Holocene centennial-scale changes of the Indonesian and South China Sea throughflows: evidences from the Makassar Strait[J]. Global and Planetary Change, 2013, 111: 111-117, doi: 10.1016/j.gloplacha.2013.08.017.

    CrossRef Google Scholar

    [41] Haug G H, Hughen K A, Sigman D M, et al. Southward migration of the intertropical convergence zone through the Holocene[J]. Science, 2001, 293(5533): 1304-1308. doi: 10.1126/science.1059725

    CrossRef Google Scholar

    [42] Linsley B K, Rosenthal Y, Oppo D W. Holocene evolution of the Indonesian throughflow and the western Pacific warm pool[J]. Nature Geoscience, 2010, 3(8): 578-583. doi: 10.1038/ngeo920

    CrossRef Google Scholar

    [43] Griffiths M L, Drysdale R N, Gagan M K, et al. Abrupt increase in east Indonesian rainfall from flooding of the Sunda Shelf ~9500 years ago[J]. Quaternary Science Reviews, 2013, 74: 273-279. doi: 10.1016/j.quascirev.2012.07.006

    CrossRef Google Scholar

    [44] Wang Y J, Cheng H, Edwards R L, et al. A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China[J]. Science, 2001, 294(5550): 2345-2348. doi: 10.1126/science.1064618

    CrossRef Google Scholar

    [45] Yuan D X, Cheng H, Edwards R L, et al. Timing, duration, and transitions of the last interglacial Asian monsoon[J]. Science, 2004, 304(5670): 575-578. doi: 10.1126/science.1091220

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Tables(1)

Article Metrics

Article views(2113) PDF downloads(86) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint