2017 Vol. 37, No. 3
Article Contents

GUO Xingwei, ZHU Xiaoqing, MU Lin, XU Yang, PANG Yumao, CAI Laixing, ZHANG Xunhua, LIU Jian, LU Huinan. DISCOVERY OF PERMIAN-TRIASSIC AMMONOIDS IN THE CENTRAL UPLIFT OF THE SOUTH YELLOW SEA AND ITS GEOLOGICAL IMPLICATIONS[J]. Marine Geology & Quaternary Geology, 2017, 37(3): 121-128. doi: 10.16562/j.cnki.0256-1492.2017.03.012
Citation: GUO Xingwei, ZHU Xiaoqing, MU Lin, XU Yang, PANG Yumao, CAI Laixing, ZHANG Xunhua, LIU Jian, LU Huinan. DISCOVERY OF PERMIAN-TRIASSIC AMMONOIDS IN THE CENTRAL UPLIFT OF THE SOUTH YELLOW SEA AND ITS GEOLOGICAL IMPLICATIONS[J]. Marine Geology & Quaternary Geology, 2017, 37(3): 121-128. doi: 10.16562/j.cnki.0256-1492.2017.03.012

DISCOVERY OF PERMIAN-TRIASSIC AMMONOIDS IN THE CENTRAL UPLIFT OF THE SOUTH YELLOW SEA AND ITS GEOLOGICAL IMPLICATIONS

More Information
  • The Borehole CSDP-2 of the Continental Shelf Drilling Program (CSDP) is the only deep hole ever drilled on the central uplift of the South Yellow Sea (SYS). As a reference well, it is critical important to the dating of marine Paleo-Mesozoic deposits and reconstruction of the paleo-environmental pattern and paleo-tectonic settings of the SYS region. Ammonites are recognized as excellent index fossils for approaching the above objectives. So far, many ammonite fossils have been found in the core of CSDP-2, of which two, namely Roadoceras cf. sinense and Ophiceratidae, are specifically significant. The fossil of Roadoceras cf. sinense was discovered at the depth of 1475.2 meters. It is an index fossil distributed from Late Roadian to Wuchiapingian temporally and in the palaeoequatorial and bi-temperate regions spatially. The new finding of Roadocerascf. sinense from CSDP-2 extended the distribution area of this genus to the further north. On the other hand, Ophiceratidae, which is found at a depth of 851.9 meters and belongs to Griesbachian, is very close to the bottom of Triassic, and valuable for study of Permian and Triassic boundary. The discovery of the ammonites is important for confirming the stratigraphic age of the Permian and Triassic marine formations on the central uplift of the SYS region, recovering the paleo - environmental pattern, and providing the foundation for the future study of sedimentation, tectonic and petroleum resources.

  • 加载中
  • [1] 姚永坚, 冯志强, 郝天珧, 等.对南黄海盆地构造层特征及含油气性的新认识[J].地学前缘, 2008, 15(6): 232-240. doi: 10.3321/j.issn:1005-2321.2008.06.030

    CrossRef Google Scholar

    YAO Yongjian, FENG Zhiqiang, HAO Tianyao, et al. A new understanding of the structural layers in the South Yellow Sea Basin and their hydrocarbon-bearing characteristics[J]. Earth Science Frontiers, 2008, 15(6): 232-240. doi: 10.3321/j.issn:1005-2321.2008.06.030

    CrossRef Google Scholar

    [2] 祁江豪, 温珍河, 张训华, 等.南黄海地区与上扬子地区海相中—古生界岩性地层对比[J].海洋地质与第四纪地质, 2013, 33(1): 109-119.

    Google Scholar

    QI Jianghao, WEN Zhenhe, ZHANG Xunhua, et al. Lithostratigraphic correlation of Mesozoic and Palaeozoic Marine strata between South Yellow Sea and Upper Yangtze Region[J]. Marine Geology and Quaternary Geology, 2013, 33(1): 109-119.

    Google Scholar

    [3] 刘光鼎.中国油气资源企盼二次创业[J].地球物理学进展, 2001, 16(4): 1-3. doi: 10.3969/j.issn.1004-2903.2001.04.001

    CrossRef Google Scholar

    LIU Guangding. The second exploitation of the oil and gas resources in China[J]. Progress in Geophysics, 2001, 16(4): 1-3. doi: 10.3969/j.issn.1004-2903.2001.04.001

    CrossRef Google Scholar

    [4] 牟林.中国下、中二叠统界线附近菊石生物群及其生物地层意义[J].古生物学报, 2011, 50(4): 439-449.

    Google Scholar

    MU Lin. Ammonoid Faunas around the Early and Middle Permian boundary in china and their biostratigraphic implications[J]. Acta Palaeontologica Sinica, 2011, 50(4): 439-449.

    Google Scholar

    [5] Leonova T B. Permian ammonoids: biostratigraphic, biogeographical, and ecological analysis[J]. Paleontological Journal, 2011, 45(10): 1206-1312. doi: 10.1134/S0031030111100029

    CrossRef Google Scholar

    [6] Zhou Z R. Several problems on the Early Permian ammonoids from South China[J]. Palaeontologia Cathayana, 1985(2): 179-210.

    Google Scholar

    [7] Chao J. Lower Triassic Ammonoids from Western Kwangsi, China[M]. Beijing: Science Press, 1959.

    Google Scholar

    [8] Brayard A, Bucher H. Smithian (Early Triassic) ammonoid faunas from northwestern Guangxi (South China): taxonomy and biochronology[J]. Fossils and Strata, 2008, 55: 1-179.

    Google Scholar

    [9] 胡芬, 江东辉, 周兴海.南黄海盆地中、古生界油气地质条件研究[J].海洋石油, 2012, 32(2): 9-15. doi: 10.3969/j.issn.1008-2336.2012.02.009

    CrossRef Google Scholar

    HU Fen, JIANG Donghui, ZHOU Xinghai. Study on the petroleum geologic conditions in Mesozoic-Paleozoic Strata in the South Yellow Sea basin[J]. Offshore Oil, 2012, 32(2): 9-15. doi: 10.3969/j.issn.1008-2336.2012.02.009

    CrossRef Google Scholar

    [10] 杨艳秋, 李刚, 易春燕.南黄海盆地海相地层地震反射特征及地震层序地质时代[J].东北石油大学学报, 2015, 39(3): 50-59, 124. doi: 10.3969/j.issn.2095-4107.2015.03.007

    CrossRef Google Scholar

    YANG Yanqiu, LI Gang, YI Chunyan. Characteristics of seismic reflection and geological ages of seismic sequences for marine strata in the South Yellow Sea basin[J]. Journal of Northeast Petroleum University, 2015, 39(3): 50-59, 124. doi: 10.3969/j.issn.2095-4107.2015.03.007

    CrossRef Google Scholar

    [11] 杨长清, 董贺平, 李刚.南黄海盆地中部隆起的形成与演化[J].海洋地质前沿, 2014, 30(7): 17-21, 33.

    Google Scholar

    YANG Changqing, DONG Heping, LI Gang. Formation and tectonic evolution of the Central Uplift of the South Yellow Sea basin[J]. Marine Geology Frontiers, 2014, 30(7): 17-21, 33.

    Google Scholar

    [12] 张训华, 杨金玉, 李刚, 等.南黄海盆地基底及海相中、古生界地层分布特征[J].地球物理学报, 2014, 57(12): 4041-4051. doi: 10.6038/cjg20141216

    CrossRef Google Scholar

    ZHANG Xunhua, YANG Jinyu, LI Gang, et al. Basement structure and distribution of Mesozoic-Paleozoic marine strata in the South Yellow Sea basin[J]. Chinese Journal of Geophysics, 2014, 57(12): 4041-4051. doi: 10.6038/cjg20141216

    CrossRef Google Scholar

    [13] 侯方辉, 田振兴, 张训华, 等.南黄海盆地两条地震剖面的重磁数据联合反演效果[J].石油地球物理勘探, 2012, 47(5): 808-814.

    Google Scholar

    HOU Fanghui, TIAN Zhenxing, ZHANG Xunhua, et al. Joint inversion of gravity, magnetic and seismic data of the South Yellow Sea basin[J]. Oil Geophysical Prospecting, 2012, 47(5): 808-814.

    Google Scholar

    [14] 李强, 温珍河.南黄海盆地成因机制及其构造意义[J].海洋地质前沿, 2014, 30(10): 14-17.

    Google Scholar

    LI Qiang, WEN Zhenhe. Origin of the South Yellow Sea basin and its tectonic implication[J]. Marine Geology Frontiers, 2014, 30(10): 14-17.

    Google Scholar

    [15] 冯志强, 陈春峰, 姚永坚, 等.南黄海北部前陆盆地的构造演化与油气突破[J].地学前缘, 2008, 15(6): 219-231. doi: 10.3321/j.issn:1005-2321.2008.06.029

    CrossRef Google Scholar

    FENG Zhiqiang, CHEN Chunfeng, YAO Yongjian, et al. Tectonic evolution and exploration target of the northern foreland basin of the South Yellow Sea[J]. Earth Science Frontiers, 2008, 15(6): 219-231. doi: 10.3321/j.issn:1005-2321.2008.06.029

    CrossRef Google Scholar

    [16] 高顺莉, 谭思哲, 侯凯文, 等.南黄海海域侏罗系分布与构造意义[J].海洋地质前沿, 2015, 31(4): 7-12. doi: 10.16028/j.1009-2722.2015.04002

    CrossRef Google Scholar

    GAO Shunli, TAN Sizhe, HOU Kaiwen, et al. Distribution pattern of the Jurassic in the South Yellow Sea and its tectonic implications[J]. Marine Geology Frontiers, 2015, 31(4): 7-12. doi: 10.16028/j.1009-2722.2015.04002

    CrossRef Google Scholar

    [17] 徐学思.江苏省岩石地层[M].北京:中国地质大学出版社, 1997.

    Google Scholar

    XU Xuesi. Stratigraphy (Lithostratic) of Jiangsu Province[M]. Beijing: China University of Geosciences Press, 1997.

    Google Scholar

    [18] B?se E. The Permo-Carboniferous ammonoids of the Glass Mountains, West Texas, and their stratigraphic significance[J]. University of Texas Bulletin, 1917, 1762(5): 1-241. doi: 10.1086/622647

    CrossRef Google Scholar

    [19] Miller A K, Furnish W M. Permian ammonoids of the Guadalupe Mountain region and adjacent areas[J]. GSA Special Papers, 1940, 26: 1-238.

    Google Scholar

    [20] Plummer F B, Scott G. Upper Paleozoic ammonites in Texas[J]. The Geology of Texas Bulletin of Texas University, 1937, 3701(3): 1-516.

    Google Scholar

    [21] Ruzhencev V E. Late Permian ammonoids in the Russian Far East[J]. Palaeontology Zhurnal, 1976, 3: 36-50.

    Google Scholar

    [22] Kotlyar G V, Zahkarov Y D, Popeko L L, et al. Layers with Timorites in East Asia[J]. Geology of the Pacific Ocean, 1999, 14: 361-380.

    Google Scholar

    [23] Zhou Z R. Early Permian ammonite fauna from southeastern Hunan[C]//Collections of Postgraduate Theses. Nanjing: Jiangsu Science and Technology Publisher, 1987: 285-348.

    Google Scholar

    [24] Mei S L, Jin Y G, Wardlaw B R. Conodont succession of the Guadalupian-Lopingian Boundary strata in Laibin of Guangxi, China and west Texas, USA[J]. Palaeoworld, 1998, 9: 53-76.

    Google Scholar

    [25] Henderson C M, Mei S L, Wardlaw B R. New conodont definitions at the Guadalupian-Lopingian boundary[C]//Hills L V, Henderson C M, Bamber E W. Carboniferous and Permian of the World. Canadian Society of Petroleum Geologist Memoir, 2002, 19: 725-735.

    Google Scholar

    [26] Jin Y G, Henderson C M, Wardlaw B R, et al. Proposal for the global stratotype section and point (GSSP) for the Guadalupian-Lopingian boundary[J]. Permophiles, 2001, 39: 32-42.

    Google Scholar

    [27] Jin Y G, Wardlaw B R, Glenister B F, et al. Permian chronostratigraphic subdivisions[J]. Episodes, 1997, 20(1): 10-15. doi: 10.18814/epiiugs/1997/v20i1/003

    CrossRef Google Scholar

    [28] Jin Y G, Shang Q H, Wang X D, et al. Chronostratigraphic subdivision and correlation of the Permian in China[J]. Acta Geologica Sinica, 1999, 73(2): 127-138. doi: 10.1111/j.1755-6724.1999.tb00820.x

    CrossRef Google Scholar

    [29] Haniel C A. Die Cephalopoden der Days von Timor[M]//Wanner J. Paläontologie von Timor. Stuttgart: E. Schweizerbart'sche Verlagsbuchhandlung, 1915: 1-153.

    Google Scholar

    [30] Liang X L. New material of Permian ammonoids with discussion on the origin, migration of Araxoceratidae and the horizon of the Paratirolites[J]. Acta Palaeontologica Sinica, 1983, 22(6): 606-615.

    Google Scholar

    [31] Ehiro M. Ammonoid biostratigraphy of the Middle Permian in the South Kitakami Belt, Japan, and correlation with the reference sections in the Tethyan region and North America[J]. Proceedings of the Royal Society of Victoria, 1998, 110(1-2): 147-156.

    Google Scholar

    [32] Spinosa C, Furnish W M, Glenister B F. Araxoceratidae, Upper Permian ammonoids, from the Western Hemisphere[J]. Journal of Paleontology, 1970, 44(4): 730-736. doi: 10.2307/1302664

    CrossRef Google Scholar

    [33] Hayasaka I. Younger Paleozoic cephalopods from the Kitakami Mountains, Japan[J]. Journal of the Faculty of Science, Hokkaido University, 1954, 8(4): 361-374.

    Google Scholar

    [34] Ehiro M, Shimoyama D, Murata M. Some Permian cyclolobacear from the Southern Kitakami Massif, Northeast Japan[J]. Transactions and Proceedings of the Palaeontological Society of Japan New, 1986, 142.

    Google Scholar

    [35] Zakharov Y D, Pavlov A M. Permskie cephalopody Primorya I problema zonalnogo raschleneniya Permi Teticheskoj obasti (Permian cephalopods of Primorye region and the problem of Permian zonal stratigraphy in Tethys)[M]//Zakharov Y D, Onoperienko Y I. Korrelyatsiya Permo-Triasovykh otlozhenij vostoka SSSR (Correlation of Permo-Triasssic sediments of East USSR). Acad. Vladivostok: Naulk SSSR Dalneostachnyi Nauchnyi Tscentr, 1986: 5-32.

    Google Scholar

    [36] Shen S Z, Mu L, Zakharov Y D. Roadoceras (Permian Ammonoidea) from the Qubuerga Formation in the Mt. Everest Area in Southern Tibet[J]. Gondwana Research, 2004, 7(3): 863-869. doi: 10.1016/S1342-937X(05)71070-4

    CrossRef Google Scholar

    [37] Kiparisova L D, Popov Y N. Subdivision of the Lower series of the Triassic System into stages[J]. Doklady Akademiya Nauk USSR Seriya Geologicheskaya, 1956, 109(4): 842-845.

    Google Scholar

    [38] Kiparisova L D, Popov Y N. The project of subdivision of the Lower Triassic into stages[C]//XXII International Geological Congress, Reports of Soviet Geologists. 1964, 16: 91-99.

    Google Scholar

    [39] Diener C. Die marinen Reiche der Triasperiode[J]. Denkschriften der Kaiserlichen Akademie der Wissenschaften, Mathematisch-naturwissenschaftliche Klasse, 1916, 92: 405-549.

    Google Scholar

    [40] Tozer E T. Triassic Ammonoidea: classification, evolution and relationship with Permian and Jurassic forms[M]//House M R, Senior J R. The Ammonoidea. Systematics Association Special. London: Academic Press, 1981, 18: 66-100.

    Google Scholar

    [41] Dagys A S. Major features of the geographic differentiation of Triassic ammonoids[M]//Wiedmann J, Kullmann J. Cephalopods present and past. E. Stuttgart: Schweizerbart'sche Verlagshandlung, 1988: 341-349.

    Google Scholar

    [42] Brayard A, Escarguel G, Bucher H. The biogeography of Early Triassic ammonoid faunas: clusters, gradients, and networks[J]. Geobios, 2007, 40(6): 749-765. doi: 10.1016/j.geobios.2007.06.002

    CrossRef Google Scholar

    [43] Griesbach C L. Paleontological notes on the Lower Trias of the Himalayas[J]. Records of the Geological Survey of India, 1880, 13: 94-113.

    Google Scholar

    [44] Mojsisovics E, Waagen W H, Diener C. Entwurf einer Gliederung der pelagischen Sediments des Trias-Systems[J]. Sitzungsberichte Akademie Wissenschaft Wien, Mathematische-naturwissenschaftliche Klasse, 1985, 104: 1271-1302.

    Google Scholar

    [45] Orchard M J, Tozer E T. Triassic conodont biochronology and intercalibration with the Canadian ammonoid sequence[J]. Albertiana, 1998, 20: 33-44.

    Google Scholar

    [46] Orchard M J, Tozer E T. Triassic conodont biochronology, its intercalibration with the ammonoid standard, and a biostratigraphic summary for the western Canada sedimentary basin[J]. Canadian Society of Petroleum Geologists Bulletin, 1997, 45(4): 675-692.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3)

Tables(1)

Article Metrics

Article views(2367) PDF downloads(95) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint