2017 Vol. 37, No. 1
Article Contents

SHI Jinhua, ZHONG Yuan, CHEN Lihui, ZHANG Guoliang. ISOTOPIC CHARACTERISTICS OF INTRAPLATE BASALTS IN WEST PACIFIC[J]. Marine Geology & Quaternary Geology, 2017, 37(1): 15-22. doi: 10.16562/j.cnki.0256-1492.2017.01.002
Citation: SHI Jinhua, ZHONG Yuan, CHEN Lihui, ZHANG Guoliang. ISOTOPIC CHARACTERISTICS OF INTRAPLATE BASALTS IN WEST PACIFIC[J]. Marine Geology & Quaternary Geology, 2017, 37(1): 15-22. doi: 10.16562/j.cnki.0256-1492.2017.01.002

ISOTOPIC CHARACTERISTICS OF INTRAPLATE BASALTS IN WEST PACIFIC

More Information
  • Most of the West Pacific intraplate basalts are the products of Mesozoic intraplate volcanisms in the South Pacific. The comparison made for the intraplate basalts in the West and South Pacific may reveal the characteristics and the evolution of the super plume in the South Pacific. Based on the previous data published on basalts in the West and South Pacific, we made a study of Sr-Nd-Pb isotopic geochemistry and compared the results from the two regions. The results show that: 1) The isotopic composition of the West Pacific intraplate basalts shows a great heterogeneity, almost covering all the enriched mantle end members, while most of the West Pacific intraplate basalts are the mixture of HIMU and EM-1; 2) Compared to the South Pacific, the isotopic composition of the West Pacific intraplate basalts is less extreme, which indicates a more thorough mixing between mantle end members; 3) Since ~120 Ma, the HIMU-type of basalts are continuous, while EM1-type and EM2-type basalts are intermittent, which may imply that the spatial distribution of HIMU is different from other enriched end members in the deep mantle.

  • 加载中
  • [1] White W M. Probing the earth′s deep interior through Geochemistry[J]. Geochemical Perspectives, 2015, 4(2): 95-250.

    Google Scholar

    [2] Zindler A, Hart S. Chemical geodynamics[J]. Annual Review of Earth and Planetary Sciences, 1986, 14: 493-571. doi: 10.1146/annurev.ea.14.050186.002425

    CrossRef Google Scholar

    [3] Schilling J. Iceland mantle plume: geochemical study of Reykjanes Ridge[J]. Nature, 1973, 242: 565-571. doi: 10.1038/242565a0

    CrossRef Google Scholar

    [4] Morgan W J. Convection plumes in the lower mantle[J]. Nature, 1971, 230: 42-43. doi: 10.1038/230042a0

    CrossRef Google Scholar

    [5] Duncan R A, Clague D A. Pacific Plate Motion Recorded by Linear Volcanic Chains[M]. Springer, 1985: 89-121.

    Google Scholar

    [6] Koppers A A, Staudigel H, Pringle M S, et al. Short-lived and discontinuous intraplate volcanism in the South Pacific: Hot spots or extensional volcanism?[J]. Geochemistry, Geophysics, Geosystems, 2003, 4(10): 53-68.

    Google Scholar

    [7] Koppers A A, Staudigel H, Wijbrans J R, et al. The Magellan seamount trail: implications for Cretaceous hotspot volcanism and absolute Pacific plate motion[J]. Earth and Planetary Science Letters, 1998, 163(1): 53-68. doi: 10.1016/S0012-821X(98)00175-7

    CrossRef Google Scholar

    [8] Smith W H, Staudigel H, Watts A B, et al. The Magellan Seamounts: Early Cretaceous record of the South Pacific isotopic and thermal anomaly[J]. Journal of Geophysical Research: Solid Earth, 1989, 94(B8): 10501-10523. doi: 10.1029/JB094iB08p10501

    CrossRef Google Scholar

    [9] Winterer E L, Natland J H, Van Waasbergen R J, et al. Cretaceous guyots in the northwest Pacific: An overview of their geology and geophysics[C]. 1993: 307-334.

    Google Scholar

    [10] Shimoda G, Ishizuka O, Yamashita K, et al. Tectonic influence on chemical composition of ocean island basalts in the West and South Pacific: Implication for a deep mantle origin[J/OL]. Geochemistry, Geophysics, Geosystems. 2011, 12(7).doi: 10.1029/2011GC003531.

    Google Scholar

    [11] Konter J G, Hanan B B, Blichert-Toft J, et al. One hundred million years of mantle geochemical history suggest the retiring of mantle plumes is premature[J]. Earth and Planetary Science Letters, 2008, 275(3): 285-295.

    Google Scholar

    [12] Koppers A A, Staudigel H, Christie D M, et al. Sr-Nd-Pb isotope geochemistry of leg 144 West Pacific guyouts: Implications for the geochemical evolution of the "SOPITA" mantle anomaly[C]. Ocean Drilling Program, 1995.

    Google Scholar

    [13] Garcia M O, Park K, Davis G T, et al. Petrology and Isotope Geochemistry of Lavas from the Line Islands Chain, Central Pacific Basin[M]. American Geophysical Union, 1993: 217-231.

    Google Scholar

    [14] Clouard V, Bonneville A. Ages of seamounts, islands, and plateaus on the Pacific plate[J]. Geological Society of America Special Papers, 2005, 388: 71-90.

    Google Scholar

    [15] Staudigel H. The longevity of the South Pacific isotopic and thermal anomaly[J]. Earth Planetary Science Letters, 1991: 24-44.

    Google Scholar

    [16] White W M. Sources of oceanic basalts: Radiogenic isotopic evidence[J]. Geology, 1985, 13(2): 115-118.

    Google Scholar

    [17] Tatsumoto M, Unruh D M, Stille P, et al. Pb, Sr, and Nd isotopes in oceanic island basalts[C]. 1984.

    Google Scholar

    [18] Hauri E H, Hart S R. Re-Os isotope systems of HIMU and EMII oceanic island basalts from the South Pacific Ocean[J]. Earth and Planetary Science Letters, 1993, 114(2): 353-371. doi: 10.1016/0012-821X(93)90036-9

    CrossRef Google Scholar

    [19] Bemis K G, Smith D K. Production of small volcanoes in the Superswell region of the South Pacific[J]. Earth and Planetary Science Letters, 1993, 118(1-4): 251-262. doi: 10.1016/0012-821X(93)90171-5

    CrossRef Google Scholar

    [20] Jackson E D. Linear volcanic chains on the Pacific plate[M]. American Geophysical Union, 1976: 319-335.

    Google Scholar

    [21] Davis A S, Gray L B, Clague D A, et al. The Line Islands revisited: New 40Ar/39Ar geochronologic evidence for episodes of volcanism due to lithospheric extension[J]. Geochemistry, Geophysics, Geosystems, 2002, 3(3): 1-28. doi: 10.1029/2001GC000190

    CrossRef Google Scholar

    [22] Hart S R. A large-scale isotope anomaly in the Southern Hemisphere mantle[J]. Nature, 1984, 309: 753-757. doi: 10.1038/309753a0

    CrossRef Google Scholar

    [23] Hofmann A W. Mantle geochemistry: the message from oceanic volcanism[J]. Nature. 1997, 385(6613): 219-229. doi: 10.1038/385219a0

    CrossRef Google Scholar

    [24] Hofmann A W, White W M. Mantle plumes from ancient oceanic crust[J]. Earth and Planetary Science Letters, 1982, 57(2): 421-436. doi: 10.1016/0012-821X(82)90161-3

    CrossRef Google Scholar

    [25] Stracke A, Bizimis M, Salters V J M. Recycling oceanic crust: Quantitative constraints[J/OL]. Geochemistry, Geophysics, Geosystems, 2003, 4(3).doi: 10.1029/2001GC000223.

    Google Scholar

    [26] Shorttle O, Maclennan J, Lambart S. Quantifying lithological variability in the mantle[J]. Earth and Planetary Science Letters, 2014, 395: 24-40. doi: 10.1016/j.epsl.2014.03.040

    CrossRef Google Scholar

    [27] Sobolev A V, Hofmann A W, Kuzmin D V, et al. The amount of recycled crust in sources of mantle-derived melts[J]. Science, 2007, 316(5823): 412-417. doi: 10.1126/science. 1138113

    CrossRef Google Scholar

    [28] Woodhead J D, Devey C W. Geochemistry of the Pitcairn seamounts, I: source character and temporal trends[J]. Earth and Planetary Science Letters, 1993, 116(1): 81-99.

    Google Scholar

    [29] Lassiter J C, Hauri E H. Osmium-isotope variations in Hawaiian lavas: evidence for recycled oceanic lithosphere in the Hawaiian plume[J]. Earth and Planetary Science Letters, 1998, 164(3): 483-496. doi: 10.1016/s0012-821x(98)00240-4

    CrossRef Google Scholar

    [30] Rehkamper M, Hofmann A W. Recycled ocean crust and sediment in Indian Ocean MORB[J]. Earth and Planetary Science Letters, 1997, 147(1): 93-106.

    Google Scholar

    [31] Eisele J, Sharma M, Galer S J, et al. The role of sediment recycling in EM-1 inferred from Os, Pb, Hf, Nd, Sr isotope and trace element systematics of the Pitcairn hotspot[J]. Earth and Planetary Science Letters, 2002, 196(3): 197-212. doi: 10.1016/s0012-821x(01)00601-x

    CrossRef Google Scholar

    [32] Chauvel C, Hofmann A W, Vidal P. HIMU-EM: The French Polynesian connection[J]. Earth and Planetary Science Letters, 1992, 110(1): 99-119.

    Google Scholar

    [33] Willbold M, Stracke A. Trace element composition of mantle end-members: Implications for recycling of oceanic and upper and lower continental crust[J/OL]. Geochemistry, Geophysics, Geosystems, 2006, 7(4). doi: 10.1029/2005GC001005.

    Google Scholar

    [34] Willbold M, Stracke A. Formation of enriched mantle components by recycling of upper and lower continental crust[J]. Chemical Geology, 2010, 276(3-4): 188-197. doi: 10.1016/j.chemgeo.2010.06.005

    CrossRef Google Scholar

    [35] Workman R K, Eiler J M, Hart S R, et al. Oxygen isotopes in Samoan lavas: Confirmation of continent recycling[J]. Geology, 2008, 36(7): 551-554. doi: 10.1130/G24558A.1

    CrossRef Google Scholar

    [36] Jackson M G, Hart S R, Koppers A A P, et al. The return of subducted continental crust in Samoan lavas[J]. 2007, 448(7154): 684-687.

    Google Scholar

    [37] Workman R K, Hart S R, Jackson M, et al. Recycled metasomatized lithosphere as the origin of the Enriched Mantle II (EM2) end-member: Evidence from the Samoan Volcanic Chain[J/OL]. Geochemistry, Geophysics, Geosystems, 2004, 5(4).doi: 10.1029/2003GC000623.

    Google Scholar

    [38] Weaver B L. The origin of ocean island basalt end-member compositions: trace element and isotopic constraints[J]. Earth and Planetary Science Letters, 1991, 104(2): 381-397. doi: 10.1016/0012-821x(91)90217-6

    CrossRef Google Scholar

    [39] 王小均, 刘建强, 陈立辉. HIMU型洋岛玄武岩的地球化学特征[J].高校地质学报, 2014, 20(3): 353-367.

    Google Scholar

    WANG Xiaojun, LIU Jianqiang, CHEN Lihui.Geochemical Characteristics of HIMU-type oceanic island basalts[J].Geological Journal of China Universities, 2014, 20(3):353-367.

    Google Scholar

    [40] Cabral R A, Jackson M G, Rose-Koga E F, et al. Anomalous sulphur isotopes in plume lavas reveal deep mantle storage of Archaean crust[J]. Nature, 2013, 496(7446): 490-493. doi: 10.1038/nature12020

    CrossRef Google Scholar

    [41] Hanyu T, Tatsumi Y, Kimura J. Constraints on the origin of the HIMU reservoir from He-Ne-Ar isotope systematics[J]. Earth and Planetary Science Letters, 2011, 307(3-4): 377-386. doi: 10.1016/j.epsl.2011.05.012

    CrossRef Google Scholar

    [42] Kawabata H, Hanyu T, Chang Q, et al. The Petrology and Geochemistry of St. Helena Alkali Basalts: Evaluation of the Oceanic Crust-recycling Model for HIMU OIB[J]. Journal of Petrology, 2011, 52(4): 791-838. doi: 10.1093/petrology/egr003

    CrossRef Google Scholar

    [43] Eiler J M, Farley K A, Valley J W, et al. Oxygen isotope variations in ocean island basalt phenocrysts[J]. Geochimica et Cosmochimica Acta, 1997, 61(11): 2281-2293. doi: 10.1016/S0016-7037(97)00075-6

    CrossRef Google Scholar

    [44] Spasojevic S, Gurnis M, Sutherland R. Mantle upwellings above slab graveyards linked to the global geoid lows[J]. Nature Geoscience, 2010, 3(6): 435-438. doi: 10.1038/ngeo855

    CrossRef Google Scholar

    [45] Wilson J T. A possible origin of the Hawaiian Islands[J]. Canadian Journal of Physics, 1963, 41(6): 863-870. doi: 10.1139/p63-094

    CrossRef Google Scholar

    [46] Courtillot V, Davaille A, Besse J, et al. Three distinct types of hotspots in the Earth's mantle[J]. Earth and Planetary Science Letters, 2003, 205(3-4): 295-308. doi: 10.1016/S0012-821X(02)01048-8

    CrossRef Google Scholar

    [47] McNutt M K, Caress D W, Reynolds J, et al. Failure of plume theory to explain midplate volcanism in the southern Austral islands[J]. Nature, 1997, 389(6650): 479-482. doi: 10.1038/39013

    CrossRef Google Scholar

    [48] Anderson D L, Natland J H. Mantle updrafts and mechanisms of oceanic volcanism[J]. Proceedings of the National Academy of Sciences, 2014, 111(41): E4298-E4304. doi: 10.1073/pnas.1410229111

    CrossRef Google Scholar

    [49] Conrad C P, Bianco T A, Smith E I, et al. Patterns of intraplate volcanism controlled by asthenospheric shear[J]. Nature Geoscience, 2011, 4(5): 317-321. doi: 10.1038/ngeo1111

    CrossRef Google Scholar

    [50] Bonneville A, Dosso L, Hildenbrand A. Temporal evolution and geochemical variability of the South Pacific superplume activity[J]. Earth and Planetary Science Letters, 2006, 244(1): 251-269. doi: 10.1016/j.epsl.2005.12.037

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Article Metrics

Article views(1754) PDF downloads(78) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint