2017 Vol. 37, No. 1
Article Contents

ZHANG Guo Liang, LUO Qing, CHEN Lihui. GEOCHEMICAL HETEROGENEITY OF OCEANIC MANTLE: A REVIEW[J]. Marine Geology & Quaternary Geology, 2017, 37(1): 1-13. doi: 10.16562/j.cnki.0256-1492.2017.01.001
Citation: ZHANG Guo Liang, LUO Qing, CHEN Lihui. GEOCHEMICAL HETEROGENEITY OF OCEANIC MANTLE: A REVIEW[J]. Marine Geology & Quaternary Geology, 2017, 37(1): 1-13. doi: 10.16562/j.cnki.0256-1492.2017.01.001

GEOCHEMICAL HETEROGENEITY OF OCEANIC MANTLE: A REVIEW

  • It is crucial to study the nature and origin of the mantle heterogeneity for understanding the solid Earth evolution. In this study we evaluated the mantle heterogeneity through oceanic basalts, e.g., ocean island basalts (OIBs) and mid-ocean ridge basalts (MORBs), and discussed the reason for insufficient understandings of the mantle heterogeneity. Studies in the past three decades show that the enriched mantle end-members include HIMU (('μ'=238U/204Pb) (low 87Sr/86Sr and high 206Pb/204Pb)), EMI (medium 87Sr/86Sr, low 206Pb/204Pb), EMII (high 87Sr/86Sr, medium 206Pb/204Pb), FOZO, and depleted mantle end-member of DMM (including Indian-type and Pacific-type). Origins of enriched mantle end-members are supposed to be related to plate tectonics, such as oceanic plate subduction, continent rifting and detachment. However, the origin of compositional differences between the end-members remains highly controversial. We consider that studies on depleted mantle end-members are also important for understanding the diversity of the compositions of mantle end-members. Debates on the origin of mantle end-members are mainly caused by lack of knowledge on the role of plate subduction in driving geochemical cycling and the mantle depletion in the early stage of melting of the Earth. We, therefore, suggest the following study aspects: Firstly, phase transition and the fate of subducted oceanic plate in the lower mantle; Secondly, test if detached continental crust can be mixed into the upper mantle due to continent rifting; Thirdly, the role of carbonate in the genesis of alkali basalts; Fourthly, the geochemical fractionation of subducting oceanic plate in the mantle.

  • 加载中
  • [1] Valley J W. A cool early Earth[J]. Geology, 2002, 293, 4: 58-65.

    Google Scholar

    [2] Vervoort J, Patchett P, Gehrels G, et al. Constraints on early Earth differentiation from hafnium and neodymium isotopes[J]. Nature, 1996, 379 (6566): 624-627. doi: 10.1038/379624a0

    CrossRef Google Scholar

    [3] Blichert-Toft J, Albarède F. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system[J]. Earth & Planetary Science Letters, 1997, 148, 1: 243-258.

    Google Scholar

    [4] Lee D. Nature of the earth's earliest crust from hafnium isotopes in single detrital zircons[J]. Nature, 1999, 399: 252-255. doi: 10.1038/20426

    CrossRef Google Scholar

    [5] Zindler A, Hart S. Chemical geodynamics[J]. Annual Review of Earth and Planetary Sciences, 1986, 14(1): 493-571. doi: 10.1146/annurev.ea.14.050186.002425

    CrossRef Google Scholar

    [6] Bach W, Hegner E, Erzinger J, et al. Chemical and isotopic variations along the superfast spreading East Pacific Rise from 6°S to 30°S[J]. Contributions to Mineralogy and Petrology, 1994, 116: 365-380. doi: 10.1007/BF00310905

    CrossRef Google Scholar

    [7] Goss A R, Perfit M R, Ridley W I, et al. Geochemistry of lavas from the 2005—2006 eruption at the East Pacific Rise, 9°46′~9°56′N: Implications for ridge crest plumbing and decadal changes in magma chamber compositions[J]. Geochemistry Geophysics Geosystems 2010, 11(5), doi: 10.1029/2009GC002977.

    CrossRef Google Scholar

    [8] Regelous M, Niu Y, Wendt J I, et al. Variations in the geochemistry of magmatism on the East Pacific Rise at 10 degrees 30' N since 800 ka[J]. Earth and Planetary Science Letters, 1999, 168: 45-63. doi: 10.1016/S0012-821X(99)00048-5

    CrossRef Google Scholar

    [9] Zhang G L, Zong C L, Yin X B, et al. Geochemical constraints on a mixed pyroxenite-peridotite source for the East Pacific Rise basalts[J]. Chemical Geology, 2012, 330-331: 176-187. doi: 10.1016/j.chemgeo.2012.08.033

    CrossRef Google Scholar

    [10] Zhang G L, Chen L H, Li S Z. Mantle Dynamics and Generation of a geochemical mantle boundary along the East Pacific Rise-Pacific/Antarctic ridge[J]. Earth and Planetary Science Letters, 2013, 383: 153-163. doi: 10.1016/j.epsl.2013.09.045

    CrossRef Google Scholar

    [11] Dasgupta R, Hirschmann M M, Smith N D. Water follows carbon: CO2 incites deep silicate melting and dehydration beneath mid-ocean ridges[J]. Geology, 2007, 35(2): 135-138.

    Google Scholar

    [12] Hofmann A W. Mantle geochemistry: the message from oceanic volcanism[J]. Nature, 1997, 385: 219-229. doi: 10.1038/385219a0

    CrossRef Google Scholar

    [13] Silver P G, Carlson R W, Olson P. Deep slabs, geochemical heterogeneity, and the large-scale structure of mantle convection: Investigation of an enduring paradox[J]. Annual Review of Earth and Planetary Sciences, 1988, 16(2): 477-541. doi: 10.1146/annurev.ea.16.050188.002401

    CrossRef Google Scholar

    [14] Van der Hilst R D. Compositional heterogeneity in the bottom 1 000 kilometers of Earth's mantle: toward a hybrid convection model[J]. Science, 1999, 283: 1885-1888. doi: 10.1126/science.283.5409.1885

    CrossRef Google Scholar

    [15] Sobolev A V, Hofmann A W, Sobolev S V, et al. An olivine-free mantle source of Hawaiian shield basalts[J]. Nature, 2005, 434: 590-597. doi: 10.1038/nature03411

    CrossRef Google Scholar

    [16] Zhang G L, Zeng Z G, Beier C, et al. Generation and evolution of magma beneath the East Pacific Rise: Constraints from U-series disequilibrium and plagioclase-hosted melt inclusions[J]. Journal of Volcanology and Geothermal Research, 2010, 193 (1): 1-17. doi: 10.1016/j.jvolgeores.2010.03.002

    CrossRef Google Scholar

    [17] Jackson M G, Hart S R, Koppers A A P, et al. The return of subducted continental crust in Samoan lavas[J]. Nature, 2007, 448 (7154): 684-687. doi: 10.1038/nature06048

    CrossRef Google Scholar

    [18] Halliday A N, Lee D C, Tommasini S, et al. Incompatible trace elements in OIB and MORB and source enrichment in the sub-oceanic mantle[J]. Earth and Planetary Science Letters, 1995, 133 (3): 379-395.

    Google Scholar

    [19] Niu Y, O'Hara M J. Origin of ocean island basalts: A new perspective from petrology, geochemistry, and mineral physics considerations[J]. Journal of Geophysical Research: Solid Earth, 2003, (1978-2012), 108(B4).

    Google Scholar

    [20] Gao S, Rudnick R L, Xu W, et al. Recycling deep cratonic lithosphere and generation of intraplate magmatism in the north China craton[J]. Earth and Planetary Science Letters, 2008, 270 (1-2): 41-53. doi: 10.1016/j.epsl.2008.03.008

    CrossRef Google Scholar

    [21] Lustrino, M. How the delamination and detachment of lower crust can influence basaltic magmatism[J]. Earth-Science Reviews, 2005, 72: 21-38. doi: 10.1016/j.earscirev.2005.03.004

    CrossRef Google Scholar

    [22] Anderson D L. Speculations on the nature and cause of mantle heterogeneity[J]. Tectonophysics, 2006, 416 (1-4): 7-22. doi: 10.1016/j.tecto.2005.07.011

    CrossRef Google Scholar

    [23] Willbold M, Stracke A. Trace element composition of mantle end-members: Implications for recycling of oceanic and upper and lower continental crust[J]. Geochemistry Geophysics Geosystems, 2006, 7(4): 170-176. doi: 10.1029/2005gc001005

    CrossRef Google Scholar

    [24] Van der Hilst R D, Widiyantoro S, Engdahl E R. Evidence for deep mantle circulation from global tomography[J]. Nature, 1997, 386: 578-584. doi: 10.1038/386578a0

    CrossRef Google Scholar

    [25] Hirose K, Fei Y W, Ma Y Z, et al. The fate of subducted basaltic crust in the Earth's lower mantle[J]. Nature, 1999, 397: 53-56. doi: 10.1038/16225

    CrossRef Google Scholar

    [26] Plank T, Langmuir C H. The chemical composition of subducting sediment and its consequences for the crust and mantle[J]. Chemical Geology, 1998, 145(3): 325-394.

    Google Scholar

    [27] Cohen R S, O'Nions R K. The lead, neodymium and strontium isotopic structure of ocean ridge basalts[J]. Journal of Petrology, 1982, 23: 299-324. doi: 10.1093/petrology/23.3.299

    CrossRef Google Scholar

    [28] Zindler A, Staudigel H, Batiza R. Isotope and trace element geochemistry of young Pacific seamounts: implications for the scale of upper mantle heterogeneity[J]. Earth and Planetary Science Letters, 1984, 70(2): 175-195. doi: 10.1016/0012-821X(84)90004-9

    CrossRef Google Scholar

    [29] Hamelin C, Dosso L, Hanan B B, et al. Sr-Nd-Hf isotopes along the Pacific Antarctic Ridge from 41° to 53°S[J]. Geophysical Research Letters, 2010, 37 (10): L10303.

    Google Scholar

    [30] White W M, Hofmann A W. Sr and Nd isotope geochemistry of oceanic basalts and mantle evolution[J]. Nature, 1982, 296: 821-825. doi: 10.1038/296821a0

    CrossRef Google Scholar

    [31] Hofmann A W, Jochum K P, Seufert H M, et al. Nb and Pb in oceanic basalts: New constraints on mantle evolution[J]. Earth and Planetary Science Letters, 1986, 79: 33-45. doi: 10.1016/0012-821X(86)90038-5

    CrossRef Google Scholar

    [32] White W M, Mcbirney A R, Duncan R A. Petrology and geochemistry of the galapagos islands: portrait of a pathological mantle plume[J]. Journal of Geophysical Research, 1993, B98: 19533-19563.

    Google Scholar

    [33] Brousse R, Barsczus H G, Bellon H, et al. The Marquesas, French Polynesia: volcanology, geochronology, and discussion of a hot spot model[J]. Bull. Soc. Geol. France Ser., 1990, 86: 933-949.

    Google Scholar

    [34] Mahoney J J, Jones W B, Frey F A, et al. Geochemical characteristics of lavas from Broken Ridge, the Naturaliste plateau and southernmost Kerguelen plateau: Creataceous plateau volcanism in the southeast Indian ocean[J]. Chemical Geology, 1995, 120: 315-345. doi: 10.1016/0009-2541(94)00144-W

    CrossRef Google Scholar

    [35] Teasdale R, Geist D J, Kurz M D, et al. Eruption of volcan Cerro Azul, Galapagos islands: 1. Syn-eruptive petrogenesis[J]. Bulletin of Volcanology, 1998, 67: 170-185.

    Google Scholar

    [36] Ielsch G, Caroff M, Barsczus H G, et al. Geochemistry of U Huka island basalts (Marquesas Islands): Partial melting variations and mantle source heterogeneity[J]. Compt. Rend. Acad. Sci. Paris Ser., 1998, 2, 326: 413-420.

    Google Scholar

    [37] Blichert-Toft J, White W M. Hf isotope geochemistry of the Galapagos Islands[J]. Geochemistry Geophysics Geosystems, 2001, doi: 10.1029/2000GC000138.

    CrossRef Google Scholar

    [38] Neal C R, Mahoney J J, Chazey W J. Mantle sources and the highly variable role of continental lithosphere in basalt petrogenesis of the Kerguelen plateau and Broken Ridge lip: Results from ODP Leg 183[J]. Journal of Petrology, 2002, 43: 1177-1205. doi: 10.1093/petrology/43.7.1177

    CrossRef Google Scholar

    [39] Stracke A, Hofmann A W, Hart S R. FOZO, HIMU, and the rest of the mantle zoo[J]. Geochemistry Geophysics Geosystems, 2005, 6(5), doi: 10.1029/2004GC000824.

    CrossRef Google Scholar

    [40] Weaver B L. The origin of oceanic island basalt endmember compositions: Trace element and isotopic constraints[J]. Earth and Planetary Science Letters, 1991, 104: 381-397. doi: 10.1016/0012-821X(91)90217-6

    CrossRef Google Scholar

    [41] Chauvel C W, McDonough G, Guille R, Contrasting old and young volcanism in Rurutu Island, Austral chain[J]. Chemical Geology, 1997, 139: 125-143. doi: 10.1016/S0009-2541(97)00029-6

    CrossRef Google Scholar

    [42] Haase K M. Geochemical constraints on magma sources and mixing processes in Easter Microplate MORB (SE Pacific): a case study of plume-ridge interaction[J]. Chemical Geology, 2002, 182: 335-355. doi: 10.1016/S0009-2541(01)00327-8

    CrossRef Google Scholar

    [43] Kempton P D, Pearce J A, Barry T L, et al. Sr-Nd-Pb-Hf isotope results from ODP Leg 187: evidence for mantle dynamics of the Australian-Antarctic discordance and origin of the Indian MORB source[J]. Geochemistry Geophysics Geosystem, 2002, 3(12), 1074, doi:10.1029/2002GC000320.

    CrossRef Google Scholar

    [44] Mühe R, Bohrmann H, Garbe-Schönberg D, et al. E-MORB glasses from the gakkel ridge (Arctic ocean) at 87°N: evidence for the earth's most northerly volcanic activity[J]. Earth and Planetary Science Letters, 1997, 152: 1-9. doi: 10.1016/S0012-821X(97)00152-0

    CrossRef Google Scholar

    [45] Fontignie D, Schilling J. Mantle heterogeneities beneath the South Atlantic: a Nd-Sr-Pb isotope study along the Mid-Atlantic Ridge (3°S-46°S) [J]. Earth and Planetary Science Letters, 1996, 142(1-2): 209-221. doi: 10.1016/0012-821X(96)00079-9

    CrossRef Google Scholar

    [46] Salters V J M, Mallick S, Hart S R, et al. Domains of depleted mantle: New evidence from hafnium and neodymium isotopes[J]. Geochemistry Geophysics Geosystem, 2011, 12, Q08001, doi:10.1029/2011GC003617.

    CrossRef Google Scholar

    [47] Allégre C, Turcotte D L. Implications of a two-component marble-cake mantle[J]. Nature, 1986, 323: 123-127. doi: 10.1038/323123a0

    CrossRef Google Scholar

    [48] Stracke A, Bourdon B. The importance of melt extraction for tracing mantle heterogeneity[J]. Geochimica et Cosmochimica Acta, 2009, 73: 218-238. doi: 10.1016/j.gca.2008.10.015

    CrossRef Google Scholar

    [49] Bebout G E. Metamorphic chemical geodynamics of subduction zones[J]. Earth and Planetary Science Letters, 2007, 260 (3-4): 373-393. doi: 10.1016/j.epsl.2007.05.050

    CrossRef Google Scholar

    [50] Alt J C, Honnorez J, Laverne C, et al. Hydrothermal alteration of a 1 km section through the upper oceanic crust, deep sea drilling project hole 504B: mineralogy, chemistry and evolution of seawater-basalt interactions[J]. Journal of Geophysical Research Solid Earth, 1986, 91, B10: 10309-10335. doi: 10.1029/JB091iB10p10309

    CrossRef Google Scholar

    [51] Zhang G L, Smith-Duque C. Seafloor basalt alteration and chemical change in the ultra thinly sedimented South Pacific[J]. Geochemistry Geophysics Geosystems, 2014, 5 (7): 3066-3080.

    Google Scholar

    [52] Alt J C, Muehlenbachs K, Honnorez J. An oxygen isotopic profile through the upper kilometer of the oceanic crust, DSDP Hole 504B[J]. Earth and Planetary Science Letters, 1986, 80(3-4): 217-229. doi: 10.1016/0012-821X(86)90106-8

    CrossRef Google Scholar

    [53] McDonough W F. Partial melting of subducted oceanic crust and isolation of its residual eclogitic lithology[J]. Philos. Trans. R. Soc. London, Ser. A, 1991, 335: 407-418. doi: 10.1098/rsta.1991.0055

    CrossRef Google Scholar

    [54] Ishikawa T, Nakamura E. Origin of the slab component in arc lavas from across-arc variation of B and Pb isotopes[J]. Nature, 1994, 370 (6486): 205-208. doi: 10.1038/370205a0

    CrossRef Google Scholar

    [55] Sobolev A V, Hofmann A W, Kuzmin D V, et al. The amount of recycled crust in sources of mantle-derived melts[J]. Science, 2007, 316: 412-417. doi: 10.1126/science.1138113

    CrossRef Google Scholar

    [56] Pilet S, Hernandez J, Sylvester P, et al. The metasomatic alternative for ocean island basalt chemical heterogeneity[J]. Earth and Planetary Science Letters, 2005, 236: 148-166. doi: 10.1016/j.epsl.2005.05.004

    CrossRef Google Scholar

    [57] Kogiso T, Hirschmann M M, Frost D J. High-pressure partial melting of garnet pyroxenite: possible mafic lithologies in the source of ocean island basalts[J]. Earth and Planetary Science Letters, 2003, 216 (4): 603-617(15). doi: 10.1016/S0012-821X(03)00538-7

    CrossRef Google Scholar

    [58] Morris J D, Leeman W P, Tera F. The subducted component in island arc lavas: Constraints from Be isotopes and B-Be systematics[J]. Nature, 1990, 344: 31-36. doi: 10.1038/344031a0

    CrossRef Google Scholar

    [59] Hirose K. Post perovskite phase transition and its geophysical implications[J]. Reviews of Geophysics, 2006, 44(3):75-83. doi: 10.1029/2005RG000186

    CrossRef Google Scholar

    [60] Class C, Goldstein S L. Plume-lithosphere interactions in the ocean basins: constraints from the source mineralogy[J]. Earth and Planetary Science Letters, 1997, 150(3): 245-260.

    Google Scholar

    [61] Class C, Goldstein S L, Altherr R, Bachèlery P. The process of plume-lithosphere interactions in the ocean basins—the case of Grande Comore[J]. Journal of Petrology, 1998, 39(5): 881-903. doi: 10.1093/petroj/39.5.881

    CrossRef Google Scholar

    [62] Bizimis M, Sen G, Salters V J M. Hf-Nd isotope decoupling in the oceanic lithosphere: constraints from spinel peridotites from Oahu, Hawaii[J]. Earth and Planetary Science Letters, 2004, 217: 43-58. doi: 10.1016/S0012-821X(03)00598-3

    CrossRef Google Scholar

    [63] Delpech G, Grégoire M, O'Reilly S Y, et al. Feldspar from carbonate-rich silicate metasomatism in the shallow oceanic mantle under kerguelen islands (south Indian ocean) [J]. Lithos, 2004, 75: 209-237. doi: 10.1016/j.lithos.2003.12.018

    CrossRef Google Scholar

    [64] Rychert C A, Fischer K M, Rondenay S. A sharp lithosphere-asthenosphere boundary imaged beneath eastern North America[J]. Nature, 2005, 436 (7050): 542-545. doi: 10.1038/nature03904

    CrossRef Google Scholar

    [65] Kawakatsu H, Kumar P, Takei Y, et al. Seismic evidence for sharp lithosphere-asthenosphere boundaries of oceanic plates[J]. Science, 2009, 324 (5926): 499-502. doi: 10.1126/science.1169499

    CrossRef Google Scholar

    [66] Naif S, Key K, Constable S, et al. Melt-rich channel observed at the lithosphere-asthenosphere boundary[J]. Nature, 2013, 495 (7441): 356-359. doi: 10.1038/nature11939

    CrossRef Google Scholar

    [67] Escrig S, Capmas F, Dupré B, et al. Osmium isotopic constraints on the nature of the DUPAL anomaly from Indian mid-ocean-ridge basalts[J]. Nature, 2004, 431 (7004): 59-63. doi: 10.1038/nature02904

    CrossRef Google Scholar

    [68] von Huene R, Ranero C R, Vannucchi P. Generic model of subduction erosion[J]. Geology, 2004, 32: 913-916. doi: 10.1130/G20563.1

    CrossRef Google Scholar

    [69] Kesson S E, Gerald J F, Shelley J M G, et al. Mineral chemistry and density of subducted basaltic crust at lower-mantle pressures[J]. Nature, 1994, 372(6508): 767-769. doi: 10.1038/372767a0

    CrossRef Google Scholar

    [70] Ono S, Ito E, Katsura T. Mineralogy of subducted basaltic crust (MORB) from 25 to 37 GPa, and chemical heterogeneity of the lower mantle[J]. Earth and Planetary Science Letters, 2001, 190(1):57-63.

    Google Scholar

    [71] Poli S, Schmidt M W. Petrology of subducted slabs[J]. Annual Review of Earth and Planetary Sciences, 2002, 30(1): 207-235. doi: 10.1146/annurev.earth.30.091201.140550

    CrossRef Google Scholar

    [72] Ohta K, Hirose K, Lay T, et al. Phase transitions in pyrolite and MORB at lowermost mantle conditions: implications for a MORB-rich pile above the core-mantle boundary[J]. Earth and Planetary Science Letters, 2008, 267(1): 107-117. doi: 10.1016/j.epsl.2007.11.037

    CrossRef Google Scholar

    [73] Tschauner O, Ma C, Beckett J R, et al. Discovery of bridgmanite, the most abundant mineral in Earth, in a shocked meteorite[J]. Science, 2014, 346(6213): 1100-1102. doi: 10.1126/science.1259369

    CrossRef Google Scholar

    [74] Hoernle K, Hauff F, Werner R, et al. Origin of Indian Ocean Seamount Province by shallow recycling of continental lithosphere[J]. Nature Geoscience, 2011, 4(12): 883-887. doi: 10.1038/ngeo1331

    CrossRef Google Scholar

    [75] Goldstein S L, Soffer G, Langmuir C H, et al. Origin of a 'Southern Hemisphere'geochemical signature in the Arctic upper mantle[J]. Nature, 2008, 453(7191): 89-93. doi: 10.1038/nature06919

    CrossRef Google Scholar

    [76] Kaliwoda M, Altherr R, Meyer H. Composition and thermal evolution of the lithospheric mantle beneath the Harrat Uwayrid, eastern flank of the Red Sea rift (Saudi Arabia) [J]. Lithos, 2007, 99: 105-120. doi: 10.1016/j.lithos.2007.06.013

    CrossRef Google Scholar

    [77] Dasgupta R, Hirschmann M M. Melting in the Earth's deep upper mantle caused by carbon dioxide[J]. Nature, 2006, 440(7084): 659-662. doi: 10.1038/nature04612

    CrossRef Google Scholar

    [78] Neumann E -R, Wulff-Pedersen E, Pearson N J. et al. Mantle xenoliths from Tenerife (Canary Islands): Evidence for reactions between mantle peridotites and silicic carbonatitie melts inducing Ca metasomatism[J]. Journal of Petrology, 2002, 43 (5): 825-857. doi: 10.1093/petrology/43.5.825

    CrossRef Google Scholar

    [79] Hudgins T R, Mukasa S B, Simon A C, et al. Melt inclusion evidence for CO2rich melts beneath the western branch of the East African Rift: implications for longterm storage of volatiles in the deep lithospheric mantle[J]. Contribution to Mineralogy and Petrology, 2015, 169 (5): 1-18.

    Google Scholar

    [80] Hoernle K, Tilton G, Le Bas M J, et al. Geochemistry of oceanic carbonatites compared with continental carbonatites: mantle recycling of oceanic crustal carbonate[J]. Contributions to Mineralogy and Petrology, 2002, 142: 520-542. doi: 10.1007/s004100100308

    CrossRef Google Scholar

    [81] Pearce J A, Baker P E, Harvey P K, et al. Geochemical evidence for subduction fluxes, mantle melting and fractional crystallization beneath the south sandwich island arc[J]. Journal of Petrology, 1995, 36 (4): 1073-1109. doi: 10.1093/petrology/36.4.1073

    CrossRef Google Scholar

    [82] Spandler C, Pirard C. Element recycling from subducting slabs to arc crust: A review[J]. Lithos, 2013, 170: 208-223. doi: 10.1016/j.lithos.2013.02.016

    CrossRef Google Scholar

    [83] Yaxley G M, Green D H. Experimental demonstration of refractory carbonate-bearing eclogite and siliceous melt in the subduction regime[J]. Earth and Planetary Science Letters, 1994, 128(3-4): 313-325. doi: 10.1016/0012-821X(94)90153-8

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Article Metrics

Article views(3831) PDF downloads(107) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint