2015 Vol. 35, No. 5
Article Contents

LI Qing, WANG Jiasheng, CAI Feng, LIANG Jie, HU Gaowei, SUN Zhilei, SHAO Hebin. CARBON STABLE ISOTOPES OF AUTHIGENIC CARBONATES AND BENTHIC FORAMINIFERA RECOVERED FROM SITES U1328 AND U1329 AS CO-INDICATORS OF EPISODIC METHANE SEEP EVENTS IN THE CASCADIA MARGIN[J]. Marine Geology & Quaternary Geology, 2015, 35(5): 37-46. doi: 10.16562/j.cnki.0256-1492.2015.05.005
Citation: LI Qing, WANG Jiasheng, CAI Feng, LIANG Jie, HU Gaowei, SUN Zhilei, SHAO Hebin. CARBON STABLE ISOTOPES OF AUTHIGENIC CARBONATES AND BENTHIC FORAMINIFERA RECOVERED FROM SITES U1328 AND U1329 AS CO-INDICATORS OF EPISODIC METHANE SEEP EVENTS IN THE CASCADIA MARGIN[J]. Marine Geology & Quaternary Geology, 2015, 35(5): 37-46. doi: 10.16562/j.cnki.0256-1492.2015.05.005

CARBON STABLE ISOTOPES OF AUTHIGENIC CARBONATES AND BENTHIC FORAMINIFERA RECOVERED FROM SITES U1328 AND U1329 AS CO-INDICATORS OF EPISODIC METHANE SEEP EVENTS IN THE CASCADIA MARGIN

  • Methane seeps play a significant role in the evolution of pore water dissolved inorganic carbon (DIC) via anaerobic oxidation of methane (AOM), which could make authigenic carbonates precipitated and influence the benthic foraminifera living near seep environments. Two independent proxies involving the carbon isotopic composition of authigenic carbonates and benthic foraminifera (Uvigerina peregrina) were studied to verify the potential relationship between authigenic carbonates and foraminifera as co-indicators of episodic methane seeps during late Pleistocene and Holocene in the northern Cascadia margin's gas hydrate geo-system. Both authigenic carbonates and benthic foraminifera exhibit episodic negative carbon isotope excursions during the past 1.6 Ma at site U1328 and 8.5 Ma at site U1329. The carbon isotope excursions of benthic foraminifera coincide with those of authigenic carbonates at several methane seep stages, even though a profound carbon isotopic disequilibrium exists between the authigenic carbonates and benthic foraminifera. Methane seep-related AOM favors authigenic carbonate precipitation and also leaves imprints on the DIC that could be recorded by the calcification of benthic foraminifera. The carbon isotopic coincidence between authigenic carbonates and benthic foraminifera demonstrates that two proxies could record the same methane seep events. We combine the benthic foraminifera with authigenic minerals to reveal that the methane seep events could preclude the post-depositional alterations of the authigenic carbonates and delineate the specific history of episodic methane seep events.
  • 加载中
  • [1] Suess E.Marine Cold Seeps[M]//In:Timmis K N eds. Handbook of Hydrocarbon and Lipid Microbiology. Berlin:Springer:2010:187-203.

    Google Scholar

    [2] Gieskes J, Rathburn A E, Martin J B, et al.Cold seeps in Monterey Bay, California:Geochemistry of pore waters and relationship to benthic foraminiferal calcite[J]. Applied Geochemistry, 2011,26:738-746.

    Google Scholar

    [3] Boetius A, Ravenschlag K, Schubert C J, et al. A marine microbial consortium apparently mediating anaerobic oxidation of methane[J]. Nature, 2000,407:623-626.

    Google Scholar

    [4] Borowski WS, Rodriguez N M, Paull C K, et al. Are 34S-enriched authigenic sulfide minerals a proxy for elevated methane flux and gas hydrates in the geologic record?[J]. Marine and Petroleum Geology, 2013,43:381-395. doi:10.1016/j.marpetgeo.2012.12.009.

    Google Scholar

    [5] Joseph C, Campbell K A, Torres M E, et al. 2013. Methane-derived authigenic carbonates from modern and paleoseeps on the Cascadia margin:Mechanisms of formation and diagenetic signals[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 390:52-67.

    Google Scholar

    [6] Michaelis W, Seifert R, Nauhaus K, et al. Microbial reefs in the Black Sea fueled by anaerobic oxidation of methane[J]. Science, 2002,297:1013-1015. doi:10.1126/science.1072502.

    Google Scholar

    [7] Treude T, Niggemann J, Kallmeyer J, et al. Anaerobic oxidation of methane and sulfate reduction along the Chilean continental margin[J]. Geochimica et Cosmochimica Acta, 2005,69:2767-2779. doi:10.1016/j.gca.2005.01.002.

    Google Scholar

    [8] Magalhães V H, Pinheiro L M, Ivanov M K, et al. Formation processes of methane-derived authigenic carbonates from the Gulf of Cadiz[J]. Sedimentary Geology, 2012,243-244:155-168.

    Google Scholar

    [9] Panieri G, Camerlenghi A, Conti S, et al. Methane seepages recorded in benthic foraminifera from Miocene seep carbonates, Northern Apennines (Italy)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009,284:271-282.

    Google Scholar

    [10] 李清, 王家生, 王晓芹, 等. IODP 311航次底栖有孔虫碳稳定同位素对天然气水合物地质系统的指示[J]. 地球科学进展, 2008,23:1161-1166.[LI Qing,WANG Jiasheng,WANG Xiaoqin, et al. Stable carbon isotopic response of the benthic foraminifera from IODP 311

    Google Scholar

    to the marine methane hydrate geo-system[J]. Advances in Earth Science, 2008,23:1161-1166.]

    Google Scholar

    [11] 李清, 王家生, 蔡峰, 等. 天然气水合物系统多幕次甲烷渗漏作用的底栖有孔虫同位素响应-以IODP311航次为例[J]. 海洋地质前沿, 2011,27:29-36.[LI Qing,WANG Jiasheng,CAI Feng,et al.Carbon and oxygen stable isotopes of benthic foraminifera as possible indicators of episodic methane seeps in gas hydrate geo-system-A study from IODP Expedition 311

    Google Scholar

    [J].Marine Geology Frontiers,2011,27:29-36.]

    Google Scholar

    [12] Hill T M, Kennett J P and Spero H J. Foraminifera as indicators of methane-rich environments:A study of modern methane seeps in Santa Barbara Channel, California[J]. Marine Micropaleontology, 2003, 49:123-138.

    Google Scholar

    [13] Hill T M, Kennett J P, Valentine D L. Isotopic evidence for the incorporation of methane-derived carbon into foraminifera from modern methane seeps, Hydrate Ridge, Northeast Pacific[J]. Geochimica et Cosmochimica Acta, 2004,68:4619-4627.

    Google Scholar

    [14] Hill T M, Kennett J P, Valentine D L, et al. Climatically driven emissions of hydrocarbons from marine sediments during deglaciation[J]. Proceedings of the National Academy of Sciences, 2006,103:13570-13574.

    Google Scholar

    [15] Kennett J P, Cannariato K G, Hendy I L, et al. Carbon isotopic evidence for methane hydrate instability during Quaternary interstadials[J]. Science, 2000,288:128-133.

    Google Scholar

    [16] Li Q, Wang J, Chen J, et al. Stable carbon isotopes of benthic foraminifers from IODP Expedition 311 as possible indicators of episodic methane seep events in a gas hydrate geosystem[J]. Palaios, 2010,25:671-681.

    Google Scholar

    [17] Mackensen A, Wollenburg J and Licari L. Low δ13C in tests of live epibenthic and endobenthic foraminifera at a site of active methane seepage[J]. Paleoceanography, 2006,21:PA2022, doi:10.1029/2005PA001196.

    Google Scholar

    [18] Martin J B, Day S A, Rathburn A E, et al. Relationships between the stable isotopic signatures of living and fossil foraminifera in Monterey Bay, California[J]. Geochemistry Geophysics Geosystems, 2004,5. doi:10.1029/2003GC000629.

    Google Scholar

    [19] Martin R A, Nesbitt E A and Campbell K A. The effects of anaerobic methane oxidation on benthic foraminiferal assemblages and stable isotopes on the Hikurangi Margin of eastern New Zealand[J]. Marine Geology, 2010,272:270-284.

    Google Scholar

    [20] Panieri G. Benthic foraminifera associated with a hydrocarbon seep in the Rockall Trough (NE Atlantic)[J]. Geobios, 2005,38:247-255.

    Google Scholar

    [21] Panieri G, Camerlenghi A, Cacho I, et al. Tracing seafloor methane emissions with benthic foraminifera:Results from the Ana submarine landslide (Eivissa Channel, Western Mediterranean Sea)[J]. Marine Geology, 2012,291-294:97-112.

    Google Scholar

    [22] Rathburn A E, Pérez M E, Martin J B, et al. Relationships between the distribution and stable isotopic composition of living benthic foraminifera and cold methane seep biogeochemistry in Monterey Bay, California[J]. Geochemistry Geophysics Geosystems, 2003,4:1106. doi:10.1029/2003GC000595.

    Google Scholar

    [23] Sen Gupta B K, Aharon P. Benthic foraminifera of bathyal hydrocarbon vents of the Gulf of Mexico:Initial report on communities and stable isotopes[J]. Geo-Marine Letters, 1994,14:88-96.

    Google Scholar

    [24] Wefer G, Heinze P-M, Berger W H. Clues to ancient methane release[J]. Nature, 1994,369:282.

    Google Scholar

    [25] Kennett J P, Cannariato K G, Hendy I L, et al. Methane Hydrates in Quaternary Climate Change:The Clathrate Gun Hypothesis[M]. Washington, DC:American Geophysical Union. 2003,216.

    Google Scholar

    [26] Uchida M, Shibata Y, Ohkushi K, et al. Episodic methane release events from last Glacial marginal sediments in the western North Pacific[J]. Geochemistry Geophysics Geosystems, 2004,5. doi:10.1029/2004GC000699.

    Google Scholar

    [27] Gieskes J, Mahn C, Day S, et al. A study of the chemistry of pore fluids and authigenic carbonates in methane seep environments:Kodiak Trench, Hydrate Ridge, Monterey Bay, and Eel River Basin[J]. Chemical Geology, 2005,220:329-345.

    Google Scholar

    [28] Torres M E, Mix A C, Kinports K, et al. Is methane venting at the seafloor recorded by δ13C of benthic foraminifera shells?[J]. Paleoceanography, 2003,18:1062. doi:10.1029/2002PA000824.

    Google Scholar

    [29] Riddihough R. Recent movements of the Juan de Fuca plate system[J]. Journal of Geophysical Research, 1984,89:6980-6994.

    Google Scholar

    [30] Expedition 311 Scientists. Site U1328. In:Riedel M, Collett T S, Malone M J et al. eds. Proceedings of the Integrated Ocean Drilling Program, Volume 311[R]. Washington, DC:(Integrated Ocean Drilling Program Management International, Inc.),2006, doi:10.2204/iodp.proc.311.106.2006.

    Google Scholar

    [31] Expedition 311 Scientists. Site U1329. In:Riedel M, Collett T S, Malone M J et al. eds. Proceedings of the Integrated Ocean Drilling Program, Volume 311[R]. Washington, DC:(Integrated Ocean Drilling Program Management International, Inc.),2006, doi:10.2204/iodp.proc.311.107.2006.

    Google Scholar

    [32] Expedition 311 Scientists. Cascadia Margin Gas Hydrates. Integrated Ocean Drilling Program Expedition 311 Preliminary Report[R]. 2005,141.

    Google Scholar

    [33] Pierre C, Blanc Valleron M M, Rouchy J M, et al. Data report:stable isotope composition of authigenic carbonates from the northern Cascadia margin, IODP Expedition 311, Site U1325-U1329[R]. In:Riedel M, Collett T S, Malone M J et al. eds. Proceedings of the Integrated Ocean Drilling Program, Volume 311. Washington, DC (Integrated Ocean Drilling Program Management International, Inc.). 2009,doi:10.2204/iodp.proc.311.210.2009.

    Google Scholar

    [34] Blanc Valleron M M, Pierre C, Bartier D, et al. Mineralogy of authigenic carbonates from the northern Cascadia margin, IODP Expedition 311[C]. IODP Expedition 311-2nd Post-Expedition Meeting. 2007, 9-13.

    Google Scholar

    [35] Hesse R. Pore water anomalies of submarine gas-hydrate zones as tool to assess hydrate abundance and distribution in the subsurface:What have we learned in the past decade?[J]. Earth-Science Reviews, 2003,61(1-2):149-179.

    Google Scholar

    [36] Hesse R, Harrison W E. Gas hydrates (clathrates) causing pore-water freshening and oxygen isotope fractionation in deep-water sedimentary sections of terrigenous continental margins[J]. Earth and Planetary Science Letters, 1981, 55:453-462.

    Google Scholar

    [37] Pierre C, Rouchy J M, Gaudichet A. Diagenesis in the gas hydrate sediments of the Blake Ridge:Mineralogy and stable isotope compositions of the carbonate and sulfide minerals[R]. In:Paull C K, Matsumoto R, Wallace P J et al. eds. Proceedings of the Ocean Drilling Program, Scientific Results, 2000, 164:139-146.

    Google Scholar

    [38] Hyndman R D, Davis E E. A mechanism for the formation of methane hydrate and seafloor bottom-simulating reflectors by vertical fluid expulsion[J]. Journal of Geophysical Research, 1992,97:7025-7041.

    Google Scholar

    [39] Bernhard J M, Martin J B, Rathburn A E. Combined carbonate carbon isotopic and cellular ultrastructural studies of individual benthic foraminifera:2. Toward an understanding of apparent disequilibrium in hydrocarbon seeps[J]. Paleoceanography,2010, 25:PA4206.doi:10.1029/2010PA001930.

    Google Scholar

    [40] Torres M E, Martin R A, Klinkhammer G, et al. Post depositional alteration of foraminiferal shells in cold seep settings:New insights from flow-through time-resolved analyses of biogenic and inorganic seep carbonates[J]. Earth and Planetary Science Letters, 2010,299:10-22.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1225) PDF downloads(5) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint