China Geological Environment Monitoring Institute, China Geological Disaster Prevention Engineering Industry AssociationHost
2023 Vol. 34, No. 3
Article Contents

HUANG Jie, DANG Chao. Blocking effect of debris flow in the segment of bayonet terrain: A case study at the Huatoujian gulley of Shefang, Sichuan[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(3): 48-57. doi: 10.16031/j.cnki.issn.1003-8035.202207011
Citation: HUANG Jie, DANG Chao. Blocking effect of debris flow in the segment of bayonet terrain: A case study at the Huatoujian gulley of Shefang, Sichuan[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(3): 48-57. doi: 10.16031/j.cnki.issn.1003-8035.202207011

Blocking effect of debris flow in the segment of bayonet terrain: A case study at the Huatoujian gulley of Shefang, Sichuan

More Information
  • The temporary block-breach phenomena tend to occurrence when debris flows run throng bayonet segment, accompanying with instant scale-amplified effect. By the way of field investigations as well as indoor flume tests, the influence factors and formation mechanisms of the block-breach effect were studied herein. Results showed that the flow amplification caused by the blocking effect of debris flow or the flow attenuation caused by the accumulation of solid materials in the bayonet segments, were related to the geometric conditions of the bayonet, the debris flow fluid and trench features, and whether there was additional loose material . The existence of bayonet was mostly a positive factor for the flow attenuation of debris flow, and whether there was the addition of loose materials was the key factor for the blocking effect of debris flow in bayonet segments. This study provided theoretical significance and application prospects for understanding the motional and deposited regularities of debris flow in where micro-topography abruptly changed, and improving the technical regulations of natural hazard prevention and mitigation.

  • 加载中
  • [1] 费祥俊, 舒安平. 泥石流运动机理与灾害防治[M]. 北京: 清华大学出版社, 2004

    Google Scholar

    FEI Xiangjun, SHU Anping. Movement mechanism and disaster control for debris flow[M]. Beijing: Tsinghua University Press, 2004. (in Chinese with English abstract)

    Google Scholar

    [2] 吴积善,程尊兰,耿学勇. 西藏东南部泥石流堵塞坝的形成机理[J]. 山地学报,2005,23(4):4399 − 4405. [WU Jishan,CHENG Zunlan,GENG Xueyong. Formation of dam from debris flow in the southeast Tibet[J]. Journal of Mountain Research,2005,23(4):4399 − 4405. (in Chinese with English abstract)

    Google Scholar

    WU Jishan, CHENG Zunlan, GENG Xueyong. Formation of dam from debris flow in the southeast Tibet[J]. Journal of Mountain Research, 2005, 23(4): 4399-4405. (in Chinese with English abstract)

    Google Scholar

    [3] DANG Chao,CUI Peng,CHENG Zunlan. The formation and failure of debris flow-dams,background,key factors and model tests:Case studies from China[J]. Environmental Geology,2009,57(8):1901 − 1910. doi: 10.1007/s00254-008-1479-6

    CrossRef Google Scholar

    [4] LIU C N,DONG J J,PENG Y F,et al. Effects of strong ground motion on the susceptibility of gully type debris flows[J]. Engineering Geology,2009,104(3/4):241 − 253.

    Google Scholar

    [5] YU B, LI L, MA Y, et al. Research on topographical factors in the formation of gully type debris flows[C]//River, Coastal and Estuarine Morphdynamics, Beijing: Tsinghua University Press, 2011.

    Google Scholar

    [6] 朱渊,余斌,亓星,等. 地形条件对泥石流发育的影响:以岷江流域上游为例[J]. 吉林大学学报(地球科学版),2014,44(1):268 − 277. [ZHU Yuan,YU Bin,QI Xing,et al. Topographical factors in the formation of gully type debris flows in the upper reaches of Minjiang River[J]. Journal of Jilin University (Earth Science Edition),2014,44(1):268 − 277. (in Chinese with English abstract)

    Google Scholar

    ZHU Yuan, YU Bin, QI Xing, et al. Topographical factors in the formation of gully type debris flows in the upper reaches of Minjiang River[J]. Journal of Jilin University (Earth Science Edition), 2014, 44(1): 268-277. (in Chinese with English abstract)

    Google Scholar

    [7] 刘希林,唐川,陈明,等. 泥石流危险范围的模型实验预测法[J]. 自然灾害学报,1993,2(3):67 − 73. [LIU Xilin,TANG Chuan,CHEN Ming,et al. The model experiment forecast on the risk range of debris flow[J]. Journal of Natural Disasters,1993,2(3):67 − 73. (in Chinese with English abstract)

    Google Scholar

    LIU Xilin, TANG Chuan, CHEN Ming, et al. The model experiment forecast on the risk range of debris flow[J]. Journal of Natural Disasters, 1993, 2(3): 67-73. (in Chinese with English abstract)

    Google Scholar

    [8] 庄建琦,崔鹏,胡凯衡,等. 沟道松散物质起动形成泥石流实验研究[J]. 四川大学学报(工程科学版),2010,42(5):230 − 236. [ZHUANG Jianqi,CUI Peng,HU Kaiheng,et al. Research on debris flow initiation due to bed failure after Wenchuan earthquake[J]. Journal of Sichuan University (Engineering Science Edition),2010,42(5):230 − 236. (in Chinese with English abstract)

    Google Scholar

    ZHUANG Jianqi, CUI Peng, HU Kaiheng, et al. Research on debris flow initiation due to bed failure after Wenchuan earthquake[J]. Journal of Sichuan University (Engineering Science Edition), 2010, 42(5): 230-236. (in Chinese with English abstract)

    Google Scholar

    [9] 许强. 四川省8·13特大泥石流灾害特点、成因与启示[J]. 工程地质学报,2010,18(5):596 − 608. [XU Qiang. The 13 August 2010 catastrophic debris flows in Sichuan Province:characteristics,genetic mechanism and suggestions[J]. Journal of Engineering Geology,2010,18(5):596 − 608. (in Chinese with English abstract) doi: 10.3969/j.issn.1004-9665.2010.05.002

    CrossRef Google Scholar

    XU Qiang. The 13 August 2010 catastrophic debris flows in Sichuan Province: characteristics, genetic mechanism and suggestions[J]. Journal of Engineering Geology, 2010, 18(5): 596-608. (in Chinese with English abstract) doi: 10.3969/j.issn.1004-9665.2010.05.002

    CrossRef Google Scholar

    [10] 郭晓军, 苏鹏程, 崔鹏, 等. 7月3日茂县棉簇沟特大泥石流成因和特征分析[J]. 水利学报, 2012, 43(增刊2): 140 − 146

    Google Scholar

    GUO Xiaojun, SU Pengcheng, CUI Peng, et al. Research on the giant debris flow hazards in miancu gully, Mao County on July 3, 2011[J]. Journal of Hydraulic Engineering, 2012, 43(Sup 2): 140 − 146. (in Chinese with English abstract)

    Google Scholar

    [11] 谢洪,刘维明,赵晋恒,等. 四川石棉2012年“7·14”唐家沟泥石流特征[J]. 地球科学与环境学报,2013,35(4):90 − 97. [XIE Hong,LIU Weiming,ZHAO Jinheng,et al. Characteristics of Tangjiagou debris flow in Shimian of Sichuan in July 14,2012[J]. Journal of Earth Sciences and Environment,2013,35(4):90 − 97. (in Chinese with English abstract) doi: 10.3969/j.issn.1672-6561.2013.04.010

    CrossRef Google Scholar

    XIE Hong, LIU Weiming, ZHAO Jinheng, et al. Characteristics of Tangjiagou debris flow in Shimian of Sichuan in July 14, 2012[J]. Journal of Earth Sciences and Environment, 2013, 35(4): 90-97. (in Chinese with English abstract) doi: 10.3969/j.issn.1672-6561.2013.04.010

    CrossRef Google Scholar

    [12] 胡桂胜,陈宁生,游勇,等. “7·10”连山大桥泥石流运动特征与沟道堵溃分析[J]. 成都理工大学学报(自然科学版),2015,42(6):641 − 648. [HU Guisheng,CHEN Ningsheng,YOU Yong,et al. Analysis of dynamic characteristic parameters and block and burst characteristics of Lianshan bridge debris flow in Wenchuan,Sichuan on July 10,2013[J]. Journal of Chengdu University of Technology (Science & Technology Edition),2015,42(6):641 − 648. (in Chinese with English abstract) doi: 10.3969/j.issn.1671-9727.2015.06.01

    CrossRef Google Scholar

    HU Guisheng, CHEN Ningsheng, YOU Yong, et al. Analysis of dynamic characteristic parameters and block and burst characteristics of Lianshan bridge debris flow in Wenchuan, Sichuan on July 10, 2013[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2015, 42(6): 641-648. (in Chinese with English abstract) doi: 10.3969/j.issn.1671-9727.2015.06.01

    CrossRef Google Scholar

    [13] 覃浩坤,张海泉,张波. 汶川震区震后七盘沟多级堵溃泥石流形成条件分析[J]. 工程地质学报,2016,24(增刊 1):100 − 107. [QIN Haokun,ZHANG Haiquan,ZHANG Bo. Analysis of formation conditions of multi-level debris flow in Qipangou after the Wenchuan earthquake[J]. Journal of Engineering Geology,2016,24(Sup 1):100 − 107. (in Chinese with English abstract)

    Google Scholar

    QIN Haokun, ZHANG Haiquan, ZHANG Bo. Analysis of formation conditions of multi-level debris flow in Qipangou after the wenchuan earthquake[J]. Journal of Engineering Geology, 2016, 24(Supl. ): 100-107. (in Chinese with English abstract)

    Google Scholar

    [14] 游勇,柳金峰,陈兴长. “5·12”汶川地震后北川苏保河流域泥石流危害及特征[J]. 山地学报,2010,28(3):358 − 366. [YOU Yong,LIU Jinfeng,CHEN Xingchang. Debris flow and its characteristics of subao river in Beichuan County after “5·12” Wenchuan earthquake[J]. Journal of Mountain Science,2010,28(3):358 − 366. (in Chinese with English abstract) doi: 10.3969/j.issn.1008-2786.2010.03.014

    CrossRef Google Scholar

    YOU Yong, LIU Jinfeng, CHEN Xingchang. Debris flow and its characteristics of subao river in Beichuan County after “5·12” Wenchuan earthquake[J]. Journal of Mountain Science, 2010, 28(3): 358-366. . (in Chinese with English abstract) doi: 10.3969/j.issn.1008-2786.2010.03.014

    CrossRef Google Scholar

    [15] 胡卸文,韩玫,梁敬轩,等. 汶川地震灾区泥石流若干关键问题[J]. 西南交通大学学报,2016,51(2):331 − 340. [HU Xiewen,HAN Mei,LIANG Jingxuan,et al. Some key problems on debris flow in Wenchuan earthquake area[J]. Journal of Southwest Jiaotong University,2016,51(2):331 − 340. (in Chinese with English abstract) doi: 10.3969/j.issn.0258-2724.2016.02.012

    CrossRef Google Scholar

    HU Xiewen, HAN Mei, LIANG Jingxuan, et al. Some key problems on debris flow in Wenchuan earthquake area[J]. Journal of Southwest Jiaotong University, 2016, 51(2): 331-340. (in Chinese with English abstract) doi: 10.3969/j.issn.0258-2724.2016.02.012

    CrossRef Google Scholar

    [16] 崔鹏,庄建琦,陈兴长,等. 汶川地震区震后泥石流活动特征与防治对策[J]. 四川大学学报(工程科学版),2010,42(5):10 − 19. [CUI Peng,ZHUANG Jianqi,CHEN Xingchang,et al. Characteristics and countermeasures of debris flow in Wenchuan area after the earthquake[J]. Journal of Sichuan University (Engineering Science Edition),2010,42(5):10 − 19. (in Chinese with English abstract)

    Google Scholar

    CUI Peng, ZHUANG Jianqi, CHEN Xingchang, et al. Characteristics and countermeasures of debris flow in Wenchuan area after the earthquake[J]. Journal of Sichuan University (Engineering Science Edition), 2010, 42(5): 10-19. (in Chinese with English abstract)

    Google Scholar

    [17] CUI P,ZHOU G G D,ZHU X H,et al. Scale amplification. of natural debris flows caused by cascading landslide dam failures[J]. Geomorphology,2013,182:173 − 189. doi: 10.1016/j.geomorph.2012.11.009

    CrossRef Google Scholar

    [18] 张勇. 凹槽土体失稳起动泥石流的力学机制与规模放大过程[D]. 北京: 中国科学院大学, 2020

    Google Scholar

    ZHANG Yong. Mechanical mechanism and scale-up process of debris flow initiated by groove soil instability[D]. Beijing: University of Chinese Academy of Sciences, 2020. (in Chinese with English abstract)

    Google Scholar

    [19] 李俊,陈宁生,赵苑迪. 溃决型黏性泥石流冲击下大颗粒堰塞坝溃决流量计算方法研究[J]. 水利水电技术,2018,49(12):169 − 176. [LI Jun,CHEN Ningsheng,ZHAO Yuandi. Study on method for calculation of breaching discharge of large particle-sized landslide-dam under impact of breaching and viscous debris flow[J]. Water Resources and Hydropower Engineering,2018,49(12):169 − 176. (in Chinese with English abstract)

    Google Scholar

    LI Jun, CHEN Ningsheng, ZHAO Yuandi. Study on method for calculation of breaching discharge of large particle-sized landslide-dam under impact of breaching and viscous debris flow[J]. Water Resources and Hydropower Engineering, 2018, 49(12): 169-176. (in Chinese with English abstract)

    Google Scholar

    [20] 赵琰鑫. 沟道泥石流运动—淤塞—堵溃数值模拟研究[D]. 武汉: 武汉大学, 2012

    Google Scholar

    ZHAO Yanxin. Dynamic characteristics and numerical modelling for debris flows in natural channels[D]. Wuhan: Wuhan University, 2012. (in Chinese with English abstract)

    Google Scholar

    [21] 朱兴华. 泥石流沟道的沿程侵蚀特征及演进过程研究[D]. 北京: 中国科学院大学, 2013

    Google Scholar

    ZHU Xinghua. Study on erosion characteristics and evolution process of debris flow along the gully[D]. Beijing: University of Chinese Academy of Sciences, 2013. (in Chinese with English abstract)

    Google Scholar

    [22] 游勇,陈兴长,柳金峰. 汶川地震后四川安县甘沟堵溃泥石流及其对策[J]. 山地学报,2011,29(3):320 − 327. [YOU Yong,CHEN Xingzhang,LIU Jinfeng,. Dam-breaking ebris flows and its countermeasures of Gangou gully following the Wenchuan earthquake in Anxian County,Sichuan[J]. Journal of Mountain Science,2011,29(3):320 − 327. (in Chinese with English abstract) doi: 10.3969/j.issn.1008-2786.2011.03.009

    CrossRef Google Scholar

    YOU Yong, CHEN Xingzhang, LIU Jinfeng, . Dam-breaking ebris flows and its countermeasures of Gangou gully following the Wenchuan earthquake in Anxian County, Sichuan[J]. Journal of Mountain Science, 2011, 29(3): 320-327. (in Chinese with English abstract) doi: 10.3969/j.issn.1008-2786.2011.03.009

    CrossRef Google Scholar

    [23] 李睿祺,胡桂胜,杨志全,等. 都汶高速公路银杏坪沟大规模泥石流运动特征与堵溃分析[J]. 成都理工大学学报(自然科学版),2020,47(5):625 − 634. [LI Ruiqi,HU Guisheng,YANG Zhiquan,et al. Analysis on the large-scale debris flow movement and its characteristics of debris block and collapse at Yinxingping ditch near the Duwen Expressway,Sichuan,China[J]. Journal of Chengdu University of Technology (Science & Technology Edition),2020,47(5):625 − 634. (in Chinese with English abstract) doi: 10.3969/j.issn.1671-9727.2020.05.11

    CrossRef Google Scholar

    LI Ruiqi, HU Guisheng, YANG Zhiquan, et al. Analysis on the large-scale debris flow movement and its characteristics of debris block and collapse at Yinxingping ditch near the Duwen Expressway, Sichuan, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2020, 47(5): 625-634. (in Chinese with English abstract) doi: 10.3969/j.issn.1671-9727.2020.05.11

    CrossRef Google Scholar

    [24] 胡华,吴轩,张越. 基于模拟试验的强降雨条件下花岗岩残积土斜坡滑塌破坏机理分析[J]. 中国地质灾害与防治学报,2021,32(5):92 − 97. [HU Hua,WU Xuan,ZHANG Yue. Experimental study on slope collapse characteristics of granite residual soil slope under heavy rainfall[J]. The Chinese Journal of Geological Hazard and Control,2021,32(5):92 − 97. (in Chinese with English abstract)

    Google Scholar

    HU Hua, WU Xuan, ZHANG Yue. Experimental study on slope collapse characteristics of granite residual soil slope under heavy rainfall[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(5): 92-97. (in Chinese with English abstract)

    Google Scholar

    [25] 陈林万,张晓超,裴向军,等. 降雨诱发直线型黄土填方边坡失稳模型试验[J]. 水文地质工程地质,2021,48(6):151 − 160. [CHEN Linwan,ZHANG Xiaochao,PEI Xiangjun,et al. Model test of the linear loess fill slope instability induced by rainfall[J]. Hydrogeology & Engineering Geology,2021,48(6):151 − 160. (in Chinese with English abstract)

    Google Scholar

    CHEN Linwan, ZHANG Xiaochao, PEI Xiangjun, et al. Model test of the linear loess fill slope instability induced by rainfall[J]. Hydrogeology & Engineering Geology, 2021, 48(6): 151-160. (in Chinese with English abstract)

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(12)

Tables(3)

Article Metrics

Article views(791) PDF downloads(19) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint