China Geological Environment Monitoring Institute, China Geological Disaster Prevention Engineering Industry AssociationHost
2023 Vol. 34, No. 3
Article Contents

MU Qichao, WANG Wanqian, WANG Qi, YAN Jingti. Analysis of the formation mechanism of landslide in Changchong group, Songtao, Guizhou[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(3): 40-47. doi: 10.16031/j.cnki.issn.1003-8035.202202023
Citation: MU Qichao, WANG Wanqian, WANG Qi, YAN Jingti. Analysis of the formation mechanism of landslide in Changchong group, Songtao, Guizhou[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(3): 40-47. doi: 10.16031/j.cnki.issn.1003-8035.202202023

Analysis of the formation mechanism of landslide in Changchong group, Songtao, Guizhou

  • Guizhou Province is a mountainous region with typical karst topography where the quaternary overburden layer is unevenly distributed, with clayey soil on the shallow surface layer from the front edge to the middle of the slope body and gravelly soil at the rear edge. This geological characteristic, combined with the increase of extreme rainfall and heavy rainfall due to abnormal climate change in recent years, has resulted in a rise of sudden earth landslides in the shallow surface layer after strong rainfall. To investigate this phenomenon, the Changchong Group landslide in Heping Community, Dalu Town, Songtao County, Guizhou Province was studied through field tracking survey, geological drilling, geotechnical testing, and FLAC3D software simulation. The study uses various methods to investigate the shape and geotechnical structure characteristics, and deformation and damage history of the landslide before and after rainfall, in order to analyze the failure process of such landslides and their occurrence mechanism. Results show that: (1) The landslide is a thrust load-caused landslide, and its unique terrain and lithology characteristics provide intrinsic factors for the occurrence of the landslide. (2) Rainfall is the main triggering factor of landslide, and the occurrence process of the landslide can be summarized as follows: a) rear saturated pushing stage, b) transient saturated diffusion and deformation evolution stage, c) front edge overhanging failure stage, and d) overall failure stage. (3) The mechanism of the landslide is mainly due to the combined effect of the changes in permeability induced by precipitation and the slope gravity change, which led to the instability and deformation of the landslide. The study provides insight into the early identification factors of rainfall landslides and provides a theoretical basis for better and faster control and management.

  • 加载中
  • [1] 赵海燕,殷坤龙,陈丽霞,等. 基于有效降雨阈值的澧源镇滑坡灾害危险性分析[J]. 地质科技通报,2020,39(4):85 − 93. [ZHAO Haiyan,YIN Kunlong,CHEN Lixia,et al. Landslide hazard analysis of Liyuan Town based on effective rainfall threshold[J]. Bulletin of Geological Science and Technology,2020,39(4):85 − 93. (in Chinese with English abstract)

    Google Scholar

    ZHAO Haiyan, YIN Kunlong, CHEN Lixia, et al. Landslide hazard analysis of Liyuan Town based on effective rainfall threshold[J]. Bulletin of Geological Science and Technology, 2020, 39(4): 85-93. (in Chinese with English abstract)

    Google Scholar

    [2] 李媛,孟晖,董颖,等. 中国地质灾害类型及其特征—基于全国县市地质灾害调查成果分析[J]. 中国地质灾害与防治学报,2004,15(2):29 − 34. [LI Yuan,MENG Hui,DONG Ying,et al. Main types and characterisitics of geo-hazard in China:Based on the results of geo-hazard survey in 290 counties[J]. The Chinese Journal of Geological Hazard and Control,2004,15(2):29 − 34. (in Chinese with English abstract) doi: 10.3969/j.issn.1003-8035.2004.02.005

    CrossRef Google Scholar

    LI Yuan, MENG Hu, DONG Ying, et al. Main Types and characterisitics of geo-hazard in China—based on the results of geo-hazard survey in 290 counties[J]. The Chinese Journal of Geological Hazard and Control, 2004, 15(2): 29-34. (in Chinese with English abstract) doi: 10.3969/j.issn.1003-8035.2004.02.005

    CrossRef Google Scholar

    [3] 张勇,温智,程英建. 四川巴中市滑坡灾害与降雨雨型关系探讨[J]. 水文地质工程地质,2020,47(2):178 − 182. [ZHANG Yong,WEN Zhi,CHENG Yingjian. A discussion of the relationship between landslide disaster and rainfall types in Bazhong of Sichuan[J]. Hydrogeology & Engineering Geology,2020,47(2):178 − 182. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.201906036

    CrossRef Google Scholar

    ZHANG Yong, WEN Zhi, CHENG Yingjian. A discussion of the relationship between landslide disaster and rainfall types in Bazhong of Sichuan[J]. Hydrogeology & Engineering Geology, 2020, 47(2): 178-182. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.201906036

    CrossRef Google Scholar

    [4] 邹文华,刘辉,邓小钊,等. 连续强降雨工况土质边坡非饱和渗流及稳定性分析[J]. 中外公路,2019,39(6):11 − 15. [ZOU Wenhua,LIU Hui,DENG Xiaozhao,et al. Analysis of soil slope with unsaturated seepage and stability under continuous heavy rainfall condition[J]. Journal of China & Foreign Highway,2019,39(6):11 − 15. (in Chinese with English abstract) doi: 10.14048/j.issn.1671-2579.2019.06.003

    CrossRef Google Scholar

    ZOU Wenhua, LIU Hui, DENG Xiaozhao, et al. Analysis of soil slope with unsaturated seepage and stability under continuous heavy rainfall condition[J]. Journal of China & Foreign Highway, 2019, 39(6): 11-15. (in Chinese with English abstract) doi: 10.14048/j.issn.1671-2579.2019.06.003

    CrossRef Google Scholar

    [5] 王毅. 喀斯特地区小流域泥石流风险评价研究—以贵州省二塘河猴场镇流域段为例[D]. 成都: 成都理工大学, 2017

    Google Scholar

    WANG Yi. Study on quantitative risk assessment of debris flow at small watershed scale in Karst region: A case study of Houchang Town in Ertang River basin, Guizhou Provinc[D]. Chengdu: Chengdu University of Technology, 2017. (in Chinese with English abstract)

    Google Scholar

    [6] 高杨,贺凯,李壮,等. 西南岩溶山区特大滑坡成灾类型及动力学分析[J]. 水文地质工程地质,2020,47(4):14 − 23. [GAO Yang,HE Kai,LI Zhuang,et al. An analysis of disaster types and dynamics of landslides in the southwest karst mountain areas[J]. Hydrogeology & Engineering Geology,2020,47(4):14 − 23. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.202003041

    CrossRef Google Scholar

    GAO Yang, HE Kai, LI Zhuang, et al. An analysis of disaster types and dynamics of landslides in the southwest Karst Mountain areas[J]. Hydrogeology & Engineering Geology, 2020, 47(4): 14-23. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.202003041

    CrossRef Google Scholar

    [7] 贺凯,李滨,赵超英,等. 基于易滑地质结构与多源数据差异的岩溶山区大型崩滑灾害识别研究[J]. 中国岩溶,2020,39(4):467 − 477. [HE Kai,LI Bin,ZHAO Chaoying,et al. Identification of large-scale landslide hazards based on differences of geological structure prone to sliding and multiple-source data in karst mountainous areas[J]. Carsologica Sinica,2020,39(4):467 − 477. (in Chinese with English abstract)

    Google Scholar

    HE Kai, LI Bin, ZHAO Chaoying, et al. Identification of large-scale landslide hazards based on differences of geological structure prone to sliding and multiple-source data in Karst mountainous areas[J]. Carsologica Sinica, 2020, 39(4): 467-477. (in Chinese with English abstract)

    Google Scholar

    [8] 赵志阳,杨雪琪,宋扬,等. 基于Scoops 3D模型的区域库岸边坡稳定性分析[J]. 人民黄河,2020,42(4):135 − 139. [ZHAO Zhiyang,YANG Xueqi,SONG Yang,et al. Analysis of regional bank slope stability based on scoops 3D model[J]. Yellow River,2020,42(4):135 − 139. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-1379.2020.04.028

    CrossRef Google Scholar

    ZHAO Zhiyang, YANG Xueqi, SONG Yang, et al. Analysis of regional bank slope stability based on scoops 3D model[J]. Yellow River, 2020, 42(4): 135-139. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-1379.2020.04.028

    CrossRef Google Scholar

    [9] 何书,陈飞. 基于直觉模糊集TOPSIS决策方法的滑坡稳定性评价[J]. 中国地质灾害与防治学报,2016,27(3):22 − 28. [HE Shu,CHEN Fei. Research of landslide stability assessment based on intuitionistic fuzzy sets TOPSIS multiple attribute decision making method[J]. The Chinese Journal of Geological Hazard and Control,2016,27(3):22 − 28. (in Chinese with English abstract) doi: 10.16031/j.cnki.issn.1003-8035.2016.03.04

    CrossRef Google Scholar

    HE Shu, CHEN Fei. Research of landslide stability assessment based on intuitionistic fuzzy sets TOPSIS multiple attribute decision making method[J]. The Chinese Journal of Geological Hazard and Control, 2016, 27(3): 22-28. (in Chinese with English abstract) doi: 10.16031/j.cnki.issn.1003-8035.2016.03.04

    CrossRef Google Scholar

    [10] 支泽民,陈琼,张强,等. 地理探测器在判别滑坡稳定性影响因素中的应用—以西藏江达县为例[J]. 中国地质灾害与防治学报,2021,32(2):19 − 26. [ZHI Zemin,CHEN Qiong,ZHANG Qiang,et al. Application of geographic detector in identifying influencing factors of landslide stability:A case study of the Jiangda County,Tibet[J]. The Chinese Journal of Geological Hazard and Control,2021,32(2):19 − 26. (in Chinese with English abstract)

    Google Scholar

    ZHI Zemin, CHEN Qiong, ZHANG Qiang, et al. Application of geographic detector in identifying influencing factors of landslide stability: a case study of the Jiangda County, Tibet[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(2): 19-26. (in Chinese with English abstract)

    Google Scholar

    [11] 王乐,秦世伟. 不同降雨类型与库水位波动耦合作用下的土质滑坡稳定性分析[J]. 中国地质灾害与防治学报,2018,29(6):103 − 111. [WANG Le,QIN Shiwei. Landslide instability induced by sudden lower in water level combined with different rainfall types[J]. The Chinese Journal of Geological Hazard and Control,2018,29(6):103 − 111. (in Chinese with English abstract) doi: 10.16031/j.cnki.issn.1003-8035.2018.06.15

    CrossRef Google Scholar

    WANG Le, QIN Shiwei. Landslide instability induced by sudden lower in water level combined with different rainfall types[J]. The Chinese Journal of Geological Hazard and Control, 2018, 29(6): 103-111. (in Chinese with English abstract) doi: 10.16031/j.cnki.issn.1003-8035.2018.06.15

    CrossRef Google Scholar

    [12] 唐军峰, 唐雪梅, 周基, 等. 滑坡堆积体变形失稳机制—以贵州剑河县东岭信滑坡为例[J]. 吉林大学学报(地球科学版), 2022, 52(2): 503-516.

    Google Scholar

    TANG Junfeng, TANG Xuemei, ZHOU Ji, et al. Deformation and instability mechanism of landslide accumulation: A case study of Donglingxin landslide accumulation in Jianhe County, Guizhou Province[J]. Journal of Jilin University (Earth Science Edition), 2022, 52(2): 503-516.(in Chinese with English abstract)

    Google Scholar

    [13] 李彩虹, 郭长宝, 张广泽, 等. 基于激光雷达(LiDAR)的地形与钻探滑面重构滑坡体积计算方法—以四川省巴塘县德达古滑坡为例[J]. 地质通报, 2021, 40(12): 2015-2023.

    Google Scholar

    LI Caihong, GUO Changbao, ZHANG Guangze, et al. Calculation method of landslide volume based on reconstruction of terrain and drilling slip surface based on LiDAR : A case study of Dedagu landslide in Batang County, Sichuan Province[J]. Geological Bulletin of China, 2021, 40(12): 2015-2023.(in Chinese with English abstract)

    Google Scholar

    [14] 周越, 曾昭发, 唐海燕, 等. 公路勘察中滑坡体的地球物理特征与分析—以张榆线公路勘察为例[J]. 吉林大学学报(地球科学版), 2021, 51(2): 638-644.

    Google Scholar

    ZHOU Yue, ZENG Zhaofa, TANG Haiyan, et al. Geophysical characteristics of landslide body in highway reconnaissance: A case study in highway prospecting of Zhangyu line[J]. Journal of Jilin University (Earth Science Edition), 2021, 51(2): 638-644.(in Chinese with English abstract)

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(1)

Article Metrics

Article views(290) PDF downloads(20) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint