2022 Vol. 49, No. 1
Article Contents

CHEN Yazhou, DONG Weihong. Analysis of structural characteristics of karst conduit by time-concentration curve of tracer test[J]. Hydrogeology & Engineering Geology, 2022, 49(1): 41-47. doi: 10.16030/j.cnki.issn.1000-3665201909067
Citation: CHEN Yazhou, DONG Weihong. Analysis of structural characteristics of karst conduit by time-concentration curve of tracer test[J]. Hydrogeology & Engineering Geology, 2022, 49(1): 41-47. doi: 10.16030/j.cnki.issn.1000-3665201909067

Analysis of structural characteristics of karst conduit by time-concentration curve of tracer test

  • The structural characteristics of karst conduit have an important influence on the rational use and protection of karst water resources and the safe construction of underground engineering. At present, when using tracer test curve to analyze the structural characteristics of karst conduit, there are some problems, such as curve superposition shape, blunt front shape, irregular rise and fall of curve, connection relationship between multiple karst conduit, location of underground lake and groundwater state. In this paper, the time concentration curve of tracer test is used to explain the structural characteristics of karst conduit through the numerical simulation of the karst conduit flow tracer test and the change of water flow state. The results are as follows: (1) The number of curve peaks corresponds to the number of karst conduit, and there are three models for the parallel curve of double pipelines due to the difference of the length and velocity of karst conduit runoff. (2) The number of single karst conduit curve decline gradients corresponds to the number of blue hole, and the relationship between the decline gradients and the number of blue hole should be analyzed for multiple karst conduit in combination with the number of karst conduit and the location of blue hole. There are four types of parallel karst conduits. (3) The rapid change of curve shape indicates the mutual transformation of surface flow and pressure flow.

  • 加载中
  • [1] 贺秋芳, 杨平恒, 袁文昊, 等. 微生物与化学示踪岩溶地下水补给源和途径[J]. 水文地质工程地质,2009,36(3):33 − 38. [HE Qiufang, YANG Pingheng, YUAN Wenhao, et al. Using chemical and microbiological indicators to track the recharge of underground rivers in a karst valley[J]. Hydrogeology & Engineering Geology,2009,36(3):33 − 38. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3665.2009.03.008

    CrossRef Google Scholar

    [2] 尹尚先, 徐斌, 徐慧, 等. 化学示踪连通试验在矿井充水条件探查中的应用[J]. 煤炭学报,2014,39(1):129 − 134. [YIN Shangxian, XU Bin, XU Hui, et al. The application of chemical tracer experiments on exploring the mine water filling conditions[J]. Journal of China Coal Society,2014,39(1):129 − 134. (in Chinese with English abstract)

    Google Scholar

    [3] 张亮, 陈植华, 周宏, 等. 典型岩溶泉水文地质条件的调查与分析—以香溪河流域白龙泉为例[J]. 水文地质工程地质,2015,42(2):31 − 37. [ZHANG Liang, CHEN Zhihua, ZHOU Hong, et al. Investigation and analysis of the hydrogeological characteristics of the typical karst spring in the Xiangxi River Basin: Exemplified by the Bailong Spring in Xingshan County of Hubei[J]. Hydrogeology & Engineering Geology,2015,42(2):31 − 37. (in Chinese with English abstract)

    Google Scholar

    [4] 刘叶双, 贾艾晨. NaCl示踪剂测定人工湿地水力停留时间的试验研究[J]. 东北水利水电,2018,36(3):53 − 56. [LIU Yeshuang, JIA Aichen. Test study on taking NaCl as tracer material to detect hydraulic retention time in constructed wetlands[J]. Water Resources & Hydropower of Northeast China,2018,36(3):53 − 56. (in Chinese with English abstract)

    Google Scholar

    [5] 刘森, 高茂生, 张浩, 等. 莱州湾南岸地下咸水污染物示踪运移规律研究[J]. 水文地质工程地质,2014,41(1):15 − 20. [LIU Sen, GAO Maosheng, ZHANG Hao, et al. Pollutant tracer migration of saline groundwater in the south coast of the Laizhou Bay[J]. Hydrogeology & Engineering Geology,2014,41(1):15 − 20. (in Chinese with English abstract)

    Google Scholar

    [6] 蒋甫伟, 宋金平, 汪新健, 等. 地下水示踪技术在水库渗漏勘察中的应用研究[J]. 工程技术研究,2019,4(21):79 − 80. [JIANG Fuwei, SONG Jinping, WANG Xinjian, et al. Application research of groundwater tracer technology in reservoir leakage investigation[J]. Engineering and Technological Research,2019,4(21):79 − 80. (in Chinese with English abstract)

    Google Scholar

    [7] 薛禹群, 吴吉春. 地下水动力学[M]. 3版. 北京: 地质出版社, 2010.

    Google Scholar

    XUE Yuqun, WU Jichun. Groundwater hydraulics [M]. 3rd ed. Beijing: Geological Publishing House, 2010. (in Chinese)

    Google Scholar

    [8] 《工程地质手册》编委会. 工程地质手册[M]. 4版. 北京: 中国建筑工业出版社, 2007.

    Google Scholar

    Editorial board of Engineering Geology Handbook. Engineering geology handbook [M]. 4th ed. Beijing: China Construction Industry Press, 2007. (in Chinese)

    Google Scholar

    [9] 李敬兰, 李益民. 广西龙布排泥库地下水多元示踪试验研究[J]. 安全与环境工程,2004,11(1):59 − 62. [LI Jinglan, LI Yimin. Multi-element trace testing study of ground water in Painiku, Longbu, Guangxi[J]. Safety and Environmental Engineering,2004,11(1):59 − 62. (in Chinese with English abstract) doi: 10.3969/j.issn.1671-1556.2004.01.018

    CrossRef Google Scholar

    [10] 梅正星, 张崇绮, 刘康祥. 利用地下水连通试验资料测算地下河的流量[J]. 水文地质工程地质,1986,13(5):51 − 52. [MEI Zhengxing, ZHANG Chongqi, LIU Kangxiang. Calculation of discharge of underground river by groundwater connection test data[J]. Hydrogeology & Engineering Geology,1986,13(5):51 − 52. (in Chinese)

    Google Scholar

    [11] 梅正星. 利用示踪过程曲线计算示踪剂回收率和地下过水管道系统体积[J]. 水文地质工程地质,1988,15(4):61 − 43. [MEI Zhengxing. Calculation of tracer recovery rate and volume of underground water pipeline system by tracer process curve[J]. Hydrogeology & Engineering Geology,1988,15(4):61 − 43. (in Chinese)

    Google Scholar

    [12] FIELD M S. The QTRACER2 program for tracer breakthrough curve analysis for tracer tests in karstic aquifer and other hydrologic systems[R]. Washington: EPA, 2002.

    Google Scholar

    [13] GOLDSCHEIDER N, MEIMAN J, PRONK M, et al. Tracer tests in karst hydrogeology and speleology[J]. International Journal of Speleology,2008,37(1):27 − 40. doi: 10.5038/1827-806X.37.1.3

    CrossRef Google Scholar

    [14] 张浪, 李俊, 潘晓东, 等. 西南某岩溶区地下水系统示踪试验与解析[J]. 中国岩溶,2020,39(1):42 − 47. [ZHANG Lang, LI Jun, PAN Xiaodong, et al. Tracer test and analysis of groundwater system in a karst area of southwest China[J]. Carsologica Sinica,2020,39(1):42 − 47. (in Chinese with English abstract)

    Google Scholar

    [15] 陈余道, 程亚平, 王恒, 等. 岩溶地下河管道流和管道结构及参数的定量示踪—以桂林寨底地下河为例[J]. 水文地质工程地质,2013,40(5):11 − 15. [CHEN Yudao, CHENG Yaping, WANG Heng, et al. Quantitative tracing study of hydraulic and geometric parameters of a karst underground river: Exemplified by the Zhaidi underground river in Guilin[J]. Hydrogeology & Engineering Geology,2013,40(5):11 − 15. (in Chinese with English abstract)

    Google Scholar

    [16] 袁伟, 王川. 贵州盘县乐民河流域三股水岩溶泉水文地质条件分析[J]. 地质学刊,2017,41(4):655 − 662. [YUAN Wei, WANG Chuan. Hydrogeological analysis of Sangushui karst spring in Lemin River basin, Panxian County, Guizhou Province[J]. Journal of Geology,2017,41(4):655 − 662. (in Chinese with English abstract) doi: 10.3969/j.issn.1674-3636.2017.04.020

    CrossRef Google Scholar

    [17] 赵一, 李衍青, 覃星铭, 等. 南洞地下河岩溶管道展布及结构特征的示踪试验解析[J]. 中国岩溶,2017,36(2):226 − 233. [ZHAO Yi, LI Yanqing, QIN Xingming, et al. Tracer tests on distribution and structural characteristics of karst channels in Nandong underground river drainage[J]. Carsologica Sinica,2017,36(2):226 − 233. (in Chinese with English abstract) doi: 10.11932/karst20170210

    CrossRef Google Scholar

    [18] 谢国文, 杨平恒, 卢丙清, 等. 基于高分辨率示踪技术的岩溶隧道涌水来源识别及含水介质研究[J]. 中国岩溶,2018,37(6):892 − 899. [XIE Guowen, YANG Pingheng, LU Bingqing, et al. Application of high-resolution tracer technique in identifying the source of water gushing and the structure of aquifer medium in karst tunnel[J]. Carsologica Sinica,2018,37(6):892 − 899. (in Chinese with English abstract)

    Google Scholar

    [19] 梅正星. 我国喀斯特地下水示踪概况[J]. 中国岩溶,1988,7(4):97 − 103. [MEI Zhengxing. An outline of the underground water tracing in karst regions in China[J]. Carsologica Sinica,1988,7(4):97 − 103. (in Chinese with English abstract)

    Google Scholar

    [20] 梅正星. 用示踪曲线分析岩溶通道的展布[J]. 工程勘察,1988,16(1):36 − 38. [MEI Zhengxing. An analysis of the distribution of karst conduit by tracer curve[J]. Geotechnical Investigation & Surveying,1988,16(1):36 − 38. (in Chinese)

    Google Scholar

    [21] 杨立铮, 刘俊业. 试用示踪剂浓度-时间曲线分析岩溶管道的结构特征[J]. 成都地质学院学报,1979,6(4):44 − 49. [YANG Lizheng, LIU Junye. Analysis of structural characteristics of karst conduit by tracer concentration time curve[J]. Journal of Chengdu University of Geology,1979,6(4):44 − 49. (in Chinese)

    Google Scholar

    [22] 陈崇希, 李国敏. 地下水溶质运移理论及模型[M]. 武汉: 中国地质大学出版社, 1996.

    Google Scholar

    CHEN Chongxi, LI Guomin. Theory and model of solute transport in groundwater [M]. Wuhan: China University of Geosciences Press, 1996. (in Chinese)

    Google Scholar

    [23] 张人权, 梁杏, 靳孟贵, 等. 水文地质学基础[M]. 北京: 地质出版社, 2010.

    Google Scholar

    ZHANG Renquan, LIANG Xing, JIN Menggui, et al. Fundamentals of hydrogeology [M]. Beijing: Geological Publishing House, 2010. (in Chinese)

    Google Scholar

    [24] 姜光辉. 岩溶水文系统的溶质运移研究[D]. 南京: 南京大学, 2006.

    Google Scholar

    JIANG Guanghui. Solute transport in karst hydrological system[D]. Nanjing: Nanjing University, 2006. (in Chinese with English abstract)

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Tables(2)

Article Metrics

Article views(1245) PDF downloads(157) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint