2022 Vol. 49, No. 1
Article Contents

YE Guanbao, QIN Liangkai, ZHANG Zhen, ZHENG Wenqiang, CHEN Yong. An experimental study of dynamic parameters of unit cell of deep mixed column-reinforced soft clay under dynamic loading[J]. Hydrogeology & Engineering Geology, 2022, 49(1): 48-56. doi: 10.16030/j.cnki.issn.1000-3665.202103037
Citation: YE Guanbao, QIN Liangkai, ZHANG Zhen, ZHENG Wenqiang, CHEN Yong. An experimental study of dynamic parameters of unit cell of deep mixed column-reinforced soft clay under dynamic loading[J]. Hydrogeology & Engineering Geology, 2022, 49(1): 48-56. doi: 10.16030/j.cnki.issn.1000-3665.202103037

An experimental study of dynamic parameters of unit cell of deep mixed column-reinforced soft clay under dynamic loading

More Information
  • Composite soil with deep mixed column is widely used in strengthening soft soil subgrade. However, there is still a lack of understanding the dynamic characteristics of composite soil with deep mixed column and evaluating unreasonably the long-term performance of composite soil with deep mixed column. Based on above, this study conducted a series of large-scale triaxial test to investigate the influence factors of static deviator stress, replacement ratio and incremental loading/unloading on the dynamic parameters of unit cell of deep mixed column-reinforced soft soil. The results show that with the increase of the static deviator stress, the dynamic elastic modulus increases, the damping ratio decreases, and the critical dynamic stress ratio decreases. With the increase of the area replacement ratio, the dynamic elastic modulus increases slightly and the damping ratio decreases slightly. The staged unloading can deteriorate the dynamic properties of the unit cell. The damping ratio is of strong volatility, and the variation coefficient of damping ratio is 2.8 to 7.0 times that of the dynamic elastic modulus. The dynamic elastic modulus of the unit cell of the composite soil is 2 to 6 times that of the soft soil, and the improvement factor increases with the increase of the static deviator stress.

  • 加载中
  • [1] 黄春霞, 韩爱民, 隋志龙, 等. 水泥土搅拌桩复合地基承载力的确定[J]. 水文地质工程地质,2009,36(3):99 − 102. [HUANG Chunxia, HAN Aimin, SUI Zhilong, et al. Determination of bearing capacity for composite foundation of cement-soil mixing piles[J]. Hydrogeology & Engineering Geology,2009,36(3):99 − 102. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3665.2009.03.021

    CrossRef Google Scholar

    [2] 叶观宝, 叶书麟. 水泥土搅拌桩加固软基的试验研究[J]. 同济大学学报(自然科学版),1995,23(3):270 − 275. [YE Guanbao, YE Shulin. Field study of improved soft soil by cement-soil mixed piles[J]. Journal of Tongji University (Natural Science),1995,23(3):270 − 275. (in Chinese with English abstract)

    Google Scholar

    [3] 刘松玉, 朱志铎, 席培胜, 等. 钉形搅拌桩与常规搅拌桩加固软土地基的对比研究[J]. 岩土工程学报,2009,31(7):1059 − 1068. [LIU Songyu, ZHU Zhiduo, XI Peisheng, et al. Comparison between T-shaped deep mixing method and traditional deep mixing method for soft ground improvement[J]. Chinese Journal of Geotechnical Engineering,2009,31(7):1059 − 1068. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-4548.2009.07.012

    CrossRef Google Scholar

    [4] 叶观宝, 蔡永生, 张振. 加芯水泥土桩复合地基桩土应力比计算方法研究[J]. 岩土力学,2016,37(3):672 − 678. [YE Guanbao, CAI Yongsheng, ZHANG Zhen. Research on calculation of pile-soil stress ratio for composite foundation reinforced by stiffened deep mixed piles[J]. Rock and Soil Mechanics,2016,37(3):672 − 678. (in Chinese with English abstract)

    Google Scholar

    [5] 白顺果, 侯永峰, 张鸿儒. 循环荷载作用下水泥土桩复合地基的临界循环应力比和永久变形分析[J]. 岩土工程学报,2006,28(1):84 − 87. [BAI Shunguo, HOU Yongfeng, ZHANG Hongru. Analysis on critical cyclic stress ratio and permanent deformation of composite foundation improved by cement-soil piles under cyclic loading[J]. Chinese Journal of Geotechnical Engineering,2006,28(1):84 − 87. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-4548.2006.01.017

    CrossRef Google Scholar

    [6] KIM A R, CHANG I, CHO G C, et al. Strength and dynamic properties of cement-mixed Korean marine clays[J]. KSCE Journal of Civil Engineering,2018,22(4):1150 − 1161. doi: 10.1007/s12205-017-1686-3

    CrossRef Google Scholar

    [7] LIU F Y, ZHU K, HU X Q, et al. Experimental simple shear study of composite soil with cemented soil core[J]. Marine Georesources & Geotechnology,2019,37(8):960 − 971. DOI:10.1080/1064119X.2018.1513614.

    Google Scholar

    [8] CAI Y Q, LIANG X. Dynamic properties of composite cemented clay[J]. Journal of Zhejiang University Science,2004,5(3):309 − 316. doi: 10.1631/jzus.2004.0309

    CrossRef Google Scholar

    [9] 曾国红, 白晓红, 张卫平, 等. 增强体复合土动弹性模量影响因素的研究[J]. 水利学报,2009,40(5):576 − 582. [ZENG Guohong, BAI Xiaohong, ZHANG Weiping, et al. Experimental study on factors influencing the dynamic elastic modulus of composite soil with different reinforcements[J]. Journal of Hydraulic Engineering,2009,40(5):576 − 582. (in Chinese with English abstract) doi: 10.3321/j.issn:0559-9350.2009.05.010

    CrossRef Google Scholar

    [10] 吕程伟. 水泥土动力特性的共振柱试验研究[D]. 武汉: 湖北工业大学, 2016.

    Google Scholar

    LYU Chengwei. Resonant column experimental study on dynamic properties of cemented clay[D]. Wuhan: Hubei University of Technology, 2016. (in Chinese with English abstract)

    Google Scholar

    [11] KAZEMIAN S, HUAT B B K, MOAYEDI H. Undrained shear characteristics of tropical peat reinforced with cement stabilized soil column[J]. Geotechnical and Geological Engineering,2012,30(4):753 − 759. doi: 10.1007/s10706-012-9492-7

    CrossRef Google Scholar

    [12] CAI Y, XU L R, LIU W Z, et al. Field Test Study on the dynamic response of the cement-improved expansive soil subgrade of a heavy-haul railway[J]. Soil Dynamics and Earthquake Engineering,2020,128:105878. doi: 10.1016/j.soildyn.2019.105878

    CrossRef Google Scholar

    [13] CHAI J C, SHRESTHA S, HINO T. Failure of an embankment on soil-cement column–improved clay deposit: investigation and analysis[J]. Journal of Geotechnical and Geoenvironmental Engineering,2019,145(9):05019006. doi: 10.1061/(ASCE)GT.1943-5606.0002118

    CrossRef Google Scholar

    [14] 温日琨, 王常晶, 陈云敏. 交通荷载引起的静偏应力对饱和软粘土变形影响[J]. 岩土力学,2009,30(增刊2):119 − 122. [WEN Rikun, WANG Changjing, CHEN Yunmin. Effect of traffic loading induced static deviator stress on deformation of saturated soft clay[J]. Rock and Soil Mechanics,2009,30(Sup2):119 − 122. (in Chinese with English abstract)

    Google Scholar

    [15] HYODO M, YASUHARA K. Analytical procedure for evaluation pore water pressure and deformation of saturated clay ground subjected to traffic loads[J]. Numerical Methods In Geomechanics,1988,6(1):653 − 658.

    Google Scholar

    [16] ZHUANG Y, LI S B. Three-dimensional finite element analysis of arching in a piled embankment under traffic loading[J]. Arabian Journal of Geosciences,2015,8(10):7751 − 7762. doi: 10.1007/s12517-014-1748-5

    CrossRef Google Scholar

    [17] PHAM H V, DIAS D, DUDCHENKO A. 3D modeling of geosynthetic-reinforced pile-supported embankment under cyclic loading[J]. Geosynthetics International,2020,27(2):157 − 169. doi: 10.1680/jgein.18.00039

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(13)

Tables(2)

Article Metrics

Article views(1703) PDF downloads(93) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint