2025 Vol. 52, No. 3
Article Contents

DAI Heng, WU Huixian, REN Wanli, ZHANG Yiyu, WEN Zhang, YUAN Songhu. Advances in microbial-mediated numerical modeling of biogeochemical processes in groundwater[J]. Hydrogeology & Engineering Geology, 2025, 52(3): 14-27. doi: 10.16030/j.cnki.issn.1000-3665.202412026
Citation: DAI Heng, WU Huixian, REN Wanli, ZHANG Yiyu, WEN Zhang, YUAN Songhu. Advances in microbial-mediated numerical modeling of biogeochemical processes in groundwater[J]. Hydrogeology & Engineering Geology, 2025, 52(3): 14-27. doi: 10.16030/j.cnki.issn.1000-3665.202412026

Advances in microbial-mediated numerical modeling of biogeochemical processes in groundwater

More Information
  • Author Bio: 戴恒,中国地质大学(武汉)微生物与环境全国重点实验室研究员,博士生导师,国家优秀青年科学基金获得者。主要从事水文地质领域地下水模拟、不确定性分析、人工智能方法应用等方面研究。在Water Resources Research等知名期刊上发表SCI论文40余篇,已主持国家自然科学基金3项,作为项目骨干参与国家重点研发计划2项。现担任水文与地球科学领域重要SCI期刊Journal of HydrologyHydrology and Earth System Sciences(HESS)副主编,水利工程领域SCI期刊Journal of Hydrologic Engineering副主编,并担任国际水文科学协会中国委员会地下水分委员会与国际水资源学会中国委员会地下水专委会委员
  • Groundwater contamination is a global environmental issue that seriously threatens human health and ecological environment. As an essential component of groundwater ecosystems, microorganisms are involved in a series of biogeochemical processes through their metabolic reactions, which control the transformation and transport of contaminants. Numerical simulation of the contaminants transport and transformation is an effective method to quantitatively describe and predict their behaviors. Understanding and handling the modeling of microbial metabolic processes can significantly improve the accuracy of simulation and prediction of contaminants behaviors in groundwater. Here, this review systematically summarizes the development process of microbial metabolic activities according to the development timeline and application scales, focusing on the advancement of next-generation gene sequencing technology to promote numerical simulation research. Meanwhile, this review analyzes how to construct microbial metabolism models to quantitatively describe the biogeochemical processes they are involved in, and summarizes the commonly used microbial information databases and simulation softwares. It is pointed out that the current application of microbial metabolism modeling still faces many challenges, including verification difficulty, low parameter applicability, data acquisition difficulty, and high computational demands. Future research should further explore microbial metabolic mechanisms, optimize microbial metabolic modeling methods, and improve parameters and empirical equations under different demands, to enhance the accuracy and applicability of models, as well as to solve the issues of microbial-related data processing and computational precision and efficiency in model establishment.

  • 加载中
  • [1] 中华人民共和国水利部. 中国水资源公报2023[R]. 北京:中国水利水电出版社,2024. [Ministry of Water Resources of the People’s Republic of China. China water resources bulletin 2023[R]. Beijing:China Water Power Press,2024. (in Chinese)]

    Google Scholar

    Ministry of Water Resources of the People’s Republic of China. China water resources bulletin 2023[R]. Beijing: China Water Power Press, 2024. (in Chinese)

    Google Scholar

    [2] 王熹,王湛,杨文涛,等. 中国水资源现状及其未来发展方向展望[J]. 环境工程,2014,32(7):1 − 5. [WANG Xi,WANG Zhan,YANG Wentao,et al. Shortage of water resources in China and countermeasures[J]. Environmental Engineering,2014,32(7):1 − 5. (in Chinese with English abstract)]

    Google Scholar

    WANG Xi, WANG Zhan, YANG Wentao, et al. Shortage of water resources in China and countermeasures[J]. Environmental Engineering, 2014, 32(7): 1 − 5. (in Chinese with English abstract)

    Google Scholar

    [3] 韩勇,杨倩楠,李占斌,等. 近20年中国供用水结构变化与政策调控[J]. 水利规划与设计,2022(3):5 − 10. [HAN Yong,YANG Qiannan,LI Zhanbin,et al. Changes of water supply and consumption structure and policy regulation in China in recent 20 years[J]. Water Resources Planning and Design,2022(3):5 − 10. (in Chinese with English abstract)] doi: 10.3969/j.issn.1672-2469.2022.03.002

    CrossRef Google Scholar

    HAN Yong, YANG Qiannan, LI Zhanbin, et al. Changes of water supply and consumption structure and policy regulation in China in recent 20 years[J]. Water Resources Planning and Design, 2022(3): 5 − 10. (in Chinese with English abstract) doi: 10.3969/j.issn.1672-2469.2022.03.002

    CrossRef Google Scholar

    [4] 中华人民共和国生态环境部. 2023年中国生态环境状况公报[R]. 北京:中华人民共和国生态环境部,2024. [Ministry of Ecology and Environment of the People’s Republic of China. China ecological environment status bulletin 2023[R]. Beijing:Ministry of Ecology and Environment of the People’s Republic of China,2024. (in Chinese)]

    Google Scholar

    Ministry of Ecology and Environment of the People’s Republic of China. China ecological environment status bulletin 2023[R]. Beijing: Ministry of Ecology and Environment of the People’s Republic of China, 2024. (in Chinese)

    Google Scholar

    [5] 李圣品,李文鹏,殷秀兰,等. 全国地下水质分布及变化特征[J]. 水文地质工程地质,2019,46(6):1 − 8. [LI Shengpin, LI Wenpeng, YIN Xiulan, et al. Distribution and evolution characteristics of national groundwater quality from 2013 to 2017[J]. Hydrogeology & Engineering Geology,2019,46(6):1 − 8. (in Chinese with English abstract)] doi: 10.16030/j.cnki.issn.1000-3665.2019.06.01

    CrossRef Google Scholar

    LI Shengpin, LI Wenpeng, YIN Xiulan, et al. Distribution and evolution characteristics of national groundwater quality from 2013 to 2017[J]. Hydrogeology & Engineering Geology, 2019, 46(6): 1 − 8. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.2019.06.01

    CrossRef Google Scholar

    [6] 刘菲. 地下水系统中的新污染物[J]. 水文地质工程地质,2024,51(2):1 − 2. [LIU Fei. New pollutants in groundwater systems[J]. Hydrogeology & Engineering Geology,2024,51(2):1 − 2. (in Chinese)]

    Google Scholar

    LIU Fei. New pollutants in groundwater systems[J]. Hydrogeology & Engineering Geology, 2024, 51(2): 1 − 2. (in Chinese)

    Google Scholar

    [7] 李元杰,王森杰,张敏,等. 土壤和地下水污染的监控自然衰减修复技术研究进展[J]. 中国环境科学,2018,38(3):1185 − 1193. [LI Yuanjie,WANG Senjie,ZHANG Min,et al. Research progress of monitored natural attenuation remediation technology for soil and groundwater pollution[J]. China Environmental Science,2018,38(3):1185 − 1193. (in Chinese with English abstract)] doi: 10.3969/j.issn.1000-6923.2018.03.047

    CrossRef Google Scholar

    LI Yuanjie, WANG Senjie, ZHANG Min, et al. Research progress of monitored natural attenuation remediation technology for soil and groundwater pollution[J]. China Environmental Science, 2018, 38(3): 1185 − 1193. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-6923.2018.03.047

    CrossRef Google Scholar

    [8] 任静,李娟,席北斗,等. 我国地下水污染防治现状与对策研究[J]. 中国工程科学,2022,24(5):161 − 168. [REN Jing,LI Juan,XI Beidou,et al. Groundwater pollution prevention and control in China:Current status and countermeasures[J]. Strategic Study of CAE,2022,24(5):161 − 168. (in Chinese with English abstract)] doi: 10.15302/J-SSCAE-2022.05.019

    CrossRef Google Scholar

    REN Jing, LI Juan, XI Beidou, et al. Groundwater pollution prevention and control in China: Current status and countermeasures[J]. Strategic Study of CAE, 2022, 24(5): 161 − 168. (in Chinese with English abstract) doi: 10.15302/J-SSCAE-2022.05.019

    CrossRef Google Scholar

    [9] 李凡,李家科,马越,等. 地下水数值模拟研究与应用进展[J]. 水资源与水工程学报,2018,29(1):99 − 104. [LI Fan,LI Jiake,MA Yue,et al. The research and application progress of numerical simulation on groundwater[J]. Journal of Water Resources and Water Engineering,2018,29(1):99 − 104. (in Chinese with English abstract)] doi: 10.11705/j.issn.1672-643X.2018.01.16

    CrossRef Google Scholar

    LI Fan, LI Jiake, MA Yue, et al. The research and application progress of numerical simulation on groundwater[J]. Journal of Water Resources and Water Engineering, 2018, 29(1): 99 − 104. (in Chinese with English abstract) doi: 10.11705/j.issn.1672-643X.2018.01.16

    CrossRef Google Scholar

    [10] 郭芷琳,马瑞,张勇,等. 地下水污染物在高度非均质介质中的迁移过程:机理与数值模拟综述[J]. 中国科学(地球科学),2021,51(11):1817 − 1836. [GUO Zhilin,MA Rui,ZHANG Yong,et al. Transport of groundwater contaminants in highly heterogeneous media:A review of mechanisms and numerical simulation[J]. Scientia Sinica(Terrae),2021,51(11):1817 − 1836. (in Chinese with English abstract)]

    Google Scholar

    GUO Zhilin, MA Rui, ZHANG Yong, et al. Transport of groundwater contaminants in highly heterogeneous media: A review of mechanisms and numerical simulation[J]. Scientia Sinica(Terrae), 2021, 51(11): 1817 − 1836. (in Chinese with English abstract)

    Google Scholar

    [11] 王浩,陆垂裕,秦大庸,等. 地下水数值计算与应用研究进展综述[J]. 地学前缘,2010,17(6):1 − 12. [WANG Hao,LU Chuiyu,QIN Dayong,et al. Advances in method and application of groundwater numerical simulation[J]. Earth Science Frontiers,2010,17(6):1 − 12. (in Chinese with English abstract)]

    Google Scholar

    WANG Hao, LU Chuiyu, QIN Dayong, et al. Advances in method and application of groundwater numerical simulation[J]. Earth Science Frontiers, 2010, 17(6): 1 − 12. (in Chinese with English abstract)

    Google Scholar

    [12] MCGUIRE M J. The chlorine revolution:Water disinfection and the fight to save lives[M]. Denver:American Water Works Association,2013.

    Google Scholar

    [13] VITVAR T,AGGARWAL P K,MCDONNELL J J. A review of isotope applications in catchment hydrology[M]//AGGARWAL P K,GAT J R,FROEHLICH K F O. Isotopes in the water cycle:Past,present and future of a developing science. Dordrecht:Springer,2005:151 − 169.

    Google Scholar

    [14] KENDALL C,McDONNELL J J. Isotope tracers in catchment hydrology[M]. New York: Elsevier,2012.

    Google Scholar

    [15] 葛源,贺纪正,郑袁明,等. 稳定性同位素探测技术在微生物生态学研究中的应用[J]. 生态学报,2006,26(5):1574 − 1582. [GE Yuan,HE Jizheng,ZHENG Yuanming,et al. Stable isotope probing and its applications in microbial ecology[J]. Acta Ecologica Sinica,2006,26(5):1574 − 1582. (in Chinese with English abstract)] doi: 10.3321/j.issn:1000-0933.2006.05.036

    CrossRef Google Scholar

    GE Yuan, HE Jizheng, ZHENG Yuanming, et al. Stable isotope probing and its applications in microbial ecology[J]. Acta Ecologica Sinica, 2006, 26(5): 1574 − 1582. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-0933.2006.05.036

    CrossRef Google Scholar

    [16] 郑燕,贾仲君. 新一代高通量测序与稳定性同位素示踪DNA/RNA技术研究稻田红壤甲烷氧化的微生物过程[J]. 微生物学报,2013,53(2):173 − 184. [ZHENG Yan,JIA Zhongjun. Next generation sequencing and stable isotope probing of active microorganisms responsible for aerobic methane oxidation in red paddy soils[J]. Acta Microbiologica Sinica,2013,53(2):173 − 184. (in Chinese with English abstract)]

    Google Scholar

    ZHENG Yan, JIA Zhongjun. Next generation sequencing and stable isotope probing of active microorganisms responsible for aerobic methane oxidation in red paddy soils[J]. Acta Microbiologica Sinica, 2013, 53(2): 173 − 184. (in Chinese with English abstract)

    Google Scholar

    [17] SAIKI R K,GELFAND D H,STOFFEL S,et al. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase[J]. Science,1988,239:487 − 491. doi: 10.1126/science.2448875

    CrossRef Google Scholar

    [18] MULLIS K B,FALOONA F A. Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction[J]. Methods in Enzymology,1987,155:335 − 350.

    Google Scholar

    [19] 李杨霞. 我国中西部地区热泉嗜热菌的分离和产酶研究及嗜热纤维素酶的初步纯化[D]. 杭州:浙江大学,2007. [LI Yangxia. Isolation of thermophiles and screening of thermozymes from the hotsprings of Mid-West-China and purification of a thermostable cellulase[D]. Hangzhou:Zhejiang University,2007. (in Chinese with English abstract)]

    Google Scholar

    LI Yangxia. Isolation of thermophiles and screening of thermozymes from the hotsprings of Mid-West-China and purification of a thermostable cellulase[D]. Hangzhou: Zhejiang University, 2007. (in Chinese with English abstract)

    Google Scholar

    [20] 洪青. 中度嗜盐菌BYS-1 (Halomonas sp.)的生物学特性及其耐盐相关基因的克隆[D]. 南京:南京农业大学,2003. [HONG Qing. Characteristics of a moderately halophilic bacterium BYS-1 (Halomonas sp.) and cloning of its salf-tolerance related gene[D]. Nanjing:Nanjing Agricultural University,2003. (in Chinese with English abstract)]

    Google Scholar

    HONG Qing. Characteristics of a moderately halophilic bacterium BYS-1 (Halomonas sp.) and cloning of its salf-tolerance related gene[D]. Nanjing: Nanjing Agricultural University, 2003. (in Chinese with English abstract)

    Google Scholar

    [21] 赵荫薇,王世明. 微生物处理地下水石油污染的应用研究[J]. 应用生态学报,1998,9(2):209 − 212. [ZHAO Yinwei,WANG Shiming. Microbial treatment of groundwater contaminated by petroleuman application study[J]. Chinese Journal of Applied Ecology,1998,9(2):209 − 212. (in Chinese with English abstract)]

    Google Scholar

    ZHAO Yinwei, WANG Shiming. Microbial treatment of groundwater contaminated by petroleuman application study[J]. Chinese Journal of Applied Ecology, 1998, 9(2): 209 − 212. (in Chinese with English abstract)

    Google Scholar

    [22] 郑远扬. 石油污染生化治理的进展[J]. 环境科学与管理,1993,25(3):46 − 50. [ZHENG Yuanyang. Progress in biochemical treatment of oil pollution[J]. Environmental Science and Management,1993,25(3):46 − 50. (in Chinese with English abstract)]

    Google Scholar

    ZHENG Yuanyang. Progress in biochemical treatment of oil pollution[J]. Environmental Science and Management, 1993, 25(3): 46 − 50. (in Chinese with English abstract)

    Google Scholar

    [23] 滕应,黄昌勇. 重金属污染土壤的微生物生态效应及其修复研究进展[J]. 土壤与环境,2002,11(1):85 − 89. [TENG Ying,HUANG Changyong. Ecological effect of heavy metals on soil microbes and research advances on the mechanisms of bioremediation[J]. Soil and Environmental Sciences,2002,11(1):85 − 89. (in Chinese with English abstract)]

    Google Scholar

    TENG Ying, HUANG Changyong. Ecological effect of heavy metals on soil microbes and research advances on the mechanisms of bioremediation[J]. Soil and Environmental Sciences, 2002, 11(1): 85 − 89. (in Chinese with English abstract)

    Google Scholar

    [24] 王秀丽,徐建民,姚槐应,等. 重金属铜、锌、镉、铅复合污染对土壤环境微生物群落的影响[J]. 环境科学学报,2003,23(1):22 − 27. [WANG Xiuli,XU Jianmin,YAO Huaiying,et al. Effects of Cu,Zn,Cd and Pb compound contamination on soil microbial community[J]. Acta Scientiae Circumstantiae,2003,23(1):22 − 27. (in Chinese with English abstract)] doi: 10.3321/j.issn:0253-2468.2003.01.005

    CrossRef Google Scholar

    WANG Xiuli, XU Jianmin, YAO Huaiying, et al. Effects of Cu, Zn, Cd and Pb compound contamination on soil microbial community[J]. Acta Scientiae Circumstantiae, 2003, 23(1): 22 − 27. (in Chinese with English abstract) doi: 10.3321/j.issn:0253-2468.2003.01.005

    CrossRef Google Scholar

    [25] 宋震宇,杨伟,王文茜,等. 氯代烃污染地下水修复技术研究进展[J]. 环境科学与管理,2014,39(4):95 − 99. [SONG Zhenyu,YANG Wei,WANG Wenqian,et al. Research progress on restoring groundwater contaminated by chlorinated hydrocarbon[J]. Environmental Science and Management,2014,39(4):95 − 99. (in Chinese with English abstract)] doi: 10.3969/j.issn.1673-1212.2014.04.024

    CrossRef Google Scholar

    SONG Zhenyu, YANG Wei, WANG Wenqian, et al. Research progress on restoring groundwater contaminated by chlorinated hydrocarbon[J]. Environmental Science and Management, 2014, 39(4): 95 − 99. (in Chinese with English abstract) doi: 10.3969/j.issn.1673-1212.2014.04.024

    CrossRef Google Scholar

    [26] 李军,梁永平,邹胜章,等. 微生物在地下水污染修复中的应用研究进展[J]. 环境污染与防治,2021,43(5):638 − 643. [LI Jun,LIANG Yongping,ZOU Shengzhang,et al. Research progress on application of microorganism in groundwater pollution remediation[J]. Environmental Pollution and Control,2021,43(5):638 − 643. (in Chinese with English abstract)]

    Google Scholar

    LI Jun, LIANG Yongping, ZOU Shengzhang, et al. Research progress on application of microorganism in groundwater pollution remediation[J]. Environmental Pollution and Control, 2021, 43(5): 638 − 643. (in Chinese with English abstract)

    Google Scholar

    [27] CHAPELLE F H. The significance of microbial processes in hydrogeology and geochemistry[J]. Hydrogeology Journal,2000,8(1):41 − 46. doi: 10.1007/PL00010973

    CrossRef Google Scholar

    [28] 张丽萍,谢先军,李俊霞,等. 大同盆地地下水中砷的形态、分布及其富集过程研究[J]. 地质科技通报,2014,33(1):178 − 184. [ZHANG Liping,XIE Xianjun,LI Junxia,et al. Spatial variation,speciation and enrichment of arsenic in groundwater from the Datong basin,northern China[J]. Geological Science and Technology Information,2014,33(1):178 − 184. (in Chinese with English abstract)].]

    Google Scholar

    ZHANG Liping, XIE Xianjun, LI Junxia, et al. Spatial variation, speciation and enrichment of arsenic in groundwater from the Datong basin, northern China[J]. Geological Science and Technology Information, 2014, 33(1): 178 − 184. (in Chinese with English abstract)].

    Google Scholar

    [29] SHAMSUDDUHA M,MARZEN L J,UDDIN A,et al. Spatial relationship of groundwater arsenic distribution with regional topography and water-table fluctuations in the shallow aquifers in Bangladesh[J]. Environmental Geology,2009,57(7):1521 − 1535. doi: 10.1007/s00254-008-1429-3

    CrossRef Google Scholar

    [30] MEILE C,SCHEIBE T D. Reactive transport modeling of microbial dynamics[J]. Elements:An International Magazine of Mineralogy,Geochemistry,and Petrology,2019,15(2):111 − 116.

    Google Scholar

    [31] THULLNER M,REGNIER P,VAN CAPPELLEN P. Modeling microbially induced carbon degradation in redox-stratified subsurface environments:Concepts and open questions[J]. Geomicrobiology Journal,2007,24(3/4):139 − 155.

    Google Scholar

    [32] CURTIS G P. Comparison of approaches for simulating reactive solute transport involving organic degradation reactions by multiple terminal electron acceptors[J]. Computers & Geosciences,2003,29(3):319 − 329.

    Google Scholar

    [33] 王建秀,朱合华,唐益群,等. 石灰岩损伤演化的化学热力学及动力学模型[J]. 同济大学学报(自然科学版),2004,32(9):1126 − 1130. [WANG Jianxiu,ZHU Hehua,TANG Yiqun,et al. Chemical thermodynamic and chemical kinetic model for dissolution damage evolution in limestone[J]. Journal of Tongji University(Natural Science),2004,32(9):1126 − 1130. (in Chinese with English abstract)]

    Google Scholar

    WANG Jianxiu, ZHU Hehua, TANG Yiqun, et al. Chemical thermodynamic and chemical kinetic model for dissolution damage evolution in limestone[J]. Journal of Tongji University(Natural Science), 2004, 32(9): 1126 − 1130. (in Chinese with English abstract)

    Google Scholar

    [34] ORTH J D,THIELE I,PALSSON B Ø. What is flux balance analysis[J]. Nature Biotechnology,2010,28(3):245 − 248. doi: 10.1038/nbt.1614

    CrossRef Google Scholar

    [35] QIU Sizhe,YANG Aidong,ZENG Hong. Flux balance analysis-based metabolic modeling of microbial secondary metabolism:Current status and outlook[J]. PLoS Computational Biology,2023,19(8):e1011391. doi: 10.1371/journal.pcbi.1011391

    CrossRef Google Scholar

    [36] MAHADEVAN R,EDWARDS J S,DOYLE F J 3rd. Dynamic flux balance analysis of diauxic growth in Escherichia coli[J]. Biophysical Journal,2002,83(3):1331 − 1340. doi: 10.1016/S0006-3495(02)73903-9

    CrossRef Google Scholar

    [37] REED D C,ALGAR C K,HUBER J A,et al. Gene-centric approach to integrating environmental genomics and biogeochemical models[J]. Proceedings of the National Academy of Sciences of the United States of America,2014,111(5):1879 − 1884.

    Google Scholar

    [38] 王洪涛. 多孔介质污染物迁移动力学[M]. 北京:高等教育出版社,2008. [WANG Hongtao. Dynamics of fluid flow and contaminant transport in porous media[M]. Beijing:Higher Education Press,2008. (in Chinese)]

    Google Scholar

    WANG Hongtao. Dynamics of fluid flow and contaminant transport in porous media[M]. Beijing: Higher Education Press, 2008. (in Chinese)

    Google Scholar

    [39] MAGNABOSCO C,LIN L h,DONG H,et al. The biomass and biodiversity of the continental subsurface[J]. Nature Geoscience,2018,11(10):707 − 717. doi: 10.1038/s41561-018-0221-6

    CrossRef Google Scholar

    [40] 张怀胜,王梦园,蔡五田,等. 深层含氟地下水微生物群落组成及环境响应特征[J]. 地球科学,2023,48(9):3466 − 3479. [ZHANG Huaisheng,WANG Mengyuan,CAI Wutian,et al. Characteristics of microbial community composition and environmental response in deep fluorinated groundwater[J]. Earth Science,2023,48(9):3466 − 3479. (in Chinese with English abstract)]

    Google Scholar

    ZHANG Huaisheng, WANG Mengyuan, CAI Wutian, et al. Characteristics of microbial community composition and environmental response in deep fluorinated groundwater[J]. Earth Science, 2023, 48(9): 3466 − 3479. (in Chinese with English abstract)

    Google Scholar

    [41] 李平,谭添,刘韩,等. 地下水微生物功能群及生物地球化学循环[J]. 微生物学报,2021,61(6):1598 − 1609. [LI Ping,TAN Tian,LIU Han,et al. Functional microbial communities and the biogeochemical cycles in groundwater[J]. Acta Microbiologica Sinica,2021,61(6):1598 − 1609. (in Chinese with English abstract)]

    Google Scholar

    LI Ping, TAN Tian, LIU Han, et al. Functional microbial communities and the biogeochemical cycles in groundwater[J]. Acta Microbiologica Sinica, 2021, 61(6): 1598 − 1609. (in Chinese with English abstract)

    Google Scholar

    [42] LÜ Huixiong,WEI Jialu,TANG Guangxuan,et al. Microbial consortium degrading of organic pollutants:Source,degradation efficiency,pathway,mechanism and application[J]. Journal of Cleaner Production,2024,451:141913. doi: 10.1016/j.jclepro.2024.141913

    CrossRef Google Scholar

    [43] 支传顺,胡晓农,陈麟,等. 微生物对海水入侵响应特征及指示意义的研究进展[J]. 水文地质工程地质,2024,51(2):192 − 203. [ZHI Chuanshun, HU Xiaonong, CHEN Lin, et al. Research progress on the response characteristics and indicative significance of microorganisms to seawater intrusion[J]. Hydrogeology & Engineering Geology,2024,51(2):192 − 203. (in Chinese with English abstract)] doi: 10.16030/j.cnki.issn.1000-3665.202307014

    CrossRef Google Scholar

    ZHI Chuanshun, HU Xiaonong, CHEN Lin, et al. Research progress on the response characteristics and indicative significance of microorganisms to seawater intrusion[J]. Hydrogeology & Engineering Geology, 2024, 51(2): 192 − 203. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.202307014

    CrossRef Google Scholar

    [44] SAIYARI D M,CHUANG Huiping,SENORO D B,et al. A review in the current developments of genus Dehalococcoides,its consortia and kinetics for bioremediation options of contaminated groundwater[J]. Sustainable Environment Research,2018,28(4):149 − 157. doi: 10.1016/j.serj.2018.01.006

    CrossRef Google Scholar

    [45] KITAYAMA A. A study on biodegradation of aromatic hydrocarbons[D]. Tokyo:The University of Tokyo,1997.

    Google Scholar

    [46] 郭华明,高志鹏,修伟. 地下水氮循环与砷迁移转化耦合的研究现状和趋势[J]. 水文地质工程地质,2022,49(3):153 − 163. [GUO Huaming,GAO Zhipeng,XIU Wei. Research status and trend of coupling between nitrogen cycle and arsenic migration and transformation in groundwater systems[J]. Hydrogeology & Engineering Geology,2022,49(3):153 − 163. (in Chinese with English abstract)]

    Google Scholar

    GUO Huaming, GAO Zhipeng, XIU Wei. Research status and trend of coupling between nitrogen cycle and arsenic migration and transformation in groundwater systems[J]. Hydrogeology & Engineering Geology, 2022, 49(3): 153 − 163. (in Chinese with English abstract)

    Google Scholar

    [47] 苏夏. 微氧尺度下甲烷氧化调控覆盖层微生物降解氯代烯烃的机理研究[D]. 重庆:重庆理工大学,2024. [SU Xia. Study on the mechanism of methane oxidation regulating microbial degradation of chloroethenes in landfill cover at hypoxia Scale[D]. Chongqing:Chongqing University of Technology,2024. (in Chinese with English abstract)]

    Google Scholar

    SU Xia. Study on the mechanism of methane oxidation regulating microbial degradation of chloroethenes in landfill cover at hypoxia Scale[D]. Chongqing: Chongqing University of Technology, 2024. (in Chinese with English abstract)

    Google Scholar

    [48] REISINGER A J,GROFFMAN P M,ROSI-MARSHALL E J. Nitrogen cycling process rates across urban ecosystems[J]. FEMS Microbiology Ecology,2016,92(12):fiw198. doi: 10.1093/femsec/fiw198

    CrossRef Google Scholar

    [49] ANANTHARAMAN K,BROWN C T,HUG L A,et al. Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system[J]. Nature Communications,2016,7(1):13219. doi: 10.1038/ncomms13219

    CrossRef Google Scholar

    [50] TRAUTH N,SCHMIDT C,VIEWEG M,et al. Hyporheic transport and biogeochemical reactions in pool-riffle systems under varying ambient groundwater flow conditions[J]. Journal of Geophysical Research:Biogeosciences,2014,119(5):910 − 928.

    Google Scholar

    [51] GROFFMAN P M,LAW N L,BELT K T,et al. Nitrogen fluxes and retention in urban watershed ecosystems[J]. Ecosystems,2004,7(4):393 − 403.

    Google Scholar

    [52] SHABAROVA T,SALCHER M M,PORCAL P,et al. Recovery of freshwater microbial communities after extreme rain events is mediated by cyclic succession[J]. Nature Microbiology,2021,6(4):479 − 488. doi: 10.1038/s41564-020-00852-1

    CrossRef Google Scholar

    [53] LI Minjing,QIAN Weijun,GAO Yuqian,et al. Functional enzyme-based approach for linking microbial community functions with biogeochemical process kinetics[J]. Environmental Science & Technology,2017,51(20):11848 − 11857.

    Google Scholar

    [54] LUO Moye,ZHANG Xiaodong,ZHU Xin,et al. Bioremediation of chlorinated ethenes contaminated groundwater and the reactive transport modeling:A review[J]. Environmental Research,2024,240(Pt 2):117389.

    Google Scholar

    [55] HUI Cizhang,LI Yi,ZHANG Wenlong,et al. Modelling structure and dynamics of microbial community in aquatic ecosystems:The importance of hydrodynamic processes[J]. Journal of Hydrology,2022,605:127351. doi: 10.1016/j.jhydrol.2021.127351

    CrossRef Google Scholar

    [56] STROO H F. Bioremediation of chlorinated solvent plumes[M]//STROO H F,WARD C H. In situ remediation of chlorinated solvent plumes. New York:Springer,2010:309–324.

    Google Scholar

    [57] VAN WEY A S,LOVATT S J,ROY N C,et al. Determination of potential metabolic pathways of human intestinal bacteria by modeling growth kinetics from cross-feeding dynamics[J]. Food Research International,2016,88:207 − 216. doi: 10.1016/j.foodres.2016.02.004

    CrossRef Google Scholar

    [58] VAN WEY A S,COOKSON A L,ROY N C,et al. Monoculture parameters successfully predict coculture growth kinetics of Bacteroides thetaiotaomicron and two Bifidobacterium strains[J]. International Journal of Food Microbiology,2014,191:172 − 181. doi: 10.1016/j.ijfoodmicro.2014.09.006

    CrossRef Google Scholar

    [59] MONOD J. The growth of bacterial cultures[J]. Annual Review of Microbiology,1949,3:371 − 394. doi: 10.1146/annurev.mi.03.100149.002103

    CrossRef Google Scholar

    [60] DOLINOVÁ I,ŠTROJSOVÁ M,ČERNÍK M,et al. Microbial degradation of chloroethenes:A review[J]. Environmental Science and Pollution Research,2017,24(15):13262 − 13283. doi: 10.1007/s11356-017-8867-y

    CrossRef Google Scholar

    [61] ROLLE M,CLEMENT T P,SETHI R,et al. A kinetic approach for simulating redox-controlled fringe and core biodegradation processes in groundwater:Model development and application to a landfill site in piedmont,Italy[J]. Hydrological Processes,2008,22(25):4905 − 4921. doi: 10.1002/hyp.7113

    CrossRef Google Scholar

    [62] CHAPELLE F H,MCMAHON P B,DUBROVSKY N M,et al. Deducing the distribution of terminal electron-accepting processes in hydrologically diverse groundwater systems[J]. Water Resources Research,1995,31(2):359 − 371. doi: 10.1029/94WR02525

    CrossRef Google Scholar

    [63] CHAPELLE F H,BRADLEY P M,LOVLEY D R,et al. Rapid evolution of redox processes in a petroleum hydrocarbon-contaminated aquifer[J]. Ground Water,2002,40(4):353 − 360. doi: 10.1111/j.1745-6584.2002.tb02513.x

    CrossRef Google Scholar

    [64] CHRISTENSEN T H,KJELDSEN P,BJERG P L,et al. Biogeochemistry of landfill leachate plumes[J]. Applied Geochemistry,2001,16(7/8):659 − 718.

    Google Scholar

    [65] BAEDECKER M J,BACK W. Hydrogeological processes and chemical reactions at a landfill[J]. Ground Water,1979,17(5):429 − 437. doi: 10.1111/j.1745-6584.1979.tb03338.x

    CrossRef Google Scholar

    [66] BRADLEY J A,AMEND J P,LAROWE D E. Necromass as a limited source of energy for microorganisms in marine sediments[J]. Journal of Geophysical Research:Biogeosciences,2018,123(2):577 − 590.

    Google Scholar

    [67] LIU Yuanyuan,LIU Chongxuan,NELSON W C,et al. Effect of water chemistry and hydrodynamics on nitrogen transformation activity and microbial community functional potential in hyporheic zone sediment columns[J]. Environmental Science & Technology,2017,51(9):4877 − 4886.

    Google Scholar

    [68] LOUCA S,HAWLEY A K,KATSEV S,et al. Integrating biogeochemistry with multiomic sequence information in a model oxygen minimum zone[J]. Proceedings of the National Academy of Sciences of the United States of America,2016,113(40):E5925 − E5933.

    Google Scholar

    [69] SEAVER S M D,LIU F,ZHANG Qizhi,et al. The ModelSEED biochemistry database for the integration of metabolic annotations and the reconstruction,comparison and analysis of metabolic models for plants,fungi and microbes[J]. Nucleic Acids Research,2021,49(D1):D575 − D588. doi: 10.1093/nar/gkaa746

    CrossRef Google Scholar

    [70] PANIKOV N S. Genome-Scale reconstruction of microbial dynamic phenotype:Successes and challenges[J]. Microorganisms,2021,9(11):2352. doi: 10.3390/microorganisms9112352

    CrossRef Google Scholar

    [71] PINZON W,VEGA H,GONZALEZ J,et al. Mathematical framework behind the reconstruction and analysis of genome scale metabolic models[J]. Archives of Computational Methods in Engineering,2019,26(5):1593 − 1606. doi: 10.1007/s11831-018-9290-3

    CrossRef Google Scholar

    [72] KIM B,KIM W J,KIM D I,et al. Applications of genome-scale metabolic network model in metabolic engineering[J]. Journal of Industrial Microbiology and Biotechnology,2015,42(3):339 − 348. doi: 10.1007/s10295-014-1554-9

    CrossRef Google Scholar

    [73] KIM T Y,SOHN S B,KIM Y B,et al. Recent advances in reconstruction and applications of genome-scale metabolic models[J]. Current Opinion in Biotechnology,2012,23(4):617 − 623. doi: 10.1016/j.copbio.2011.10.007

    CrossRef Google Scholar

    [74] CHAN S H J,CAI Jingyi,WANG Lin,et al. Standardizing biomass reactions and ensuring complete mass balance in genome-scale metabolic models[J]. Bioinformatics,2017,33(22):3603 − 3609. doi: 10.1093/bioinformatics/btx453

    CrossRef Google Scholar

    [75] DIAS O,ROCHA M,FERREIRA E C,et al. Reconstructing high-quality large-scale metabolic models with merlin[M]//FONDI M. Metabolic network reconstruction and modeling:Methods and protocols. New York:Humana Press,2018:1-36.

    Google Scholar

    [76] KOREM T,ZEEVI D,SUEZ J,et al. Growth dynamics of gut microbiota in health and disease inferred from single metagenomic samples[J]. Science,2015,349:1101 − 1106. doi: 10.1126/science.aac4812

    CrossRef Google Scholar

    [77] ZHANG T,PARKER A,CARLSON R P,et al. Multiscale flux-based modeling of biofilm communities[J]. Multiscale Modeling & Simulation,2020,18(2):1025 − 1052.

    Google Scholar

    [78] KAUFFMAN K J,PRAKASH P,EDWARDS J S. Advances in flux balance analysis[J]. Current Opinion in Biotechnology,2003,14(5):491 − 496. doi: 10.1016/j.copbio.2003.08.001

    CrossRef Google Scholar

    [79] SAHU A,BLÄTKE M A,SZYMAŃSKI J J,et al. Advances in flux balance analysis by integrating machine learning and mechanism-based models[J]. Computational and Structural Biotechnology Journal,2021,19:4626 − 4640. doi: 10.1016/j.csbj.2021.08.004

    CrossRef Google Scholar

    [80] COVERT M W,SCHILLING C H,PALSSON B. Regulation of gene expression in flux balance models of metabolism[J]. Journal of Theoretical Biology,2001,213(1):73 − 88. doi: 10.1006/jtbi.2001.2405

    CrossRef Google Scholar

    [81] BENYAMINI T,FOLGER O,RUPPIN E,et al. Flux balance analysis accounting for metabolite dilution[J]. Genome Biology,2010,11(4):R43. doi: 10.1186/gb-2010-11-4-r43

    CrossRef Google Scholar

    [82] KHANDELWAL R A,OLIVIER B G,RÖLING W F M,et al. Community flux balance analysis for microbial consortia at balanced growth[J]. PLoS One,2013,8(5):e64567. doi: 10.1371/journal.pone.0064567

    CrossRef Google Scholar

    [83] SAA P A,NIELSEN L K. Formulation,construction and analysis of kinetic models of metabolism:A review of modelling frameworks[J]. Biotechnology Advances,2017,35(8):981 − 1003. doi: 10.1016/j.biotechadv.2017.09.005

    CrossRef Google Scholar

    [84] DAMIANI A L,HE Q P,JEFFRIES T W,et al. Comprehensive evaluation of two genome-scale metabolic network models for Scheffersomyces stipitis[J]. Biotechnology and Bioengineering,2015,112(6):1250 − 1262. doi: 10.1002/bit.25535

    CrossRef Google Scholar

    [85] GEER L Y,MARCHLER-BAUER A,GEER R C,et al. The NCBI BioSystems database[J]. Nucleic Acids Research,2010,38(Sup 1):D492 − D496.

    Google Scholar

    [86] FEDERHEN S. The NCBI taxonomy database[J]. Nucleic Acids Research,2012,40(D1):D136 − D143. doi: 10.1093/nar/gkr1178

    CrossRef Google Scholar

    [87] BROWN G R,HEM V,KATZ K S,et al. Gene:A gene-centered information resource at NCBI[J]. Nucleic Acids Research,2015,43(D1):D36 − D42. doi: 10.1093/nar/gku1055

    CrossRef Google Scholar

    [88] DEVOID S,OVERBEEK R,DEJONGH M,et al. Automated genome annotation and metabolic model reconstruction in the SEED and Model SEED[M]//ALPER H S. Systems Metabolic Engineering:Methods and Protocols. Totow:Humana Press,2013:17 − 45.

    Google Scholar

    [89] ARKIN A P,COTTINGHAM R W,HENRY C S,et al. KBase:The United States department of energy systems biology knowledgebase[J]. Nature Biotechnology,2018,36(7):566 − 569. doi: 10.1038/nbt.4163

    CrossRef Google Scholar

    [90] MILLS R T,LU Chuan,LICHTNER P C,et al. Simulating subsurface flow and transport on ultrascale computers using PFLOTRAN[J]. Journal of Physics:Conference Series,2007,78(1):012051.

    Google Scholar

    [91] LICHTNER P C,HAMMOND G E,LU Chuan,et al. PFLOTRAN user manual:A massively parallel reactive flow and transport model for describing surface and subsurface processes:LA-UR-15-20403[R/OL]. https://www.osti.gov/biblio/1168703/. (2015-01-20)[2024-12-05]

    Google Scholar

    [92] HAMMOND G E,LICHTNER P C,MILLS R T. Evaluating the performance of parallel subsurface simulators:An illustrative example with PFLOTRAN[J]. Water Resources Research,2014,50(1):208 − 228. doi: 10.1002/2012WR013483

    CrossRef Google Scholar

    [93] SOBIE E A. An introduction to MATLAB[J]. Science Signaling,2011,4(191).

    Google Scholar

    [94] HEIRENDT L,ARRECKX S,PFAU T,et al. Creation and analysis of biochemical constraint-based models using the COBRA Toolbox v. 3.0[J]. Nature Protocols,2019,14(3):639 − 702. doi: 10.1038/s41596-018-0098-2

    CrossRef Google Scholar

    [95] PRYOR R W. Multiphysics modeling using COMSOL:A first principles approach[M]. Sudbury:Jones and Bartlett Publishers,Inc. ,2009.

    Google Scholar

    [96] PEPPER D W,HEINRICH J C. The finite element method:Basic concepts and applications with MATLAB,MAPLE,and COMSOL[M]. 3rd ed. Boca Raton:CRC Press,2017.

    Google Scholar

    [97] KIM S E,CHOUDHURY D,PATEL B. Computations of complex turbulent flows using the commercial code fluent[M]//SALAS M D,HEFNER J N,SAKELL L. Modeling complex turbulent flows. Dordrecht:Springer,1999:259 − 276.

    Google Scholar

    [98] WANG Lian,CHU Xihua,WAN Ji,et al. Implementation of micropolar fluids model and hydrodynamic behavior analysis using user-defined function in FLUENT[J]. Advances in Mechanical Engineering,2020,12(7):168781402094305.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Tables(1)

Article Metrics

Article views(222) PDF downloads(25) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint