2025 Vol. 52, No. 3
Article Contents

GUO Zhilin, ZHAO Dongwei, PENG Zhanxiang, ZHAI Xuchen. The impact of surface water-groundwater interactions on the fate and transport of typical PFAS[J]. Hydrogeology & Engineering Geology, 2025, 52(3): 1-13. doi: 10.16030/j.cnki.issn.1000-3665.202409027
Citation: GUO Zhilin, ZHAO Dongwei, PENG Zhanxiang, ZHAI Xuchen. The impact of surface water-groundwater interactions on the fate and transport of typical PFAS[J]. Hydrogeology & Engineering Geology, 2025, 52(3): 1-13. doi: 10.16030/j.cnki.issn.1000-3665.202409027

The impact of surface water-groundwater interactions on the fate and transport of typical PFAS

More Information
  • Author Bio: 郭芷琳,教育部青年人才,南方科技大学环境科学与工程学院副教授。博士毕业于美国亚利桑那大学环境科学专业,美国加州大学戴维斯分校水文系博士后。2019年8月加入南方科技大学。现任生态环境部流域地表水-地下水污染综合防治重点实验室副主任、中国环境学会生态地质环境专业委员会秘书长、美国地球物理学会地下水委员会和国际水利与环境学会地下水与管理委员会委员。此外,还担任国际水文水资源权威期刊Water Resources ResearchJournal of HydrologyGroundwater等期刊副主编。  围绕地下水污染机理与修复,以及全球变化下地下水资源的可持续性进行了十余年深入研究,在水文水资源和环境领域知名期刊发表论文50余篇。目前负责国家重点研发计划项目课题、国家自然科学基金重点支持项目子课题、国家自然科学基金面上项目、广东省自然科学基金杰出青年项目等国家、省市级项目
  • Per- and polyfluoroalkyl substances (PFAS) are a class of ubiquitous and persistent pollutants that pose significant risks to drinking water and human health. Considerable progress has been made in understanding the transport processes of PFAS in soil over the past decade; however, there is a lack of quantitative studies on the migration and transformation of PFAS in groundwater under complex hydrodynamic conditions. This study, focusing on perfluorohexane sulfonate (PFHxS), investigated the migration and transformation mechanisms of PFAS under variably saturated flow conditions. The influence of stratum heterogeneity and water table fluctuations on the migration and transformation of PFHxS in groundwater was explored. By simulating the migration and transformation processes of PFHxS in the aqueous phase, solid phase, and air-water interface, the migration and transformation behavior patterns of PFHxS under surface water-groundwater interaction condition in riparian zone was investigated. The results show that high permeability areas of heterogeneous layers create preferential channels for flow and transport, accelerating the migration of PFHxS to riparian zones The interaction between surface water and groundwater caused by rainfall led to the spatial redistribution of PFHxS pollution plume and extended the coverage of PFHxS pollution area. The presence of preferential flow accelerates the response rate of PFHxS in the surface water-groundwater interaction. This study contributes to enhancing the accuracy of predicting the extent of pollution spread in similar complex environments, optimizing monitoring and response measures, and providing a scientific basis for pollution emergency management.

  • 加载中
  • [1] BUCK R C,FRANKLIN J,BERGER U,et al. Perfluoroalkyl and polyfluoroalkyl substances in the environment:Terminology,classification,and origins[J]. Integrated Environmental Assessment and Management,2011,7(4):513 − 541. doi: 10.1002/ieam.258

    CrossRef Google Scholar

    [2] 王佩,黄欣怡,曹致纬,等. 新污染物共排放对生态环境监测和管理的挑战[J]. 环境科学,2022,43(11):4801 − 4809. [WANG Pei,HUANG Xinyi,CAO Zhiwei,et al. Challenges regarding the co-emission of emerging pollutants to eco-environmental monitoring and management[J]. Environmental Science,2022,43(11):4801 − 4809. (in Chinese with English abstract)]

    Google Scholar

    WANG Pei, HUANG Xinyi, CAO Zhiwei, et al. Challenges regarding the co-emission of emerging pollutants to eco-environmental monitoring and management[J]. Environmental Science, 2022, 43(11): 4801 − 4809. (in Chinese with English abstract)

    Google Scholar

    [3] 金宵卉,阎妮. 全氟及多氟烷基化合物前体物质在环境中迁移与转化行为研究进展[J]. 水文地质工程地质,2024,51(2):35 − 49. [JIN Xiaohui,YAN Ni. Advances in researches on migration and transformation behavior of per-and polyfluoroalkyl substances precursors in the environment[J]. Hydrogeology & Engineering Geology,2024,51(2):35 − 49. (in Chinese with English abstract)]

    Google Scholar

    JIN Xiaohui, YAN Ni. Advances in researches on migration and transformation behavior of per-and polyfluoroalkyl substances precursors in the environment[J]. Hydrogeology & Engineering Geology, 2024, 51(2): 35 − 49. (in Chinese with English abstract)

    Google Scholar

    [4] BRUSSEAU M L. Assessing the potential contributions of additional retention processes to PFAS retardation in the subsurface[J]. Science of the Total Environment,2018,613/614:176 − 185. doi: 10.1016/j.scitotenv.2017.09.065

    CrossRef Google Scholar

    [5] LYU Ying,BRUSSEAU M L,CHEN Wei,et al. Adsorption of PFOA at the air–water interface during transport in unsaturated porous media[J]. Environmental Science & Technology,2018,52(14):7745 − 7753.

    Google Scholar

    [6] BRUSSEAU M L. Estimating the relative magnitudes of adsorption to solid-water and air/oil-water interfaces for per- and poly-fluoroalkyl substances[J]. Environmental Pollution,2019,254,Part B:113102.

    Google Scholar

    [7] COSTANZA J,ARSHADI M,ABRIOLA L M,et al. Accumulation of PFOA and PFOS at the air–water interface[J]. Environmental Science & Technology Letters,2019,6(8):487 − 491.

    Google Scholar

    [8] GUO Bo,ZENG Jicai,BRUSSEAU M L. A mathematical model for the release,transport,and retention of per-and polyfluoroalkyl substances (PFAS) in the vadose zone[J]. Water Resources Research,2020,56(2):e2019WR026667. doi: 10.1029/2019WR026667

    CrossRef Google Scholar

    [9] WANG Zhanyuan,DEWITT J,HIGGINS C P,et al. Correction to “a never-ending story of per- and polyfluoroalkyl substances (PFASs)?”[J]. Environmental Science & Technology,2018,52(5):3325.

    Google Scholar

    [10] HUNTER ANDERSON R,ADAMSON D T,STROO H F. Partitioning of poly- and perfluoroalkyl substances from soil to groundwater within aqueous film-forming foam source zones[J]. Journal of Contaminant Hydrology,2019,220:59 − 65. doi: 10.1016/j.jconhyd.2018.11.011

    CrossRef Google Scholar

    [11] DAUCHY X,BOITEUX V,COLIN A,et al. Deep seepage of per- and polyfluoroalkyl substances through the soil of a firefighter training site and subsequent groundwater contamination[J]. Chemosphere,2019,214:729 − 737. doi: 10.1016/j.chemosphere.2018.10.003

    CrossRef Google Scholar

    [12] FILIPOVIC M,WOLDEGIORGIS A,NORSTRÖM K,et al. Historical usage of aqueous film forming foam:A case study of the widespread distribution of perfluoroalkyl acids from a military airport to groundwater,lakes,soils and fish[J]. Chemosphere,2015,129:39 − 45. doi: 10.1016/j.chemosphere.2014.09.005

    CrossRef Google Scholar

    [13] HOISAETER A,PFAFF A,BREEDVELD G D. Leaching and transport of PFAS from aqueous film-forming foam (AFFF) in the unsaturated soil at a firefighting training facility under cold climatic conditions[J]. Journal of Contaminant Hydrology,2019,222:112 − 122. doi: 10.1016/j.jconhyd.2019.02.010

    CrossRef Google Scholar

    [14] XIAO Feng,SIMCIK M F,HALBACH T R,et al. Perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in soils and groundwater of a U S metropolitan area:Migration and implications for human exposure[J]. Water Research,2015,72:64 − 74. doi: 10.1016/j.watres.2014.09.052

    CrossRef Google Scholar

    [15] WEBER A K,BARBER L B,LEBLANC D R,et al. Geochemical and hydrologic factors controlling subsurface transport of poly- and perfluoroalkyl substances,cape cod,massachusetts[J]. Environmental Science & Technology,2017,51(8):4269 − 4279.

    Google Scholar

    [16] 潘明浩,时健,左锐,等. 水位波动下包气带透镜体影响LNAPL迁移的数值模拟研究[J]. 水文地质工程地质,2022,49(1):154 − 163. [PAN Minghao,SHI Jian,ZUO Rui,et al. A numerical simulation study of the effect of the vadose zone with lenses on LNAPL migration under the fluctuating water table[J]. Hydrogeology & Engineering Geology,2022,49(1):154 − 163. (in Chinese with English abstract)]

    Google Scholar

    PAN Minghao, SHI Jian, ZUO Rui, et al. A numerical simulation study of the effect of the vadose zone with lenses on LNAPL migration under the fluctuating water table[J]. Hydrogeology & Engineering Geology, 2022, 49(1): 154 − 163. (in Chinese with English abstract)

    Google Scholar

    [17] BRUSSEAU M L,YAN Ni,VAN GLUBT S,et al. Comprehensive retention model for PFAS transport in subsurface systems[J]. Water Research,2019,148:41 − 50. doi: 10.1016/j.watres.2018.10.035

    CrossRef Google Scholar

    [18] GUO Bo,ZENG Jicai,BRUSSEAU M L,et al. A screening model for quantifying PFAS leaching in the vadose zone and mass discharge to groundwater[J]. Advances in Water Resources,2022,160:104102. doi: 10.1016/j.advwatres.2021.104102

    CrossRef Google Scholar

    [19] BRUSSEAU M L,ANDERSON R H,GUO Bo. PFAS concentrations in soils:Background levels versus contaminated sites[J]. The Science of the Total Environment,2020,740:140017. doi: 10.1016/j.scitotenv.2020.140017

    CrossRef Google Scholar

    [20] BRUSSEAU M L,VAN GLUBT S. The influence of molecular structure on PFAS adsorption at air-water interfaces in electrolyte solutions[J]. Chemosphere,2021,281:130829. doi: 10.1016/j.chemosphere.2021.130829

    CrossRef Google Scholar

    [21] LYU Ying,BRUSSEAU M L. The influence of solution chemistry on air-water interfacial adsorption and transport of PFOA in unsaturated porous media[J]. The Science of the Total Environment,2020,713:136744. doi: 10.1016/j.scitotenv.2020.136744

    CrossRef Google Scholar

    [22] BRUSSEAU M L,VAN GLUBT S. The influence of surfactant and solution composition on PFAS adsorption at fluid-fluid interfaces[J]. Water Research,2019,161:17 − 26. doi: 10.1016/j.watres.2019.05.095

    CrossRef Google Scholar

    [23] EL OUNI A,GUO Bo,ZHONG Hua,et al. Testing the validity of the miscible-displacement interfacial tracer method for measuring air-water interfacial area:Independent benchmarking and mathematical modeling[J]. Chemosphere,2021,263:128193. doi: 10.1016/j.chemosphere.2020.128193

    CrossRef Google Scholar

    [24] ZENG Jicai,BRUSSEAU M L,GUO Bo. Model validation and analyses of parameter sensitivity and uncertainty for modeling long-term retention and leaching of PFAS in the vadose zone[J]. Journal of Hydrology,2021,603:127172. doi: 10.1016/j.jhydrol.2021.127172

    CrossRef Google Scholar

    [25] ZENG J,GUO Bo. Reduced accessible air–water interfacial area accelerates PFAS leaching in heterogeneous vadose zones[J]. Geophysical Research Letters,2023,50(8):e2022GL102655. doi: 10.1029/2022GL102655

    CrossRef Google Scholar

    [26] HITZELBERGER M,KHAN N A,MOHAMED R A M,et al. PFOS mass flux reduction/mass removal:Impacts of a Lower-permeability sand lens within otherwise homogeneous systems[J]. Environmental Science & Technology,2022,56(19):13675 − 13685.

    Google Scholar

    [27] ZENG Jicai,GUO Bo. Multidimensional simulation of PFAS transport and leaching in the vadose zone:Impact of surfactant-induced flow and subsurface heterogeneities[J]. Advances in Water Resources,2021,155:104015. doi: 10.1016/j.advwatres.2021.104015

    CrossRef Google Scholar

    [28] 吴佩鹏,束龙仓,李福林,等. 层状非均质性影响下河流对地下水的补给过程研究[J]. 水文地质工程地质,2023,50(3):44 − 53. [WU Peipeng,SHU Longcang,LI Fulin,et al. Influence of stratified heterogeneity on the recharge from surface water to groundwater[J]. Hydrogeology & Engineering Geology,2023,50(3):44 − 53. (in Chinese with English abstract)]

    Google Scholar

    WU Peipeng, SHU Longcang, LI Fulin, et al. Influence of stratified heterogeneity on the recharge from surface water to groundwater[J]. Hydrogeology & Engineering Geology, 2023, 50(3): 44 − 53. (in Chinese with English abstract)

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)

Tables(2)

Article Metrics

Article views(180) PDF downloads(21) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint