2025 Vol. 52, No. 2
Article Contents

DENG Chengdong, ZHANG Yunhui, YUAN Xingcheng, WANG Ying, LYU Guosen, LI Xingze. Genesis of high-sulfate geothermal water in the Namcha Barwa syntaxis, eastern Xizang[J]. Hydrogeology & Engineering Geology, 2025, 52(2): 173-189. doi: 10.16030/j.cnki.issn.1000-3665.202407008
Citation: DENG Chengdong, ZHANG Yunhui, YUAN Xingcheng, WANG Ying, LYU Guosen, LI Xingze. Genesis of high-sulfate geothermal water in the Namcha Barwa syntaxis, eastern Xizang[J]. Hydrogeology & Engineering Geology, 2025, 52(2): 173-189. doi: 10.16030/j.cnki.issn.1000-3665.202407008

Genesis of high-sulfate geothermal water in the Namcha Barwa syntaxis, eastern Xizang

More Information
  • In the Namcha Barwa syntaxis of eastern, high-sulfate geothermal water is extensively developed, presenting significant potential for exploitation and utilization. However, the sources and formation mechanisms of these sulfates remain poorly understood. This study focused on the hot spring and borehole water in the Namcha Barwa syntaxis, aiming to identify the sources of ions in geothermal water. The study first examines the hydrochemical components, followed by comprehensive analyses of strontium, sulfate sulfur, and oxygen isotopes to determine the sources of sulfate in geothermal water In addition, this study investigated the water-rock equilibrium and temperature of deep thermal reservoirs and summarized the genesis of high-sulfate geothermal waters in the Namcha Barwa syntaxis. The geothermal water is characterized as weakly acidic to weakly alkaline-alkaline water, with total dissolved solids ranging from 130 mg/L to 3265 mg/L. The hydrochemical types include HCO3•SO4—Ca•Na, SO4—Ca, and SO4•HCO3—Ca•Na. Water chemistry and strontium isotope results indicate that the dissolution of silicate minerals in gneiss and sulfate in evaporites are key factors influencing the water chemistry components. The ${}^{34}{\mathrm{S}}_{{\mathrm{SO}}_4} $-${}^{18}{\mathrm{O}}_{{\mathrm{SO}}_4} $isotopes suggest multiple ${\mathrm{SO}}_4^{2-} $ sources, including atmospheric precipitation, soil sulfate, pyrite, and gypsum. Hydrogen and oxygen isotopes reveal that the hot spring thermal water is recharged by atmospheric precipitation, with a recharge elevation of 2646 m to 3045 m. Calculations using the silica geothermometer and the silica enthalpy model estimate the deep reservoir temperatures to be approximately 232 °C to 275 °C, with shallow reservoir temperatures around 180 °C and a cold water mixing ratio of 74% to 82%. The study reveals that atmospheric precipitation in this area migrates into deep reservoirs along water-conducting pathways such as fault fracture zones or bedrock fissures. It leaches soil sulfate, metamorphic rocks, and localized salt layers along the way. Once heated at deep reservoirs, it flows upward and ultimately emerges as springs after mixing with infiltrating cold water near the surface. This study establishes a genesis model for high-sulfate geothermal water, providing a scientific basis for developing and utilizing geothermal resources in the Namcha Barwa syntaxis.

  • 加载中
  • [1] QI Jihong,XU Mo,AN Chengjiao,et al. Characterizations of geothermal springs along the Moxi deep fault in the western Sichuan plateau,China[J]. Physics of the Earth and Planetary Interiors,2017,263:12 − 22. doi: 10.1016/j.pepi.2017.01.001

    CrossRef Google Scholar

    [2] GUO Qi,PANG Zhonghe,WANG Yingchun,et al. Fluid geochemistry and geothermometry applications of the Kangding high-temperature geothermal system in eastern Himalayas[J]. Applied Geochemistry,2017,81:63 − 75. doi: 10.1016/j.apgeochem.2017.03.007

    CrossRef Google Scholar

    [3] ZHANG Jian,LI Wuyang,TANG Xianchun,et al. Geothermal data analysis at the high-temperature hydrothermal area in western Sichuan[J]. Science China Earth Sciences,2017,60(8):1507 − 1521. doi: 10.1007/s11430-016-9053-2

    CrossRef Google Scholar

    [4] LI Jiexiang,YANG Guang,SAGOE G,et al. Major hydrogeochemical processes controlling the composition of geothermal waters in the Kangding geothermal field,western Sichuan Province[J]. Geothermics,2018,75:154 − 163. doi: 10.1016/j.geothermics.2018.04.008

    CrossRef Google Scholar

    [5] YI Lei,QI Jihong,LI Xiao,et al. Geochemical characteristics and genesis of the high-temperature geothermal systems in the north section of the Sanjiang Orogenic belt in southeast Tibetan Plateau[J]. Journal of Volcanology and Geothermal Research,2021,414:107244. doi: 10.1016/j.jvolgeores.2021.107244

    CrossRef Google Scholar

    [6] 邹俊,武斌,马昭雄,等. 西藏谢通门县卡嘎地热成因与资源潜力分析[J]. 水文地质工程地质,2023,50(3):207 − 216. [ZOU Jun,WU Bin,MA Zhaoxiong,et al. Geothermal genesis and resource potential of Kaga in Xietongmen County in Tibet[J]. Hydrogeology & Engineering Geology,2023,50(3):207 − 216. (in Chinese with English abstract)]

    Google Scholar

    ZOU Jun, WU Bin, MA Zhaoxiong, et al. Geothermal genesis and resource potential of Kaga in Xietongmen County in Tibet[J]. Hydrogeology & Engineering Geology, 2023, 50(3): 207 − 216. (in Chinese with English abstract)

    Google Scholar

    [7] 何丽娟,汪集旸. “大地热流”等地热学重要术语的概念与应用[J]. 中国科技术语,2021,23(3):3 − 9. [HE Lijuan,WANG Jiyang. Concept and application of some important terms in geothermics and geophysics such as Terrestrial Heat Flow[J]. China Terminology,2021,23(3):3 − 9. (in Chinese with English abstract)] doi: 10.12339/j.issn.1673-8578.2021.03.001

    CrossRef Google Scholar

    HE Lijuan, WANG Jiyang. Concept and application of some important terms in geothermics and geophysics such as Terrestrial Heat Flow[J]. China Terminology, 2021, 23(3): 3 − 9. (in Chinese with English abstract) doi: 10.12339/j.issn.1673-8578.2021.03.001

    CrossRef Google Scholar

    [8] GUO Qinghai,WANG Yanxin,LIU Wei. Hydrogeochemistry and environmental impact of geothermal waters from Yangyi of Tibet,China[J]. Journal of Volcanology and Geothermal Research,2009,180(1):9 − 20. doi: 10.1016/j.jvolgeores.2008.11.034

    CrossRef Google Scholar

    [9] TIAN Jiao,PANG Zhonghe,WANG Yingchun,et al. Fluid geochemistry of the Cuopu high temperature geothermal system in the eastern Himalayan syntaxis with implication on its genesis[J]. Applied Geochemistry,2019,110:104422. doi: 10.1016/j.apgeochem.2019.104422

    CrossRef Google Scholar

    [10] WANG Chenguang,ZHENG Mianping,ZHANG Xuefei,et al. O,H,and Sr isotope evidence for origin and mixing processes of the Gudui geothermal system,Himalayas,China[J]. Geoscience Frontiers,2020,11(4):1175 − 1187. doi: 10.1016/j.gsf.2019.09.013

    CrossRef Google Scholar

    [11] 郑来林,金振民,潘桂棠,等. 喜马拉雅造山带东、西构造结的地质特征与对比[J]. 地球科学,2004,29(3):269 − 277. [ZHENG Lailin,JIN Zhenmin,PAN Guitang,et al. A geological comparison between the eastern and western Himalayan syntaxes[J]. Earth Science,2004,29(3):269 − 277. (in Chinese with English abstract)] doi: 10.3321/j.issn:1000-2383.2004.03.003

    CrossRef Google Scholar

    ZHENG Lailin, JIN Zhenmin, PAN Guitang, et al. A geological comparison between the eastern and western Himalayan syntaxes[J]. Earth Science, 2004, 29(3): 269 − 277. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-2383.2004.03.003

    CrossRef Google Scholar

    [12] 丰成君,李滨,李惠,等. 南迦巴瓦地区地应力场估算与构造稳定性探讨[J]. 地质力学学报,2022,28(6):919 − 937. [FENG Chengjun,LI Bin,LI Hui,et al. Estimation of in-situ stress field surrounding the Namcha Barwa region and discussion on the tectonic stability[J]. Journal of Geomechanics,2022,28(6):919 − 937. (in Chinese with English abstract)] doi: 10.12090/j.issn.1006-6616.20222820

    CrossRef Google Scholar

    FENG Chengjun, LI Bin, LI Hui, et al. Estimation of in-situ stress field surrounding the Namcha Barwa region and discussion on the tectonic stability[J]. Journal of Geomechanics, 2022, 28(6): 919 − 937. (in Chinese with English abstract) doi: 10.12090/j.issn.1006-6616.20222820

    CrossRef Google Scholar

    [13] 董汉文,许志琴,曹汇,等. 东喜马拉雅构造结东、西边界断裂对比及其构造演化过程[J]. 地球科学,2018,43(4):933 − 951. [DONG Hanwen,XU Zhiqin,CAO Hui,et al. Comparison of eastern and western boundary faults of Eastern Himalayan syntaxis,and its tectonic evolution[J]. Earth Science,2018,43(4):933 − 951. (in Chinese with English abstract)]

    Google Scholar

    DONG Hanwen, XU Zhiqin, CAO Hui, et al. Comparison of eastern and western boundary faults of Eastern Himalayan syntaxis, and its tectonic evolution[J]. Earth Science, 2018, 43(4): 933 − 951. (in Chinese with English abstract)

    Google Scholar

    [14] 唐方头,尤惠川,梁小华,等. 西藏米林6.9级地震发震断层判定及其构造属性讨论[J]. 地球学报,2019,40(1):213 − 218. [TANG Fangtou,YOU Huichuan,LIANG Xiaohua,et al. A discussion on seismogenic fault of the milin M s6.9 earthquake,Tibet,and its tectonic attributes[J]. Acta Geoscientica Sinica,2019,40(1):213 − 218. (in Chinese with English abstract)] doi: 10.3975/cagsb.2018.111302

    CrossRef Google Scholar

    TANG Fangtou, YOU Huichuan, LIANG Xiaohua, et al. A discussion on seismogenic fault of the milin Ms6.9 earthquake, Tibet, and its tectonic attributes[J]. Acta Geoscientica Sinica, 2019, 40(1): 213 − 218. (in Chinese with English abstract) doi: 10.3975/cagsb.2018.111302

    CrossRef Google Scholar

    [15] 章旭,郝红兵,刘康林,等. 西藏加查象牙泉水文地球化学特征及成因[J]. 水文地质工程地质,2019,46(4):1 − 9. [ZHANG Xu,HAO Hongbing,LIU Kanglin,et al. Hydrogeochemical characteristics and formation of the Ivory Spring in Jiacha County of Tibet[J]. Hydrogeology & Engineering Geology,2019,46(4):1 − 9. (in Chinese with English abstract)]

    Google Scholar

    ZHANG Xu, HAO Hongbing, LIU Kanglin, et al. Hydrogeochemical characteristics and formation of the Ivory Spring in Jiacha County of Tibet[J]. Hydrogeology & Engineering Geology, 2019, 46(4): 1 − 9. (in Chinese with English abstract)

    Google Scholar

    [16] 王誉桦,曾令森,高利娥,等. 喜马拉雅造山带东构造结拉布拉多期和格林威尔期造山作用的记录[J]. 岩石学报,2014,30(8):2241 − 2252. [WANG Yuhua,ZENG Lingsen,GAO Lie,et al. Labradonian and Greenvillian orogenic events in the Namche Barwa massif of the Himalayan orogenic belt[J]. Acta Petrologica Sinica,2014,30(8):2241 − 2252. (in Chinese with English abstract)]

    Google Scholar

    WANG Yuhua, ZENG Lingsen, GAO Lie, et al. Labradonian and Greenvillian orogenic events in the Namche Barwa massif of the Himalayan orogenic belt[J]. Acta Petrologica Sinica, 2014, 30(8): 2241 − 2252. (in Chinese with English abstract)

    Google Scholar

    [17] GAO Lie,ZENG Lingsen,HU Guyue,et al. Early paleozoic magmatism along the northern margin of East Gondwana[J]. Lithos,2019,334/335:25 − 41. doi: 10.1016/j.lithos.2019.03.007

    CrossRef Google Scholar

    [18] SU Wen,ZHANG Ming,LIU Xiaohan,et al. Exact timing of granulite metamorphism in the Namche-Barwa,eastern Himalayan syntaxis:New constrains from SIMS U–Pb zircon age[J]. International Journal of Earth Sciences,2012,101(1):239 − 252. doi: 10.1007/s00531-011-0656-0

    CrossRef Google Scholar

    [19] HUANG Shuye,YAO Huajian,LU Zhanwu,et al. High‐resolution 3‐D shear wave velocity model of the Tibetan Plateau:Implications for crustal deformation and porphyry Cu deposit formation[J]. Journal of Geophysical Research(Solid Earth),2020,125(7):e2019JB019215.

    Google Scholar

    [20] 范鹏啸,于常青,王瑞雪,等. 西藏波密地区深部密度结构与地震活动的关系[J]. 地质学报,2024,98(10):3047 − 3061. [FAN Pengxiao,YU Changqing,WANG Ruixue,et al. Relationship between deep density structures and seismicity in Bomi area of Tibet[J]. Acta Geologica Sinica,2024,98(10):3047 − 3061. (in Chinese with English abstract)]

    Google Scholar

    FAN Pengxiao, YU Changqing, WANG Ruixue, et al. Relationship between deep density structures and seismicity in Bomi area of Tibet[J]. Acta Geologica Sinica, 2024, 98(10): 3047 − 3061. (in Chinese with English abstract)

    Google Scholar

    [21] LI Xiao,QI Jihong,YI Lei,et al. Hydrochemical characteristics and evolution of geothermal waters in the eastern Himalayan syntaxis geothermal field,southern Tibet[J]. Geothermics,2021,97:102233. doi: 10.1016/j.geothermics.2021.102233

    CrossRef Google Scholar

    [22] 赵平,金建,张海政,等. 西藏羊八井地热田热水的化学组成[J]. 地质科学,1998,33(1):61 − 72. [ZHAO Ping,JIN Jian,ZHANG Haizheng,et al. Chemical composition of thermal water in the Yangbajing geothermal field,Tibet[J]. Chinese Journal of Geology,1998,33(1):61 − 72. (in Chinese with English abstract)] doi: 10.3321/j.issn:0563-5020.1998.01.016

    CrossRef Google Scholar

    ZHAO Ping, JIN Jian, ZHANG Haizheng, et al. Chemical composition of thermal water in the Yangbajing geothermal field, Tibet[J]. Chinese Journal of Geology, 1998, 33(1): 61 − 72. (in Chinese with English abstract) doi: 10.3321/j.issn:0563-5020.1998.01.016

    CrossRef Google Scholar

    [23] YUAN Jianfei,GUO Qinghai,WANG Yanxin. Geochemical behaviors of boron and its isotopes in aqueous environment of the Yangbajing and Yangyi geothermal fields,Tibet,China[J]. Journal of Geochemical Exploration,2014,140:11 − 22. doi: 10.1016/j.gexplo.2014.01.006

    CrossRef Google Scholar

    [24] LUO Ji,PANG Zhonghe,KONG Yanlong,et al. Geothermal potential evaluation and development prioritization based on geochemistry of geothermal waters from Kangding area,western Sichuan,China[J]. Environmental Earth Sciences,2017,76(9):343. doi: 10.1007/s12665-017-6659-9

    CrossRef Google Scholar

    [25] 袁兴成,张云辉,王鹰,等. 鲜水河断裂带地热水化学特征及结垢趋势分析[J]. 沉积与特提斯地质,2023,43(2):357 − 372. [YUAN Xingcheng,ZHANG Yunhui,WANG Ying,et al. Geothermal water chemical characteristics and scaling analysis of Xianshuihe fault zone[J]. Sedimentary Geology and Tethyan Geology,2023,43(2):357 − 372. (in Chinese with English abstract)]

    Google Scholar

    YUAN Xingcheng, ZHANG Yunhui, WANG Ying, et al. Geothermal water chemical characteristics and scaling analysis of Xianshuihe fault zone[J]. Sedimentary Geology and Tethyan Geology, 2023, 43(2): 357 − 372. (in Chinese with English abstract)

    Google Scholar

    [26] 姜哲,周训,陈柄桦,等. 四川康定市二道桥地区地下热水稳定同位素特征及热储温度计算[J]. 现代地质,2022,36(4):1183 − 1192. [JIANG Zhe,ZHOU Xun,CHEN Binghua,et al. Stable isotope characteristics of geothermal water and calculation of geothermal reservoir temperature in the Erdaoqiao area of Kangding in Sichuan Province[J]. Geoscience,2022,36(4):1183 − 1192. (in Chinese with English abstract)]

    Google Scholar

    JIANG Zhe, ZHOU Xun, CHEN Binghua, et al. Stable isotope characteristics of geothermal water and calculation of geothermal reservoir temperature in the Erdaoqiao area of Kangding in Sichuan Province[J]. Geoscience, 2022, 36(4): 1183 − 1192. (in Chinese with English abstract)

    Google Scholar

    [27] LI Jiexiang,SAGOE G,YANG Guang,et al. The application of geochemistry to bicarbonate thermal springs with high reservoir temperature:A case study of the Batang geothermal field,western Sichuan Province,China[J]. Journal of Volcanology and Geothermal Research,2019,371:20 − 31. doi: 10.1016/j.jvolgeores.2018.12.005

    CrossRef Google Scholar

    [28] TIAN Jiao,PANG Zhonghe,GUO Qi,et al. Geochemistry of geothermal fluids with implications on the sources of water and heat recharge to the Rekeng high-temperature geothermal system in the eastern Himalayan Syntax[J]. Geothermics,2018,74:92 − 105. doi: 10.1016/j.geothermics.2018.02.006

    CrossRef Google Scholar

    [29] QIN Xiwei,MA Haizhou,ZHANG Xiying,et al. Geochemical constraints on the origin and evolution of spring waters in the Changdu-Lanping-Simao basin,southwestern China[J]. Acta Geologica Sinica-English Edition,2019,93(4):1097 − 1112. doi: 10.1111/1755-6724.13853

    CrossRef Google Scholar

    [30] WANG Ying,YUAN Xingcheng,ZHANG Yunhui,et al. Hydrochemical,D–O–Sr isotopic and electromagnetic characteristics of geothermal waters from the Erdaoqiao area,SW China:Insights into genetic mechanism and scaling potential[J]. Ore Geology Reviews,2023,158:105486. doi: 10.1016/j.oregeorev.2023.105486

    CrossRef Google Scholar

    [31] GLOK-GALLI M,VADILLO-PÉREZ I,JIMÉNEZ-GAVILÁN P,et al. Application of hydrochemical and multi-isotopic (87Sr/86Sr,δ13C-DIC,δ2H-H2O,δ18O-H2O) tools to determine contamination sources and processes in the Guadalhorce River Basin,southern Spain[J]. Science of the Total Environment,2022,828:154424. doi: 10.1016/j.scitotenv.2022.154424

    CrossRef Google Scholar

    [32] QU Shen,DUAN Limin,SHI Zheming,et al. Hydrochemical assessments and driving forces of groundwater quality and potential health risks of sulfate in a coalfield,northern Ordos Basin,China[J]. Science of the Total Environment,2022,835:155519. doi: 10.1016/j.scitotenv.2022.155519

    CrossRef Google Scholar

    [33] SONG Kai,WANG Fei,PENG Yue,et al. Construction of a hydrogeochemical conceptual model and identification of the groundwater pollution contribution rate in a pyrite mining area[J]. Environmental Pollution,2022,305:119327. doi: 10.1016/j.envpol.2022.119327

    CrossRef Google Scholar

    [34] TORRES-MARTÍNEZ J A,MORA A,KNAPPETT P S K,et al. Tracking nitrate and sulfate sources in groundwater of an urbanized valley using a multi-tracer approach combined with a Bayesian isotope mixing model[J]. Water Research,2020,182:115962. doi: 10.1016/j.watres.2020.115962

    CrossRef Google Scholar

    [35] ZHENG Liugen,CHEN Xing,DONG Xianglin,et al. Using δ34S–SO4 and δ18O–SO4 to trace the sources of sulfate in different types of surface water from the Linhuan coal-mining subsidence area of Huaibei,China[J]. Ecotoxicology and Environmental Safety,2019,181:231 − 240. doi: 10.1016/j.ecoenv.2019.06.001

    CrossRef Google Scholar

    [36] BAO Yifan,PANG Zhonghe,HUANG Tianming,et al. Chemical and isotopic evidences on evaporite dissolution as the origin of high sulfate water in a karst geothermal reservoir[J]. Applied Geochemistry,2022,145:105419. doi: 10.1016/j.apgeochem.2022.105419

    CrossRef Google Scholar

    [37] HU Daogong,WU Zhenhan,JIANG Wan,et al. SHRIMP zircon U-Pb age and Nd isotopic study on the Nyainqêntanglha Group in Tibet[J]. Science in China Series D-earth Sciences,2005,48(9):1377 − 1386. doi: 10.1360/04yd0183

    CrossRef Google Scholar

    [38] 胡道功,吴珍汉,叶培盛,等. 西藏念青唐古拉山闪长质片麻岩锆石U-Pb年龄[J]. 地质通报,2003,22(11):936 − 940. [HU Daogong,WU Zhenhan,YE Peisheng,et al. SHRIMP U-Pb ages of zircons from dioritic gneiss in the Nyainq(e)ntanglha Mountains,Tibet[J]. Geological Bulletin of China,2003,22(11):936 − 940. (in Chinese with English abstract)] doi: 10.3969/j.issn.1671-2552.2003.11.017

    CrossRef Google Scholar

    HU Daogong, WU Zhenhan, YE Peisheng, et al. SHRIMP U-Pb ages of zircons from dioritic gneiss in the Nyainq(e)ntanglha Mountains, Tibet[J]. Geological Bulletin of China, 2003, 22(11): 936 − 940. (in Chinese with English abstract) doi: 10.3969/j.issn.1671-2552.2003.11.017

    CrossRef Google Scholar

    [39] 胡培远,翟庆国,唐跃,等. 青藏高原拉萨地块新元古代(~925Ma)变质辉长岩的确立及其地质意义[J]. 科学通报,2016,61(19):2176 − 2186. [HU Peiyuan,ZHAI Qingguo,TANG Yue,et al. Early Neoproterozoic meta-gabbro (~925 Ma) from the Lhasa terrane,Tibetan Plateau and its geological significance[J]. Chinese Science Bulletin,2016,61(19):2176 − 2186. (in Chinese with English abstract)] doi: 10.1360/N972016-00143

    CrossRef Google Scholar

    HU Peiyuan, ZHAI Qingguo, TANG Yue, et al. Early Neoproterozoic meta-gabbro (~925 Ma) from the Lhasa terrane, Tibetan Plateau and its geological significance[J]. Chinese Science Bulletin, 2016, 61(19): 2176 − 2186. (in Chinese with English abstract) doi: 10.1360/N972016-00143

    CrossRef Google Scholar

    [40] 胡培远,翟庆国,赵国春,等. 青藏高原纳木错西缘新元古代中期岩浆事件:对北拉萨地块起源的约束[J]. 岩石学报,2019,35(10):3115 − 3129. [HU Peiyuan,ZHAI Qingguo,ZHAO Guochun,et al. Middle neoproterozoic magmatic event in the western Nam Tso area,Tibetan Plateau:Constraint on the origin of the North Lhasa terrane[J]. Acta Petrologica Sinica,2019,35(10):3115 − 3129. (in Chinese with English abstract)] doi: 10.18654/1000-0569/2019.10.10

    CrossRef Google Scholar

    HU Peiyuan, ZHAI Qingguo, ZHAO Guochun, et al. Middle neoproterozoic magmatic event in the western Nam Tso area, Tibetan Plateau: Constraint on the origin of the North Lhasa terrane[J]. Acta Petrologica Sinica, 2019, 35(10): 3115 − 3129. (in Chinese with English abstract) doi: 10.18654/1000-0569/2019.10.10

    CrossRef Google Scholar

    [41] ZHONG Dalai,DING Lin. Discovery of high-pressure basic granulite in Namjagbarwa area,Tibet,China[J]. Chinese Science Bulletin,1996,41(1):87 − 88.

    Google Scholar

    [42] LIU Y,ZHONG D. Petrology of high-pressure granulites from the eastern Himalayan syntaxis[J]. Journal of Metamorphic Geology,1997,15(4):451 − 466. doi: 10.1111/j.1525-1314.1997.00033.x

    CrossRef Google Scholar

    [43] 许志琴,蔡志慧,张泽明,等. 喜马拉雅东构造结:南迦巴瓦构造及组构运动学[J]. 岩石学报,2008,24(7):1463 − 1476. [XU Zhiqin,CAI Zhihui,ZHANG Zeming,et al. Tectonics and fabric kinematics of the Namche Barwa terrane,Eastern Himalayan syntaxis[J]. Acta Petrologica Sinica,2008,24(7):1463 − 1476. (in Chinese with English abstract)]

    Google Scholar

    XU Zhiqin, CAI Zhihui, ZHANG Zeming, et al. Tectonics and fabric kinematics of the Namche Barwa terrane, Eastern Himalayan syntaxis[J]. Acta Petrologica Sinica, 2008, 24(7): 1463 − 1476. (in Chinese with English abstract)

    Google Scholar

    [44] 许志琴,杨经绥,李海兵,等. 印度-亚洲碰撞大地构造[J]. 地质学报,2011,85(1):1 − 33. [XU Zhiqin,YANG Jingsui,LI Haibing,et al. On the tectonics of the India-Asia Collision[J]. Acta Geologica Sinica,2011,85(1):1 − 33. (in Chinese with English abstract)] doi: 10.1111/j.1755-6724.2011.00375.x

    CrossRef Google Scholar

    XU Zhiqin, YANG Jingsui, LI Haibing, et al. On the tectonics of the India-Asia Collision[J]. Acta Geologica Sinica, 2011, 85(1): 1 − 33. (in Chinese with English abstract) doi: 10.1111/j.1755-6724.2011.00375.x

    CrossRef Google Scholar

    [45] 张进江,季建清,钟大赉,等. 东喜马拉雅南迦巴瓦构造结的构造格局及形成过程探讨[J]. 中国科学(D辑:地球科学),2003,33(4):373 − 383. [ZHANG Jinjiang,JI Jianqing,ZHONG Dalai,et al. Tectonic pattern and formation process of the Namcha Barwa Tectonic Junction in the Eastern Himalaya[J]. Science in China Series(D:Earth Sciences),2003,33(4):373 − 383. (in Chinese)]

    Google Scholar

    ZHANG Jinjiang, JI Jianqing, ZHONG Dalai, et al. Tectonic pattern and formation process of the Namcha Barwa Tectonic Junction in the Eastern Himalaya[J]. Science in China Series(D: Earth Sciences), 2003, 33(4): 373 − 383. (in Chinese)

    Google Scholar

    [46] NIE Junsheng,HORTON B K,HOKE G D,et al. Toward an improved understanding of uplift mechanisms and the elevation history of the Tibetan Plateau[M]. Colorado:Geological Society of America,2014:23-58.

    Google Scholar

    [47] 丁林,钟大赉,潘裕生,等. 东喜马拉雅构造结上新世以来快速抬升的裂变径迹证据[J]. 科学通报,1995,40(16):1497 − 1500. [DING Lin,ZHONG Dalai,PAN Yusheng,et al. Fission track evidence for rapid uplift of the Eastern Himalayan Tectonic Knot since the Pliocene[J]. Chinese Science Bulletin,1995,40(16):1497 − 1500. (in Chinese with English abstract)] doi: 10.3321/j.issn:0023-074X.1995.16.018

    CrossRef Google Scholar

    DING Lin, ZHONG Dalai, PAN Yusheng, et al. Fission track evidence for rapid uplift of the Eastern Himalayan Tectonic Knot since the Pliocene[J]. Chinese Science Bulletin, 1995, 40(16): 1497 − 1500. (in Chinese with English abstract) doi: 10.3321/j.issn:0023-074X.1995.16.018

    CrossRef Google Scholar

    [48] 郝光明,曾令森,赵令浩. 西藏南部南迦巴瓦地区中新世-上新世地壳深熔作用[J]. 岩石学报,2021,37(11):3501 − 3512. [HAO Guangming,ZENG Lingsen,ZHAO Linghao. Miocene-Pleistocene crustal anatexis in the Namche Barwa massif,southern Tibet[J]. Acta Petrologica Sinica,2021,37(11):3501 − 3512. (in Chinese with English abstract)] doi: 10.18654/1000-0569/2021.11.15

    CrossRef Google Scholar

    HAO Guangming, ZENG Lingsen, ZHAO Linghao. Miocene-Pleistocene crustal anatexis in the Namche Barwa massif, southern Tibet[J]. Acta Petrologica Sinica, 2021, 37(11): 3501 − 3512. (in Chinese with English abstract) doi: 10.18654/1000-0569/2021.11.15

    CrossRef Google Scholar

    [49] 彭琪. 拉月隧道温泉成因机制及地温场数值模拟研究[D]. 成都:成都理工大学,2020. [PENG Qi. Study on the Genesis mechanism of hot spring and numerical simulation of ground temperature field in Layue tunnel[D]. Chengdu:Chengdu University of Technology,2020. (in Chinese with English abstract)]

    Google Scholar

    PENG Qi. Study on the Genesis mechanism of hot spring and numerical simulation of ground temperature field in Layue tunnel[D]. Chengdu: Chengdu University of Technology, 2020. (in Chinese with English abstract)

    Google Scholar

    [50] 佟伟,廖志杰,刘时彬,等. 西藏温泉志[M]. 北京:科学出版社,2000. [TONG Wei,LIAO Zhijie,LIU Shibin,et al. Thermal springs in Tibet[M]. Beijing:Science Press,2000. (in Chinese)]

    Google Scholar

    TONG Wei, LIAO Zhijie, LIU Shibin, et al. Thermal springs in Tibet[M]. Beijing: Science Press, 2000. (in Chinese)

    Google Scholar

    [51] GUO Qinghai,WANG Yanxin. Geochemistry of hot springs in the Tengchong hydrothermal areas,Southwestern China[J]. Journal of Volcanology and Geothermal Research,2012,215/216:61 − 73. doi: 10.1016/j.jvolgeores.2011.12.003

    CrossRef Google Scholar

    [52] 张薇,王贵玲,赵佳怡,等. 四川西部中高温地热流体地球化学特征及其地质意义[J]. 现代地质,2021,35(1):188 − 198. [ZHANG Wei,WANG Guiling,ZHAO Jiayi,et al. Geochemical characteristics of medium-high temperature geothermal fluids in West Sichuan and their geological implications[J]. Geoscience,2021,35(1):188 − 198. (in Chinese with English abstract)]

    Google Scholar

    ZHANG Wei, WANG Guiling, ZHAO Jiayi, et al. Geochemical characteristics of medium-high temperature geothermal fluids in West Sichuan and their geological implications[J]. Geoscience, 2021, 35(1): 188 − 198. (in Chinese with English abstract)

    Google Scholar

    [53] YANG Pingheng,LUO Dan,HONG Aihua,et al. Hydrogeochemistry and geothermometry of the carbonate-evaporite aquifers controlled by deep-seated faults using major ions and environmental isotopes[J]. Journal of Hydrology,2019,579:124116. doi: 10.1016/j.jhydrol.2019.124116

    CrossRef Google Scholar

    [54] 赵子锐,张薇,王贵玲,等. 冀中坳陷高阳地热田水文地球化学特征及其对地热成因的约束[J/OL]. 中国地质,(2023-08-01)[2024-07-06]. http://kns.cnki.net/kcms/detail/11.1167.P.20230731.1742.006.html. [ZHAO Zirui,ZHANG Wei,WANG Guiling,et al. Hydrogeochemical characteristics of Gaoyang geothermal field in central Hebei Depression and its constraint on geothermal genesis[J/OL]. Geology in China, (2023-08-01)[2024-07-06]. http://kns.cnki.net/kcms/detail/11.1167.P.20230731.1742.006.html. (in Chinese with English abstract)]

    Google Scholar

    ZHAO Zirui, ZHANG Wei, WANG Guiling, et al. Hydrogeochemical characteristics of Gaoyang geothermal field in central Hebei Depression and its constraint on geothermal genesis[J/OL]. Geology in China, (2023-08-01)[2024-07-06]. http://kns.cnki.net/kcms/detail/11.1167.P.20230731.1742.006.html. (in Chinese with English abstract)

    Google Scholar

    [55] BROWN S T,KENNEDY B M,DEPAOLO D J,et al. Ca,Sr,O and D isotope approach to defining the chemical evolution of hydrothermal fluids:Example from Long Valley,CA,USA[J]. Geochimica et Cosmochimica Acta,2013,122:209 − 225. doi: 10.1016/j.gca.2013.08.011

    CrossRef Google Scholar

    [56] SHAND P,DARBYSHIRE D P F,LOVE A J,et al. Sr isotopes in natural waters:Applications to source characterisation and water–rock interaction in contrasting landscapes[J]. Applied Geochemistry,2009,24(4):574 − 586. doi: 10.1016/j.apgeochem.2008.12.011

    CrossRef Google Scholar

    [57] 张卓,柳富田,陈社明. 氢氧、锶钙和锂硼同位素在高氟地下水研究中的应用[J]. 华北地质,2023,46(3):49 − 56. [ZHANG Zhuo,LIU Futian,CHEN Sheming. Review on the application of H,O,Sr,Ca,Li and B isotopes in the research of high-fluoride groundwater[J]. North China Geology,2023,46(3):49 − 56. (in Chinese with English abstract)]

    Google Scholar

    ZHANG Zhuo, LIU Futian, CHEN Sheming. Review on the application of H, O, Sr, Ca, Li and B isotopes in the research of high-fluoride groundwater[J]. North China Geology, 2023, 46(3): 49 − 56. (in Chinese with English abstract)

    Google Scholar

    [58] KROUSE H R,GRINENKO V A. Stable isotopes[M]. New York:Wiley,1991.

    Google Scholar

    [59] TULI J K. Nuclear wallet cards for radioactive nuclides[Z]. Brookhaven National laboratory:National Nuclear Data Center,2004.

    Google Scholar

    [60] 孟令群,聂振龙,王哲,等. 石羊河流域地下水中硫酸盐的水文地球化学特征及来源[J]. 黑龙江科学,2022,13(8):7 − 10. [MENG Lingqun,NIE Zhenlong,WANG Zhe,et al. Hydrogeochemical characteristics and sources of sulphate in groundwater of Shiyang River basin[J]. Heilongjiang Science,2022,13(8):7 − 10. (in Chinese with English abstract)] doi: 10.3969/j.issn.1674-8646.2022.08.002

    CrossRef Google Scholar

    MENG Lingqun, NIE Zhenlong, WANG Zhe, et al. Hydrogeochemical characteristics and sources of sulphate in groundwater of Shiyang River basin[J]. Heilongjiang Science, 2022, 13(8): 7 − 10. (in Chinese with English abstract) doi: 10.3969/j.issn.1674-8646.2022.08.002

    CrossRef Google Scholar

    [61] 任坤,潘晓东,兰干江,等. 硫氧同位素解析典型岩溶地下河流域硫酸盐季节变化特征和来源[J]. 环境科学,2021,42(9):4267 − 4274. [REN Kun,PAN Xiaodong,LAN Ganjiang,et al. Seasonal variation and sources identification of dissolved sulfate in a typical karst subterranean stream basin using Sulfur and Oxygen isotopes[J]. Environmental Science,2021,42(9):4267 − 4274. (in Chinese with English abstract)]

    Google Scholar

    REN Kun, PAN Xiaodong, LAN Ganjiang, et al. Seasonal variation and sources identification of dissolved sulfate in a typical karst subterranean stream basin using Sulfur and Oxygen isotopes[J]. Environmental Science, 2021, 42(9): 4267 − 4274. (in Chinese with English abstract)

    Google Scholar

    [62] YUAN Fasong,MAYER B. Chemical and isotopic evaluation of sulfur sources and cycling in the Pecos River,New Mexico,USA[J]. Chemical Geology,2012,291:13 − 22. doi: 10.1016/j.chemgeo.2011.11.014

    CrossRef Google Scholar

    [63] PARNELL A C,INGER R,BEARHOP S,et al. Source partitioning using stable isotopes:Coping with too much variation[J]. PLOS One,2010,5(3):e9672. doi: 10.1371/journal.pone.0009672

    CrossRef Google Scholar

    [64] SU Pengyan,ZHANG Mingjun,QU Deye,et al. Contrasting water use strategies of tamarix ramosissima in different habitats in the Northwest of Loess Plateau,China[J]. Water,2020,12(10):2791. doi: 10.3390/w12102791

    CrossRef Google Scholar

    [65] 李智滔,肖红伟,伍作亭,等. 基于水化学及氮氧同位素技术的硝酸盐来源解析——以鄱阳湖湿地为例[J]. 中国环境科学,2022,42(9):4315 − 4322. [LI Zhitao,XIAO Hongwei,WU Zuoting,et al. Hydrochemistry,Nitrogen and Oxygen isotope composition of nitrate to trace its source in Poyang Lake wetland[J]. China Environmental Science,2022,42(9):4315 − 4322. (in Chinese with English abstract)] doi: 10.3969/j.issn.1000-6923.2022.09.039

    CrossRef Google Scholar

    LI Zhitao, XIAO Hongwei, WU Zuoting, et al. Hydrochemistry, Nitrogen and Oxygen isotope composition of nitrate to trace its source in Poyang Lake wetland[J]. China Environmental Science, 2022, 42(9): 4315 − 4322. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-6923.2022.09.039

    CrossRef Google Scholar

    [66] 马剑飞,李向全,张春潮,等. 西藏波密冰川覆盖区大型河流与断裂带地下水转化关系[J]. 水文地质工程地质,2021,48(5):23 − 33. [MA Jianfei,LI Xiangquan,ZHANG Chunchao,et al. Transformation characteristics of the large-flow river and groundwater in the fault zone in the glacier-covered area of Bomi in Tibet[J]. Hydrogeology & Engineering Geology,2021,48(5):23 − 33. (in Chinese with English abstract)]

    Google Scholar

    MA Jianfei, LI Xiangquan, ZHANG Chunchao, et al. Transformation characteristics of the large-flow river and groundwater in the fault zone in the glacier-covered area of Bomi in Tibet[J]. Hydrogeology & Engineering Geology, 2021, 48(5): 23 − 33. (in Chinese with English abstract)

    Google Scholar

    [67] 刘通,刘传周,吴福元,等. 新特提斯洋的打开时间和机制:雅江缝合带混杂岩的约束[J]. 中国科学(地球科学),2023,53(12):2846 − 2867. [LIU Tong,LIU Chuanzhou,WU Fuyuan,et al. Timing and mechanism of opening the Neo-Tethys Ocean:Constraints from mélanges in the Yarlung Zangbo suture zone[J]. Science China Earth Sciences,2023,53(12):2846 − 2867. (in Chinese with English abstract)]

    Google Scholar

    LIU Tong, LIU Chuanzhou, WU Fuyuan, et al. Timing and mechanism of opening the Neo-Tethys Ocean: Constraints from mélanges in the Yarlung Zangbo suture zone[J]. Science China Earth Sciences, 2023, 53(12): 2846 − 2867. (in Chinese with English abstract)

    Google Scholar

    [68] 朱日祥,赵盼,赵亮. 新特提斯洋演化与动力过程[J]. 中国科学(地球科学),2022,52(1):1 − 25. [ZHU Rixiang,ZHAO Pan,ZHAO Liang. Tectonic evolution and geodynamics of the Neo-Tethys Ocean[J]. Scientia Sinica (Terrae),2022,52(1):1 − 25. (in Chinese with English abstract)]

    Google Scholar

    ZHU Rixiang, ZHAO Pan, ZHAO Liang. Tectonic evolution and geodynamics of the Neo-Tethys Ocean[J]. Scientia Sinica (Terrae), 2022, 52(1): 1 − 25. (in Chinese with English abstract)

    Google Scholar

    [69] 刘德民,陈梁,张莉,等. 西藏班公湖蛇绿混杂岩中硅质岩的地质地球化学特征及其形成构造环境[J]. 吉林大学学报(地球科学版),2023,53(6):1722 − 1733. [LIU Demin,CHEN Liang,ZHANG Li,et al. Geological and geochemical characteristics and forming environments of siliceous rocks in the Bangong lake ophiolite mélange,Tibet[J]. Journal of Jilin University(Earth Science Edition),2023,53(6):1722 − 1733. (in Chinese with English abstract)]

    Google Scholar

    LIU Demin, CHEN Liang, ZHANG Li, et al. Geological and geochemical characteristics and forming environments of siliceous rocks in the Bangong lake ophiolite mélange, Tibet[J]. Journal of Jilin University(Earth Science Edition), 2023, 53(6): 1722 − 1733. (in Chinese with English abstract)

    Google Scholar

    [70] 高旭波,向绚丽,侯保俊,等. 水化学—稳定同位素技术在岩溶水文地质研究中的应用[J]. 中国岩溶,2020,39(5):629 − 636. [GAO Xubo,XIANG Xuanli,HOU Baojun,et al. Application of hydrochemistry coupled with stable isotopes in the study of karst water hydrogeology[J]. Carsologica Sinica,2020,39(5):629 − 636. (in Chinese with English abstract)] doi: 10.11932/karst2020y26

    CrossRef Google Scholar

    GAO Xubo, XIANG Xuanli, HOU Baojun, et al. Application of hydrochemistry coupled with stable isotopes in the study of karst water hydrogeology[J]. Carsologica Sinica, 2020, 39(5): 629 − 636. (in Chinese with English abstract) doi: 10.11932/karst2020y26

    CrossRef Google Scholar

    [71] KUMAR U S,KUMAR B,RAI S,et al. Stable isotope ratios in precipitation and their relationship with meteorological conditions in the Kumaon Himalayas,India[J]. Journal of Hydrology,2010,391(1/2):1 − 8.

    Google Scholar

    [72] 余浩文,刘昭,荣峰,等. 西藏错那地热田水化学特征与物源机制[J]. 地质科技通报,2021,40(3):34 − 44. [YU Haowen,LIU Zhao,RONG Feng,et al. Characteristics and source mechanism of geothermal field in Cuona,Tibet[J]. Bulletin of Geological Science and Technology,2021,40(3):34 − 44. (in Chinese with English abstract)]

    Google Scholar

    YU Haowen, LIU Zhao, RONG Feng, et al. Characteristics and source mechanism of geothermal field in Cuona, Tibet[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 34 − 44. (in Chinese with English abstract)

    Google Scholar

    [73] GIGGENBACH W F. Geothermal solute equilibria, derivation of Na-K-Mg-Ca geoindicators[J]. Geochimica et Cosmochimica Acta,1988,52(12):2749 − 2765. doi: 10.1016/0016-7037(88)90143-3

    CrossRef Google Scholar

    [74] FOURNIER R O. Chemical geothermometers and mixing models for geothermal systems[J]. Geothermics,1977,5(1/4):41 − 50.

    Google Scholar

    [75] PANG Zhonghe,REED M. Theoretical chemical thermometry on geothermal waters:Problems and methods[J]. Geochimica et Cosmochimica Acta,1998,62(6):1083 − 1091. doi: 10.1016/S0016-7037(98)00037-4

    CrossRef Google Scholar

    [76] 曾令森,高利娥. 喜马拉雅碰撞造山带新生代地壳深熔作用与淡色花岗岩[J]. 岩石学报,2017,33(5):1420 − 1444. [ZENG Lingsen,GAO Li’e. Cenozoic crustal anatexis and the leucogranites in the Himalayan collisional orogenic belt[J]. Acta Petrologica Sinica,2017,33(5):1420 − 1444. (in Chinese with English abstract)]

    Google Scholar

    ZENG Lingsen, GAO Li’e. Cenozoic crustal anatexis and the leucogranites in the Himalayan collisional orogenic belt[J]. Acta Petrologica Sinica, 2017, 33(5): 1420 − 1444. (in Chinese with English abstract)

    Google Scholar

    [77] 邸英龙,曾令森,张立飞,等. 藏南东部麻玛沟地区早古生代与中新世岩浆作用及其意义[J]. 岩石学报,2020,36(10):3081 − 3096. [DI Yinglong,ZENG Lingsen,ZHANG Lifei,et al. Early-Paleozoic and miocene magmatism of the mama valley and their significance,eastern South Tibet[J]. Acta Petrologica Sinica,2020,36(10):3081 − 3096. (in Chinese with English abstract)] doi: 10.18654/1000-0569/2020.10.09

    CrossRef Google Scholar

    DI Yinglong, ZENG Lingsen, ZHANG Lifei, et al. Early-Paleozoic and miocene magmatism of the mama valley and their significance, eastern South Tibet[J]. Acta Petrologica Sinica, 2020, 36(10): 3081 − 3096. (in Chinese with English abstract) doi: 10.18654/1000-0569/2020.10.09

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)

Tables(3)

Article Metrics

Article views(156) PDF downloads(24) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint