2025 Vol. 52, No. 2
Article Contents

QUAN Sanyu, WANG Yingchun, TANG Xin, ZHOU Jinlin, LUO Lu, SONG Rongcai. Geochemical characteristics and evolution process for hot spring gas of the north-south graben system in Qinghai−Xizang Plateau[J]. Hydrogeology & Engineering Geology, 2025, 52(2): 190-202. doi: 10.16030/j.cnki.issn.1000-3665.202401037
Citation: QUAN Sanyu, WANG Yingchun, TANG Xin, ZHOU Jinlin, LUO Lu, SONG Rongcai. Geochemical characteristics and evolution process for hot spring gas of the north-south graben system in Qinghai−Xizang Plateau[J]. Hydrogeology & Engineering Geology, 2025, 52(2): 190-202. doi: 10.16030/j.cnki.issn.1000-3665.202401037

Geochemical characteristics and evolution process for hot spring gas of the north-south graben system in Qinghai−Xizang Plateau

More Information
  • While the hydrogeochemical characteristics of a single geothermal field in Qinghai−Xizang Plateau are well understood, the study of hot spring gases in various graben systems and their spatial characteristics and evolutionary processes, remains insufficiently explored. The study reported 16 hot spring gases from three grabens (Cuona−Woka garben, Yadong−Gulu garben and Shenzha−Dingjie garben) in Qinghai−Xizang Plateau. The composition and isotopic characteristics as well as the sources of hot spring gas were analyzed. Additionally, the relationship between the content of hot spring gas and the reservior temperature was conducted in the three garbens. Three types of gases were distinguished in Qinghai−Xizang Plateau by using the “mantle suture line” as the boundary. The results show that hot spring gases in the north and south sides of the boundary have undergone different evolutionary processes, with some samples in the south showing evidence of degassing and fractionation. The sources of helium and carbon isotopes in the hot spring gases are mainly derived from the crust, and the migration of helium is dependent on the flow of carbon dioxide. There are significant differences of reservior temperature in the three garbens, with a higher temperature (225 °C) in the Yadong−Gulu graben. This study provides insights in understanding the relationship between structures, hot spring gases, and geothermal fields in Qinghai−Xizang Plateau. The exploration of gas geochemical characteristics and their evolutionary processes are significant for the understanding of the underground geological processes and the exploitation and utilization of geothermal resources.

  • 加载中
  • [1] 汪集暘,庞忠和,孔彦龙,等. 我国地热清洁取暖产业现状与展望[J]. 科技促进发展,2020(3):293 − 298. [WANG Jiyang,PANG Zhonghe,KONG Yanlong,et al. Status and prospects of geothermal clean heating industry in China[J]. Science and Technology for Developmen,2020(3):293 − 298. (in Chinese with English abstract)] doi: 10.11842/chips.20200516002

    CrossRef Google Scholar

    WANG Jiyang, PANG Zhonghe, KONG Yanlong, et al. Status and prospects of geothermal clean heating industry in China[J]. Science and Technology for Developmen, 2020(3): 293 − 298. (in Chinese with English abstract) doi: 10.11842/chips.20200516002

    CrossRef Google Scholar

    [2] 刘畅,苏金宝. 西藏羊八井-宁中盆地地下水深循环三维模拟及对地热异常分布的限定[J]. 中国地质,2024,51(6):1868 − 1882. [LIU Chang,SU Jinbao. Geothermal distribution and forming mechanism:Insight from 3D numerical simulation on Yangbajing-Ningzhong Basin,Tibet[J]. Geology in China,2024,51(6):1868 − 1882. (in Chinese with English abstract)] doi: 10.12029/gc20230601001

    CrossRef Google Scholar

    LIU Chang, SU Jinbao. Geothermal distribution and forming mechanism: Insight from 3D numerical simulation on Yangbajing-Ningzhong Basin, Tibet[J]. Geology in China, 2024, 51(6): 1868 − 1882. (in Chinese with English abstract) doi: 10.12029/gc20230601001

    CrossRef Google Scholar

    [3] 邱楠生,唐博宁,朱传庆. 中国大陆地区温泉分布的深部热背景[J]. 地质学报,2022,96(1):195 − 207. [QIU Nansheng,TANG Boning,ZHU Chuanqing. Deep thermal background of hot spring distribution in the Chinese continent[J]. Acta Geologica Sinica,2022,96(1):195 − 207. (in Chinese with English abstract)] doi: 10.3969/j.issn.0001-5717.2022.01.016

    CrossRef Google Scholar

    QIU Nansheng, TANG Boning, ZHU Chuanqing. Deep thermal background of hot spring distribution in the Chinese continent[J]. Acta Geologica Sinica, 2022, 96(1): 195 − 207. (in Chinese with English abstract) doi: 10.3969/j.issn.0001-5717.2022.01.016

    CrossRef Google Scholar

    [4] 王晨光,郑绵平,张雪飞,等. 西藏南部古堆高温地热田水化学特征及其成因研究[J]. 地质学报,2024,98(2):558 − 578. [WANG Chenguang,ZHENG Mianping,ZHANG Xuefei,et al. Hydrochemical characteristics and origin of geothermal fluids in the Gudui high-temperature geothermal system in Comei County,southern Tibet[J]. Acta Geologica Sinica,2024,98(2):558 − 578. (in Chinese with English abstract)]

    Google Scholar

    WANG Chenguang, ZHENG Mianping, ZHANG Xuefei, et al. Hydrochemical characteristics and origin of geothermal fluids in the Gudui high-temperature geothermal system in Comei County, southern Tibet[J]. Acta Geologica Sinica, 2024, 98(2): 558 − 578. (in Chinese with English abstract)

    Google Scholar

    [5] 赵平. 常用气体地热温度计的应用及效果评价[J]. 地质科学,1993(2):167 − 176. [ZHAO Ping. Application and evaluation of gas geothermometers[J]. Chinese Journal of Geology,1993(2):167 − 176. (in Chinese with English abstract)]

    Google Scholar

    ZHAO Ping. Application and evaluation of gas geothermometers[J]. Chinese Journal of Geology, 1993(2): 167 − 176. (in Chinese with English abstract)

    Google Scholar

    [6] 赵平,多吉,谢鄂军,等. 中国典型高温热田热水的锶同位素研究[J]. 岩石学报,2003,19(3):569 − 576. [ZHAO Ping,DUO Ji,XIE Ejun,et al. Strontium isotope data for thermal waters in selected high-temperature geothermal fields,China[J]. Acta Petrologica Sinica,2003,19(3):569 − 576. (in Chinese with English abstract)] doi: 10.3969/j.issn.1000-0569.2003.03.023

    CrossRef Google Scholar

    ZHAO Ping, DUO Ji, XIE Ejun, et al. Strontium isotope data for thermal waters in selected high-temperature geothermal fields, China[J]. Acta Petrologica Sinica, 2003, 19(3): 569 − 576. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-0569.2003.03.023

    CrossRef Google Scholar

    [7] 多吉. 典型高温地热系统——羊八井热田基本特征[J]. 中国工程科学,2003(1):42 − 47. [DUO Ji. The basic characteristics of the Yangbajing geothermal field-a typical high temperature geothermal system[J]. Engineering Science,2003(1):42 − 47. (in Chinese with English abstract)] doi: 10.3969/j.issn.1009-1742.2003.01.008

    CrossRef Google Scholar

    DUO Ji. The basic characteristics of the Yangbajing geothermal field-a typical high temperature geothermal system[J]. Engineering Science, 2003(1): 42 − 47. (in Chinese with English abstract) doi: 10.3969/j.issn.1009-1742.2003.01.008

    CrossRef Google Scholar

    [8] GUO Qinghai,WANG Yanxin,Liu Wei. Major hydrogeochemical processes in the two reservoirs of the Yangbajing geothermal field,et al. China[J]. Journal of Volcanology and Geothermal Research,2007,166(3/4):255 − 268.

    Google Scholar

    [9] 赵斌,吕玥,温柔,等. 西藏地热能开发利用现状及发展前景[J]. 热力发电,2023,52(1):1 − 6. [ZHAO Bin,LV Yue,WEN Rou,et al. Utilization situation and development prospect of geothermal energy in Tibet[J]. Thermal Power Generation,2023,52(1):1 − 6. (in Chinese with English abstract)]

    Google Scholar

    ZHAO Bin, LV Yue, WEN Rou, et al. Utilization situation and development prospect of geothermal energy in Tibet[J]. Thermal Power Generation, 2023, 52(1): 1 − 6. (in Chinese with English abstract)

    Google Scholar

    [10] 庞菊梅,王英男,金爱芳,等. 承德北部茅荆坝地热田地热流体的水化学和同位素特征及其成因[J]. 水文地质工程地质,2024,51(1):224 − 236. [PANG Jumei,WANG Yingnan,JIN Aifang,et al. Hydrochemical and isotopic characteristics and genesis of geothermal fluids in the Maojingba geothermal field,northern Chengde City[J]. Hydrogeology & Engineering Geology,2024,51(1):224 − 236. (in Chinese with English abstract)]

    Google Scholar

    PANG Jumei, WANG Yingnan, JIN Aifang, et al. Hydrochemical and isotopic characteristics and genesis of geothermal fluids in the Maojingba geothermal field, northern Chengde City[J]. Hydrogeology & Engineering Geology, 2024, 51(1): 224 − 236. (in Chinese with English abstract)

    Google Scholar

    [11] 范翼帆,段忠丰,杨永红,等. 热储特征对砂岩热储采灌井距的影响-以济阳坳陷为例[J]. 水文地质工程地质,2024,51(1):215 − 223. [FAN Yifan,DUAN Zhongfeng,YANG Yonghong,et al. Impact of reservoir characteristics on the well spacing of sandstone geothermal reservoir:A case study of Jiyang depression[J]. Hydrogeology & Engineering Geology,2024,51(1):215 − 223. (in Chinese with English abstract)]

    Google Scholar

    FAN Yifan, DUAN Zhongfeng, YANG Yonghong, et al. Impact of reservoir characteristics on the well spacing of sandstone geothermal reservoir: A case study of Jiyang depression[J]. Hydrogeology & Engineering Geology, 2024, 51(1): 215 − 223. (in Chinese with English abstract)

    Google Scholar

    [12] 刘明言. 地热流体的腐蚀与结垢控制现状[J]. 新能源进展,2015,3(1):38 − 46. [LIU Mingyan. A review on controls of corrosion and scaling in geothermal fluids[J]. Advances in New and Renewable Enengy,2015,3(1):38 − 46. (in Chinese with English abstract)] doi: 10.3969/j.issn.2095-560X.2015.01.007

    CrossRef Google Scholar

    LIU Mingyan. A review on controls of corrosion and scaling in geothermal fluids[J]. Advances in New and Renewable Enengy, 2015, 3(1): 38 − 46. (in Chinese with English abstract) doi: 10.3969/j.issn.2095-560X.2015.01.007

    CrossRef Google Scholar

    [13] PANG Zhonghe,REED M. Theoretical chemical thermometry on geothermal waters:Problems and methods[J]. Geochimica et Cosmochimica Acta,1998,62(6):1083 − 1091. doi: 10.1016/S0016-7037(98)00037-4

    CrossRef Google Scholar

    [14] 李义曼,庞忠和,罗霁,等. SiO2地温计沸腾校正方法在高原地区的适用性分析[J]. 地质论评,2021,67(4):1050 − 1056. [LI Yiman,PANG Zhonghe,LUO Ji,et al. Applicability of SiO2 geothermometers with adiabatic boiling correction in plateau areas[J]. Geological Review,2021,67(4):1050 − 1056. (in Chinese with English abstract)]

    Google Scholar

    LI Yiman, PANG Zhonghe, LUO Ji, et al. Applicability of SiO2 geothermometers with adiabatic boiling correction in plateau areas[J]. Geological Review, 2021, 67(4): 1050 − 1056. (in Chinese with English abstract)

    Google Scholar

    [15] GUO Qinghai. Hydrogeochemistry of high-temperature geothermal systems in China:A review[J]. Applied Geochemistry,2012,27(10):1887 − 1898. doi: 10.1016/j.apgeochem.2012.07.006

    CrossRef Google Scholar

    [16] 郭清海,刘明亮,李洁祥. 腾冲热海地热田高温热泉中的硫代砷化物及其地球化学成因[J]. 地球科学,2017,42(2):286 − 297. [GUO Qinghai,LIU Mingliang,LI Jiexiang. Thioarsenic species in the high-temperature hot springs from the Rehai geothermal field (Tengchong) and their geochemical geneses[J]. Earth Science,2017,42(2):286 − 297. (in Chinese with English abstract)]

    Google Scholar

    GUO Qinghai, LIU Mingliang, LI Jiexiang. Thioarsenic species in the high-temperature hot springs from the Rehai geothermal field (Tengchong) and their geochemical geneses[J]. Earth Science, 2017, 42(2): 286 − 297. (in Chinese with English abstract)

    Google Scholar

    [17] 李义曼,庞忠和. 地热系统碳酸钙垢形成原因及定量化评价[J]. 新能源进展,2018,6(4):274 − 281. [LI Yiman,PANG Zhonghe. Carbonate calcium scale formation and quantitative assessment in geothermal system[J]. Advances in New and Renewable Enengy,2018,6(4):274 − 281. (in Chinese with English abstract)] doi: 10.3969/j.issn.2095-560X.2018.04.004

    CrossRef Google Scholar

    LI Yiman, PANG Zhonghe. Carbonate calcium scale formation and quantitative assessment in geothermal system[J]. Advances in New and Renewable Enengy, 2018, 6(4): 274 − 281. (in Chinese with English abstract) doi: 10.3969/j.issn.2095-560X.2018.04.004

    CrossRef Google Scholar

    [18] 天娇,庞忠和,李义曼,等. 地热气体研究进展[J]. 地质学报,2022,96(5):1752 − 1766. [TIAN Jiao,PANG Zhonghe,LI Yiman,et al. Research progress on geothermal gas[J]. Acta Geologica Sinica,2022,96(5):1752 − 1766. (in Chinese with English abstract)] doi: 10.3969/j.issn.0001-5717.2022.05.015

    CrossRef Google Scholar

    TIAN Jiao, PANG Zhonghe, LI Yiman, et al. Research progress on geothermal gas[J]. Acta Geologica Sinica, 2022, 96(5): 1752 − 1766. (in Chinese with English abstract) doi: 10.3969/j.issn.0001-5717.2022.05.015

    CrossRef Google Scholar

    [19] LOWENSTERN J B,BERGFELD D,EVANS W C,et al. Origins of geothermal gases at Yellowstone[J]. Journal of Volcanology and Geothermal Research,2015,302:87 − 101. doi: 10.1016/j.jvolgeores.2015.06.010

    CrossRef Google Scholar

    [20] HOKE L,LAMB S,HILTON D R,et al. Southern limit of mantle-derived geothermal Helium emissions in Tibet:Implications for lithospheric structure[J]. Earth and Planetary Science Letters,2000,180(3/4):297 − 308.

    Google Scholar

    [21] KLEMPERER S L,KENNEDY B M,SASTRY S R,et al. Mantle fluids in the Karakoram fault:Helium isotope evidence[J]. Earth and Planetary Science Letters,2013,366:59 − 70. doi: 10.1016/j.jpgl.2013.01.013

    CrossRef Google Scholar

    [22] KLEMPERER S L,ZHAO Ping,WHYTE C J,et al. Limited underthrusting of India below Tibet:3He/4He analysis of thermal springs locates the mantle suture in continental collision[J]. Proceedings of the National Academy of Sciences,2022,119(12):2113877119. doi: 10.1073/pnas.2113877119

    CrossRef Google Scholar

    [23] 万汉平,张松,高洪雷,等. 西藏谷露地热田水热系统成因机制[J]. 世界核地质科学,2023,40(3):687 − 700. [WAN Hanping,ZHANG Song,GAO Honglei,et al. Hydrothermal system formation mechanism of Gulu geothermal field[J]. World Nuclear Geoscience,2023,40(3):687 − 700. (in Chinese with English abstract)] doi: 10.3969/j.issn.1672-0636.2023.03.001

    CrossRef Google Scholar

    WAN Hanping, ZHANG Song, GAO Honglei, et al. Hydrothermal system formation mechanism of Gulu geothermal field[J]. World Nuclear Geoscience, 2023, 40(3): 687 − 700. (in Chinese with English abstract) doi: 10.3969/j.issn.1672-0636.2023.03.001

    CrossRef Google Scholar

    [24] HAO Yinlei,KUANG Xingxing,FENG Yuqing,et al. Discovery and genesis of helium-rich geothermal fluids along the India–Asia continental convergent margin[J]. Geochimica et Cosmochimica Acta,2023,360:175 − 191. doi: 10.1016/j.gca.2023.09.011

    CrossRef Google Scholar

    [25] YIN A,HARRISON T M. Geologic evolution of the Himalayan-Tibetan orogen[J]. Annual Review of Earth and Planetary Sciences,2000,28:211 − 280. doi: 10.1146/annurev.earth.28.1.211

    CrossRef Google Scholar

    [26] 莫宣学,赵志丹,邓晋福,等. 印度-亚洲大陆主碰撞过程的火山作用响应[J]. 地学前缘,2003,10(3):135 − 148. [MO Xuanxue,ZHAO Zhidan,DENG Jinfu,et al. Response of volcanism to the India-Asia collision[J]. Earth Science Frontiers,2003,10(3):135 − 148. (in Chinese with English abstract)] doi: 10.3321/j.issn:1005-2321.2003.03.013

    CrossRef Google Scholar

    MO Xuanxue, ZHAO Zhidan, DENG Jinfu, et al. Response of volcanism to the India-Asia collision[J]. Earth Science Frontiers, 2003, 10(3): 135 − 148. (in Chinese with English abstract) doi: 10.3321/j.issn:1005-2321.2003.03.013

    CrossRef Google Scholar

    [27] 莫宣学,赵志丹,朱弟成,等. 西藏南部印度-亚洲碰撞带岩石圈:岩石学-地球化学约束[J]. 地球科学-中国地质大学学报,2009,34(1):17 − 27. [MO Xuanxue,ZHAO Zhidan,ZHU Dicheng,et al. On the lithosphere of Indo-Asia collision zone in southern Tibet:Petrological and geoehemical constraints[J]. Earth Science-Journal of China University of Geosciences,2009,34(1):17 − 27. (in Chinese with English abstract)] doi: 10.3799/dqkx.2009.003

    CrossRef Google Scholar

    MO Xuanxue, ZHAO Zhidan, ZHU Dicheng, et al. On the lithosphere of Indo-Asia collision zone in southern Tibet: Petrological and geoehemical constraints[J]. Earth Science-Journal of China University of Geosciences, 2009, 34(1): 17 − 27. (in Chinese with English abstract) doi: 10.3799/dqkx.2009.003

    CrossRef Google Scholar

    [28] MO Xuanxue,NIU Yaoling,DONG Guochen,et al. Contribution of syncollisional felsic magmatism to continental crust growth:A case study of the Paleogene Linzizong volcanic Succession in southern Tibet[J]. Chemical Geology,2008,250(1/4):49 − 67.

    Google Scholar

    [29] 莫宣学. 从岩浆岩看青藏高原地壳的生长演化[J]. 地球科学,2020,45(7):2245 − 2257. [MO Xuanxue. Growth and evolution of crust of tibetan plateau from perspective of magmatic rocks[J]. Earth Science,2020,45(7):2245 − 2257. (in Chinese with English abstract)]

    Google Scholar

    MO Xuanxue. Growth and evolution of crust of tibetan plateau from perspective of magmatic rocks[J]. Earth Science, 2020, 45(7): 2245 − 2257. (in Chinese with English abstract)

    Google Scholar

    [30] 吴福元,万博,赵亮,等. 特提斯地球动力学[J]. 岩石学报,2020,36(6):1627 − 1674. [WU Fuyuan,WAN Bo,ZHAO Liang,et al. Tethyan geodynamics[J]. Acta Petrologica Sinica,2020,36(6):1627 − 1674. (in Chinese with English abstract)] doi: 10.18654/1000-0569/2020.06.01

    CrossRef Google Scholar

    WU Fuyuan, WAN Bo, ZHAO Liang, et al. Tethyan geodynamics[J]. Acta Petrologica Sinica, 2020, 36(6): 1627 − 1674. (in Chinese with English abstract) doi: 10.18654/1000-0569/2020.06.01

    CrossRef Google Scholar

    [31] ARMIJO R,TAPPONNIER P,MERCIER J L,et al. Quaternary extension in southern Tibet:Field observations and tectonic implications[J]. Journal of Geophysical Research:Solid Earth,1986,91(B14):13803 − 13872. doi: 10.1029/JB091iB14p13803

    CrossRef Google Scholar

    [32] TAYLOR M,YIN An,RYERSON F J,et al. Conjugate strike‐slip faulting along the Bangong‐Nujiang suture zone accommodates coeval East‐West extension and North‐South shortening in the interior of the Tibetan Plateau[J]. Tectonics,2003,22(4):18.1 − 18.20.

    Google Scholar

    [33] 李亚林,王成善,伊海生,等. 青藏高原新生代地堑构造研究中几个问题的讨论[J]. 地质论评,2005,51(5):493 − 501. [LI Yalin,WANG Chengshan,YI Haisheng,et al. A discussion on several problems regarding to the cenozoic grabens in the Qinghai-Tibet plateau[J]. Geological Review,2005,51(5):493 − 501. (in Chinese with English abstract)] doi: 10.3321/j.issn:0371-5736.2005.05.002

    CrossRef Google Scholar

    LI Yalin, WANG Chengshan, YI Haisheng, et al. A discussion on several problems regarding to the cenozoic grabens in the Qinghai-Tibet plateau[J]. Geological Review, 2005, 51(5): 493 − 501. (in Chinese with English abstract) doi: 10.3321/j.issn:0371-5736.2005.05.002

    CrossRef Google Scholar

    [34] 才巴央增,赵俊猛. 藏南裂谷系的研究综述[J]. 地震研究,2018,41(1):14 − 21. [CAIbayangzeng,ZHAO Junmeng. A summary of researches on southern Tibet rift system[J]. Journal of Seismological Research,2018,41(1):14 − 21. (in Chinese with English abstract)] doi: 10.3969/j.issn.1000-0666.2018.01.002

    CrossRef Google Scholar

    CAIbayangzeng, ZHAO Junmeng. A summary of researches on southern Tibet rift system[J]. Journal of Seismological Research, 2018, 41(1): 14 − 21. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-0666.2018.01.002

    CrossRef Google Scholar

    [35] 张佳伟,李汉敖,张会平,等. 青藏高原新生代南北走向裂谷研究进展[J]. 地球科学进展,2020,35(8):848 − 862. [ZHANG Jiawei,LI Hanao,ZHANG Huiping,et al. Research progress in cenozoic N-S striking rifts in Tibetan Plateau[J]. Advances in Earth Science,2020,35(8):848 − 862. (in Chinese with English abstract)] doi: 10.11867/j.issn.1001-8166.2020.064

    CrossRef Google Scholar

    ZHANG Jiawei, LI Hanao, ZHANG Huiping, et al. Research progress in cenozoic N-S striking rifts in Tibetan Plateau[J]. Advances in Earth Science, 2020, 35(8): 848 − 862. (in Chinese with English abstract) doi: 10.11867/j.issn.1001-8166.2020.064

    CrossRef Google Scholar

    [36] TIAN Jiao,ZHOU Xiaocheng,YAN Yucong,et al. Earthquake-induced impulsive release of water in the fractured aquifer system:Insights from the long-term hydrochemical monitoring of hot springs in the Southeast Tibetan Plateau[J]. Applied Geochemistry,2023,148:105553. doi: 10.1016/j.apgeochem.2022.105553

    CrossRef Google Scholar

    [37] 沈显杰. 西藏喜马拉雅地热带地热资源量级估算的方法探讨[J]. 地质科学,1992,27(增刊1):302 − 312. [SHEN Xianjie. An order of magnitude estimation of high temperature geothermal resources of the himalayan geothermal belt,Xizang (TIBET)[J]. Scientia Geologica Sinica,1992,27(Sup1):302 − 312. (in Chinese with English abstract)]

    Google Scholar

    SHEN Xianjie. An order of magnitude estimation of high temperature geothermal resources of the himalayan geothermal belt, Xizang (TIBET)[J]. Scientia Geologica Sinica, 1992, 27(Sup1): 302 − 312. (in Chinese with English abstract)

    Google Scholar

    [38] 滕吉文,杨顶辉,田小波,等. 青藏高原深部地球物理探测70年[J]. 中国科学(地球科学),2019,49(10):1546 − 1564. [TENG Jiwen,YANG Dinghui,TIAN Xiaobo,et al. 70 years of deep geophysical exploration in the Qinghai Tibet Plateau[J]. Scientia Sinica Terrae,2019,49(10):1546 − 1564. (in Chinese with English abstract)] doi: 10.1360/SSTe-2019-0132

    CrossRef Google Scholar

    TENG Jiwen, YANG Dinghui, TIAN Xiaobo, et al. 70 years of deep geophysical exploration in the Qinghai Tibet Plateau[J]. Scientia Sinica Terrae, 2019, 49(10): 1546 − 1564. (in Chinese with English abstract) doi: 10.1360/SSTe-2019-0132

    CrossRef Google Scholar

    [39] DUCHKOV A D,RYCHKOVA K M,LEBEDEV V I,et al. Estimation of heat flow in Tuva from data on Helium isotopes in thermal mineral springs[J]. Russian Geology and Geophysics,2010,51(2):209 − 219. doi: 10.1016/j.rgg.2009.12.023

    CrossRef Google Scholar

    [40] 杨立铮,卫迦,孙晋玉. 四川康定温泉系统深源CO2释放研究[J]. 地质学报,1999,73(3):278 − 285. [YANG Lizheng,WEI Jia,SUN Jinyu. A study of the Deep-Source CO2 release of the hot springs system in kangding,Sichuan province[J]. Acta Geologica Sinica,1999,73(3):278 − 285. (in Chinese with English abstract)] doi: 10.3321/j.issn:0001-5717.1999.03.009

    CrossRef Google Scholar

    YANG Lizheng, WEI Jia, SUN Jinyu. A study of the Deep-Source CO2 release of the hot springs system in kangding, Sichuan province[J]. Acta Geologica Sinica, 1999, 73(3): 278 − 285. (in Chinese with English abstract) doi: 10.3321/j.issn:0001-5717.1999.03.009

    CrossRef Google Scholar

    [41] DUBACQ B,BICKLE M J,EVANS K A. An activity model for phase equilibria in the H2O–CO2–NaCl system[J]. Geochimica et Cosmochimica Acta,2013,110:229 − 252. doi: 10.1016/j.gca.2013.02.008

    CrossRef Google Scholar

    [42] WANG Yingchun,ZHOU Xiaocheng,TIAN Jiao,et al. Volatile characteristics and fluxes of He-CO2 systematics in the southeastern Tibetan Plateau:Constraints on regional seismic activities[J]. Journal of Hydrology,2023,617:129042. doi: 10.1016/j.jhydrol.2022.129042

    CrossRef Google Scholar

    [43] ZHANG Maoliang,XIE Xiangang,LIU Wei,et al. Hydrothermal degassing through the Karakoram fault,western Tibet:Insights into active deformation driven by continental strike‐slip faulting[J]. Geophysical Research Letters,2024,51(4):e2023GL106647. doi: 10.1029/2023GL106647

    CrossRef Google Scholar

    [44] 王迎春,周金林,李亮,等. 羊八井地热田地热地质条件及其对超临界地热资源勘探的启示[J]. 天然气工业,2022,42(4):35 − 45. [WANG Yingchun,ZHOU Jinlin,LI Liang,et al. Geothermal geological conditions in the Yangbajing geothermal field and its Enlightenment to the exploration of supercritical geothermal resources[J]. Natural Gas Industry,2022,42(4):35 − 45. (in Chinese with English abstract)] doi: 10.3787/j.issn.1000-0976.2022.04.003

    CrossRef Google Scholar

    WANG Yingchun, ZHOU Jinlin, LI Liang, et al. Geothermal geological conditions in the Yangbajing geothermal field and its Enlightenment to the exploration of supercritical geothermal resources[J]. Natural Gas Industry, 2022, 42(4): 35 − 45. (in Chinese with English abstract) doi: 10.3787/j.issn.1000-0976.2022.04.003

    CrossRef Google Scholar

    [45] CHAPMAN J B,KAPP P. Tibetan magmatism database[J]. Geochemistry Geophysics Geosystems,2017,18(11):4229 − 4234. doi: 10.1002/2017GC007217

    CrossRef Google Scholar

    [46] SANO Yuji,MARTY B. Origin of Carbon in fumarolic gas from island arcs[J]. Chemical Geology,1995,119(1/4):265 − 274.

    Google Scholar

    [47] BALLENTINE C J,BURGESS R,MARTY B. Tracing fluid origin,transport and interaction in the crust[J]. Reviews in Mineralogy and Geochemistry,2002,47(1):539 − 614. doi: 10.2138/rmg.2002.47.13

    CrossRef Google Scholar

    [48] ZHANG Maoliang,ZHANG Lihong,ZHAO Wenbin,et al. Metamorphic CO2 emissions from the southern Yadong-Gulu rift,Tibetan Plateau:Insights into deep Carbon cycle in the India-Asia continental collision zone[J]. Chemical Geology,2021,584:120534. doi: 10.1016/j.chemgeo.2021.120534

    CrossRef Google Scholar

    [49] FERRY J M. Overview of the petrologic record of fluid flow during regional metamorphism in northern New England[J]. American Journal of Science,1994,294(8):905 − 988. doi: 10.2475/ajs.294.8.905

    CrossRef Google Scholar

    [50] BARRY P H,NEGRETE-ARANDA R,SPELZ R M,et al. Volatile sources,sinks and pathways:A helium-carbon isotope study of Baja California fluids and gases[J]. Chemical Geology,2020,550:119722. doi: 10.1016/j.chemgeo.2020.119722

    CrossRef Google Scholar

    [51] GIGGENBACH W F,SANO Y,WAKITA H. Isotopic composition of Helium,and CO2 and CH4 contents in gases produced along the New Zealand part of a convergent plate boundary[J]. Geochimica et Cosmochimica Acta,1993,57(14):3427 − 3455. doi: 10.1016/0016-7037(93)90549-C

    CrossRef Google Scholar

    [52] CHIODINI G,MARINI L. Hydrothermal gas equilibria:The H2O-H2-CO2-CO-CH4 system[J]. Geochimica et Cosmochimica Acta,1998,62(15):2673 − 2687. doi: 10.1016/S0016-7037(98)00181-1

    CrossRef Google Scholar

    [53] GIGGENBACH W F. Redox processes governing the chemistry of fumarolic gas discharges from White Island,New Zealand[J]. Applied Geochemistry,1987,2(2):143 − 161. doi: 10.1016/0883-2927(87)90030-8

    CrossRef Google Scholar

    [54] UENO Y,YAMADA K,YOSHIDA N,et al. Evidence from fluid inclusions for microbial methanogenesis in the early Archaean era[J]. Nature,2006,440(7083):516 − 519. doi: 10.1038/nature04584

    CrossRef Google Scholar

    [55] 赵慈平,冉华,陈坤华. 腾冲火山区壳内岩浆囊现今温度:来自温泉逸出气体CO2、CH4间碳同位素分馏的估计[J]. 岩石学报,2011,27(10):2883 − 2897. [ZHAO Ciping,RAN Hua,CHEN Kunhua. Present-day temperatures of magma chambers in the crust beneath Tengchong volcanic field,southwestern China:Estimation from carbon isotopic fractionation between CO2 and CH4 of free gases escaped from thermal springs[J]. Acta Petrologica Sinica,2011,27(10):2883 − 2897. (in Chinese with English abstract)]

    Google Scholar

    ZHAO Ciping, RAN Hua, CHEN Kunhua. Present-day temperatures of magma chambers in the crust beneath Tengchong volcanic field, southwestern China: Estimation from carbon isotopic fractionation between CO2 and CH4 of free gases escaped from thermal springs[J]. Acta Petrologica Sinica, 2011, 27(10): 2883 − 2897. (in Chinese with English abstract)

    Google Scholar

    [56] HORITA J,BERNDT M E. Abiogenic methane formation and isotopic fractionation under hydrothermal conditions[J]. Science,1999,285(5430):1055 − 1057. doi: 10.1126/science.285.5430.1055

    CrossRef Google Scholar

    [57] FIEBIG J,WOODLAND A B,SPANGENBERG J,et al. Natural evidence for rapid abiogenic hydrothermal Generation of CH4[J]. Geochimica et Cosmochimica Acta,2007,71(12):3028 − 3039. doi: 10.1016/j.gca.2007.04.010

    CrossRef Google Scholar

    [58] LI Yiman,ZHOU Xiaocheng,HUANG Tianming,et al. Origins of volatiles and helium fluxes from hydrothermal systems in the Eastern Himalayan Syntaxis and constraints on regional heat and tectonic activities[J]. Journal of Hydrology,2024,631:130776. doi: 10.1016/j.jhydrol.2024.130776

    CrossRef Google Scholar

    [59] DUNAI T J,PORCELLI D. Storage and transport of noble gases in the subcontinental lithosphere[J]. Reviews in Mineralogy and Geochemistry,2002,47(1):371 − 409. doi: 10.2138/rmg.2002.47.10

    CrossRef Google Scholar

    [60] BECKER J A,BICKLE M J,GALY A,et al. Himalayan metamorphic CO2 fluxes:Quantitative constraints from hydrothermal springs[J]. Earth and Planetary Science Letters,2008,265(3/4):616 − 629.

    Google Scholar

    [61] LI Chang,VAN DER HILST R D,MELTZER A S,et al. Subduction of the Indian lithosphere beneath the Tibetan Plateau and Burma[J]. Earth and Planetary Science Letters,2008,274(1/2):157 − 168.

    Google Scholar

    [62] CHEN Min,NIU Fenglin,TROMP J,et al. Lithospheric foundering and underthrusting imaged beneath Tibet[J]. Nature Communications,2017,8(1):15659. doi: 10.1038/ncomms15659

    CrossRef Google Scholar

    [63] NEWELL D L,JESSUP M J,COTTLE J M,et al. Aqueous and isotope geochemistry of mineral springs along the southern margin of the Tibetan plateau:Implications for fluid sources and regional degassing of CO2[J]. Geochemistry,Geophysics,Geosystems,2008,9(8):Q08014.

    Google Scholar

    [64] CHEN Yun,LI Wei,YUAN Xiaohui,et al. Tearing of the Indian lithospheric slab beneath southern Tibet revealed by SKS-wave splitting measurements[J]. Earth and Planetary Science Letters,2015,413:13 − 24. doi: 10.1016/j.jpgl.2014.12.041

    CrossRef Google Scholar

    [65] LI Jiangtao,SONG Xiaodong. Tearing of Indian mantle lithosphere from high-resolution seismic images and its implications for lithosphere coupling in southern Tibet[J]. Proceedings of the National Academy of Sciences,2018,115(33):8296 − 8300. doi: 10.1073/pnas.1717258115

    CrossRef Google Scholar

    [66] ZHAO Wenbin,GUO Zhengfu,ZHENG Guodong,et al. Subducting Indian lithosphere controls the deep carbon emission in Lhasa terrane,southern Tibet[J]. Journal of Geophysical Research:Solid Earth,2022,127:e2022JB024250. doi: 10.1029/2022JB024250

    CrossRef Google Scholar

    [67] WANG Yingchun,GU Hongyu,LI Dan,et al. Hydrochemical characteristics and genesis analysis of geothermal fluid in the Zhaxikang geothermal field in Cuona County,southern Tibet[J]. Environmental Earth Sciences,2021,80(11):415. doi: 10.1007/s12665-021-09577-8

    CrossRef Google Scholar

    [68] WANG Yingchun, QUAN Sanyu, TANG Xing, et al. Organic and inorganic carbon sinks reduce long-term deep carbon emissions in the continental collision margin of the southern Tibetan Plateau: Implications for Cenozoic climate cooling[J]. Journal of Geophysical Research: Solid Earth,2024,129(4):e2024JB028802.

    Google Scholar

    [69] WANG Yingchun, ZHOU Xiaocheng, Tian Jiao, et al. Spatiotemporal characteristics of hydrothermal volatiles from the Tengchong volcanic field in the southeastern Tibetan Plateau:A probable constraint on the genesis of intraplate volcanism[J]. Journal of Volcanology and Geothermal Research,2025,457:108237.

    Google Scholar

    [70] TANG Xing, WANG Yingchun, JIA Haoxin, et al. Thermal budget of hydrothermal systems for the Xianshuihe fault belt in the SE Tibetan Plateau: Insights to the geothermal accumulation processes[J]. Geothermics,2025,125:103189.

    Google Scholar

    [71] WANG Yingchun,Li Liang,WEN Huaguo,et al. Geochemical evidence for the nonexistence of supercritical geothermal fluids at the Yangbajing geothermal field, southern Tibet[J]. Journal of Hydrology,2022,604:127243.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(2)

Article Metrics

Article views(117) PDF downloads(21) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint