2024 Vol. 51, No. 6
Article Contents

LEI Chenbo, GUO Huaming, XING Shiping. Boron isotopes fractionation and its application progress in groundwater research[J]. Hydrogeology & Engineering Geology, 2024, 51(6): 219-231. doi: 10.16030/j.cnki.issn.1000-3665.202312032
Citation: LEI Chenbo, GUO Huaming, XING Shiping. Boron isotopes fractionation and its application progress in groundwater research[J]. Hydrogeology & Engineering Geology, 2024, 51(6): 219-231. doi: 10.16030/j.cnki.issn.1000-3665.202312032

Boron isotopes fractionation and its application progress in groundwater research

More Information
  • Boron (B) is ubiquitous in natural water bodies and rocks. Because of the large relative mass difference between the two stable isotopes of B, 10B and 11B, the B isotopes are susceptible to significant fractionation. Groundwater typically exhibits various δ11B in different hydrogeological environments. The composition and variation of B isotope in groundwater are of great significance to understanding hydrogeochemical processes and the rational development of groundwater resources. Based on the introduction of the principle of B isotope fractionation, this review summarizes the effects of hydrogeochemical processes such as adsorption/coprecipitation, desorption, weathering, and evaporation on groundwater δ11B values. The article systematically present the studies on applying B isotope technique to address hot academic issues. Since the δ11B values of contaminants and seawater often differ significantly from groundwater background values, B isotopes can be utilized to trace both groundwater contamination and seawater intrusion. Differences in the δ11B values of distinct minerals and weathering conditions have a significant impact on the δ11B values of groundwater. Therefore, B isotopes are useful in reflecting the weathering characteristics of minerals and identifying the process of interaction between the geothermal water and the surrounding rocks. B isotopes can also be utilized to trace hydrogeochemical processes associated with the enrichment of fluoride and arsenic, thereby enhancing the knowledge of the formation mechanism of high fluoride and arsenic groundwater. The future studies on groundwater B isotopes should focus on: (1) Supplementing B-isotope techniques with water chemistry and other isotope techniques to quantify contributions of different hydrogeochemical processes to of the specific solute transformation. (2) Long-term monitoring of B isotopes in areas with high B geothermal water and natural inferior groundwater to determine B endmembers in different conditions and to quantitively assess the negative impact of hazardous components on environment. The solution of these scientific issues is not only conducive to promoting the further development of B isotopes in groundwater studies, but also beneficial to improving the systematical understanding of the enrichment mechanism of groundwater hazardous components.

  • 加载中
  • [1] 肖荣阁,大井隆夫,蔡克勤,等. 硼及硼同位素地球化学在地质研究中的应用[J]. 地学前缘,1999,6(2):361 − 368. [XIAO Rongge,TAKAO Oi,CAI Keqin,et al. Application of boron and boron isotope geochemistry in the study of geological process [J]. Earth Science Frontiers,1999,6(2):361 − 368. (in Chinese)]

    Google Scholar

    XIAO Rongge, TAKAO Oi, CAI Keqin, et al. Application of boron and boron isotope geochemistry in the study of geological process [J]. Earth Science Frontiers, 1999, 6(2): 361 − 368. (in Chinese)

    Google Scholar

    [2] IUPAC. Isotopic compositions of the elements 1989[J]. Pure and Applied Chemistry,1991,63(7):991 − 1002. doi: 10.1351/pac199163070991

    CrossRef Google Scholar

    [3] CATANZARO E J,CHAMPION C E,GARMER E L,et al. Boron:Isotopic and assay standard reference material[J]. U. S. National Bureau Standards Special Publication,1970,260(17):70.

    Google Scholar

    [4] 肖应凯,魏海珍,尹德忠. 盐湖硼氯同位素地球化学研究进展[J]. 盐湖研究,2000,8(1):30 − 40. [XIAO Yingkai,WEI Haizhen,YIN Dezhong. Progress on isotopic geochemistry of boron and chlorine in salt lakes[J]. Journal of Salt Lake Research,2000,8(1):30 − 40. (in Chinese with English abstract)] doi: 10.3969/j.issn.1008-858X.2000.01.004

    CrossRef Google Scholar

    XIAO Yingkai, WEI Haizhen, YIN Dezhong. Progress on isotopic geochemistry of boron and chlorine in salt lakes[J]. Journal of Salt Lake Research, 2000, 8(1): 30 − 40. (in Chinese with English abstract) doi: 10.3969/j.issn.1008-858X.2000.01.004

    CrossRef Google Scholar

    [5] XIAO Jun,XIAO Yingkai,JIN Zhangdong,et al. Boron isotope variations and its geochemical application in nature[J]. Australian Journal of Earth Sciences,2013,60(4):431 − 447. doi: 10.1080/08120099.2013.813585

    CrossRef Google Scholar

    [6] INGHRAM M G. The isotopic constitution of tungsten,silicon,and boron[J]. Physical Review,1946,70(9/10):653 − 660.

    Google Scholar

    [7] 肖军,贺茂勇,肖应凯,等. 硼同位素地球化学应用研究进展[J]. 海洋地质前沿,2012,28(9):20 − 33. [XIAO Jun,HE Maoyong,XIAO Yingkai,et al. Progress of geochemical application of boron isotope[J]. Marine Geology Frontiers,2012,28(9):20 − 33. (in Chinese with English abstract)]

    Google Scholar

    XIAO Jun, HE Maoyong, XIAO Yingkai, et al. Progress of geochemical application of boron isotope[J]. Marine Geology Frontiers, 2012, 28(9): 20 − 33. (in Chinese with English abstract)

    Google Scholar

    [8] 张卓,柳富田,陈社明. 氢氧、锶钙和锂硼同位素在高氟地下水研究中的应用[J]. 华北地质,2023,46(3):49 − 56. [ZHANG Zhuo,LIU Futian,CHEN Sheming. Review on the application of H,O,Sr,Ca,Li and B isotopes in the research of high-fluoride groundwater[J]. North China Geology,2023,46(3):49 − 56. (in Chinese with English abstract)]

    Google Scholar

    ZHANG Zhuo, LIU Futian, CHEN Sheming. Review on the application of H, O, Sr, Ca, Li and B isotopes in the research of high-fluoride groundwater[J]. North China Geology, 2023, 46(3): 49 − 56. (in Chinese with English abstract)

    Google Scholar

    [9] XIAO Yingkai,YIN Dongzhi,LIU Weiguo,et al. Boron isotope method for study of seawater intrusion[J]. Science in China Series E:Technological Sciences,2001,44(1):62 − 71.

    Google Scholar

    [10] SPIVACK A J,EDMOND J M. Boron isotope exchange between seawater and the oceanic crust[J]. Geochimica et Cosmochimica Acta,1987,51(5):1033 − 1043. doi: 10.1016/0016-7037(87)90198-0

    CrossRef Google Scholar

    [11] YOU C F,SPIVACK A J,GIESKES J M,et al. Experimental study of boron geochemistry:Implications for fluid processes in subduction zones[J]. Geochimica et Cosmochimica Acta,1995,59(12):2435 − 2442. doi: 10.1016/0016-7037(95)00137-9

    CrossRef Google Scholar

    [12] MATHER J D,PORTEOUS N C. The geochemistry of boron and its isotopes in groundwaters from marine and non-marine sandstone aquifers[J]. Applied Geochemistry,2001,16(7/8):821 − 834.

    Google Scholar

    [13] ZHAO Zhiqi,LIU Congqiang. Anthropogenic inputs of boron into urban atmosphere:Evidence from boron isotopes of precipitations in Guiyang City,China[J]. Atmospheric Environment,2010,44(34):4165 − 4171. doi: 10.1016/j.atmosenv.2010.07.035

    CrossRef Google Scholar

    [14] ROSE E F,CHAUSSIDON M,FRANCE-LANORD C. Fractionation of boron isotopes during erosion processes:The example of Himalayan Rivers[J]. Geochimica et Cosmochimica Acta,2000,64(3):397 − 408. doi: 10.1016/S0016-7037(99)00117-9

    CrossRef Google Scholar

    [15] LEMARCHAND D,GAILLARDET J. Transient features of the erosion of shales in the Mackenzie basin (Canada),evidences from boron isotopes[J]. Earth and Planetary Science Letters,2006,245(1/2):174 − 189.

    Google Scholar

    [16] PENNISI M,GONFIANTINI R,GRASSI S,et al. The utilization of boron and strontium isotopes for the assessment of boron contamination of the Cecina River alluvial aquifer (central-western Tuscany,Italy)[J]. Applied Geochemistry,2006,21(4):643 − 655. doi: 10.1016/j.apgeochem.2005.11.005

    CrossRef Google Scholar

    [17] XIAO Yingkai,SUN Dongping,WANG Yunhui,et al. Boron isotopic compositions of brine,sediments,and source water in Da Qaidam Lake,Qinghai,China[J]. Geochimica et Cosmochimica Acta,1992,56(4):1561 − 1568. doi: 10.1016/0016-7037(92)90225-8

    CrossRef Google Scholar

    [18] VENGOSH A,HEUMANN K G,JURASKE S,et al. Boron isotope application for tracing sources of contamination in groundwater[J]. Environmental Science & Technology,1994,28(11):1968 − 1974.

    Google Scholar

    [19] MORELL I,PULIDO-BOSCH A,SÁNCHEZ-MARTOS F,et al. Characterization of the salinisation processes in aquifers using boron isotopes: Application to south-eastern Spain[J]. Water,Air,and Soil Pollution,2008,187(1):65 − 80.

    Google Scholar

    [20] NÉGREL P,MILLOT R,GUERROT C,et al. Heterogeneities and interconnections in groundwaters:Coupled B,Li and stable-isotope variations in a large aquifer system (Eocene sand aquifer,southwestern France)[J]. Chemical Geology,2012,296:83 − 95.

    Google Scholar

    [21] 吕苑苑,郑绵平,赵平,等. 滇藏地热带地热水硼同位素地球化学过程及其物源示踪[J]. 中国科学:地球科学,2014,44(9):1968 − 1979. [LYU Yuanyuan,ZHENG Mianping,ZHAO Ping,et al. Geochemical progresses and origin of boron isotopes in geothermal water in the Yunnan-Tibet geothermal zone[J]. Scientia Sinica (Terrae),2014,44(9):1968 − 1979. (in Chinese with English abstract)] doi: 10.1360/zd-2014-44-9-1968

    CrossRef Google Scholar

    LYU Yuanyuan, ZHENG Mianping, ZHAO Ping, et al. Geochemical progresses and origin of boron isotopes in geothermal water in the Yunnan-Tibet geothermal zone[J]. Scientia Sinica (Terrae), 2014, 44(9): 1968 − 1979. (in Chinese with English abstract) doi: 10.1360/zd-2014-44-9-1968

    CrossRef Google Scholar

    [22] XING Shiping,GUO Huaming,SUN Xinmiao,et al. Temperature-induced arsenic accumulation in groundwater from Pliocene aquifers of a semiarid continental basin[J]. Geochimica et Cosmochimica Acta,2023,343:98 − 114. doi: 10.1016/j.gca.2022.12.029

    CrossRef Google Scholar

    [23] MILLOT R,NÉGREL P,PETELET-GIRAUD E. Multi-isotopic (Li,B,Sr,Nd) approach for geothermal reservoir characterization in the Limagne Basin (Massif Central,France)[J]. Applied Geochemistry,2007,22(11):2307 − 2325. doi: 10.1016/j.apgeochem.2007.04.022

    CrossRef Google Scholar

    [24] 张天睿,汤书婷,颜妍,等. 地下水样品中硼同位素组成的测定[J]. 世界核地质科学,2020,37(2):120 − 125. [ZHANG Tianrui,TANG Shuting,YAN Yan,et al. Determination of boron isotopic composition in groundwater samples[J]. World Nuclear Geoscience,2020,37(2):120 − 125. (in Chinese with English abstract)] doi: 10.3969/j.issn.1672-0636.2020.02.006

    CrossRef Google Scholar

    ZHANG Tianrui, TANG Shuting, YAN Yan, et al. Determination of boron isotopic composition in groundwater samples[J]. World Nuclear Geoscience, 2020, 37(2): 120 − 125. (in Chinese with English abstract) doi: 10.3969/j.issn.1672-0636.2020.02.006

    CrossRef Google Scholar

    [25] NIGRO A,SAPPA G,BARBIERI M. Application of boron and tritium isotopes for tracing landfill contamination in groundwater[J]. Journal of Geochemical Exploration,2017,172:101 − 108. doi: 10.1016/j.gexplo.2016.10.011

    CrossRef Google Scholar

    [26] 袁建飞,邓国仕,郑万模. 硼及硼同位素地球化学在地热研究中的应用[J]. 四川地质学报,2017,37(4):686 − 691. [YUAN Jianfei,DENG Guoshi,ZHENG Wanmo. The application of boron and its isotopic geochemistry to the study of geothermal process[J]. Acta Geologica Sichuan,2017,37(4):686 − 691. (in Chinese with English abstract)] doi: 10.3969/j.issn.1006-0995.2017.04.037

    CrossRef Google Scholar

    YUAN Jianfei, DENG Guoshi, ZHENG Wanmo. The application of boron and its isotopic geochemistry to the study of geothermal process[J]. Acta Geologica Sichuan, 2017, 37(4): 686 − 691. (in Chinese with English abstract) doi: 10.3969/j.issn.1006-0995.2017.04.037

    CrossRef Google Scholar

    [27] SU Chunming,SUAREZ D L. Coordination of adsorbed boron:A FTIR spectroscopic study[J]. Environmental Science & Technology,1995,29(2):302 − 311.

    Google Scholar

    [28] KAKIHANA H,KOTAKA M,SATOH S,et al. Fundamental studies on the ion-exchange separation of boron isotopes[J]. Bulletin of the Chemical Society of Japan,1977,50(1):158 − 163. doi: 10.1246/bcsj.50.158

    CrossRef Google Scholar

    [29] OI T,NOMURA M,MUSASHI M,et al. Boron isotopic compositions of some boron minerals[J]. Geochimica et Cosmochimica Acta,1989,53(12):3189 − 3195. doi: 10.1016/0016-7037(89)90099-9

    CrossRef Google Scholar

    [30] TIREZ K,BRUSTEN W,WIDORY D,et al. Boron isotope ratio (δ11B) measurements in water framework directive monitoring programs:Comparison between double focusing sector field ICP and thermal ionization mass spectrometry[J]. Journal of Analytical Atomic Spectrometry,2010,25(7):964 − 974. doi: 10.1039/c001840f

    CrossRef Google Scholar

    [31] GU Huanen,MA Yunqi,PENG Zhangkuang,et al. Influence of polyborate ions on the fractionation of B isotopes during calcite deposition[J]. Chemical Geology,2023,622:121387. doi: 10.1016/j.chemgeo.2023.121387

    CrossRef Google Scholar

    [32] XIAO Jun,ZHAO Zhiqi,BOUCHEZ J,et al. Geothermal input significantly influences riverine and oceanic boron budgets[J]. Earth and Planetary Science Letters,2023,621:118397. doi: 10.1016/j.jpgl.2023.118397

    CrossRef Google Scholar

    [33] GAILLARDET J,LEMARCHAND D. Boron in the weathering environment[M]//Advances in Isotope Geochemistry. Cham:Springer International Publishing,2017:163-188.

    Google Scholar

    [34] SAFFER D M,KOPF A J. Boron desorption and fractionation in subduction zone fore arcs:Implications for the sources and transport of deep fluids[J]. Geochemistry,Geophysics,Geosystems,2016,17(12):4992 − 5008.

    Google Scholar

    [35] XIAO Yingkai,WANG Lan. The effect of pH and temperature on the isotopic fractionation of boron between saline brine and sediments[J]. Chemical Geology,2001,171(3/4):253 − 261.

    Google Scholar

    [36] KÖSTER M H,WILLIAMS L B,KUDEJOVA P,et al. The boron isotope geochemistry of smectites from sodium,magnesium and calcium bentonite deposits[J]. Chemical Geology,2019,510:166 − 187. doi: 10.1016/j.chemgeo.2018.12.035

    CrossRef Google Scholar

    [37] WEI Haizhen,JIANG Shaoyong,TAN Hongbing,et al. Boron isotope geochemistry of salt sediments from the Dongtai salt lake in Qaidam Basin:Boron budget and sources[J]. Chemical Geology,2014,380:74 − 83. doi: 10.1016/j.chemgeo.2014.04.026

    CrossRef Google Scholar

    [38] ZHANG Xiangru,LI Qingkuan,QIN Zhanjie,et al. Boron isotope geochemistry of a brine-carbonate system in the Qaidam Basin,Western China[J]. Sedimentary Geology,2019,383:293 − 302. doi: 10.1016/j.sedgeo.2019.02.011

    CrossRef Google Scholar

    [39] SCHWARCZ H P,AGYEI E K,MCMULLEN C C. Boron isotopic fractionation during clay adsorption from sea-water[J]. Earth and Planetary Science Letters,1969,6(1):1 − 5. doi: 10.1016/0012-821X(69)90084-3

    CrossRef Google Scholar

    [40] KEREN R,MEZUMAN U. Boron adsorption by clay minerals using a phenomenological equation[J]. Clays and Clay Minerals,1981,29(3):198 − 204. doi: 10.1346/CCMN.1981.0290305

    CrossRef Google Scholar

    [41] LEMARCHAND E,SCHOTT J,GAILLARDET J. How surface complexes impact boron isotope fractionation:Evidence from Fe and Mn oxides sorption experiments[J]. Earth and Planetary Science Letters,2007,260(1/2):277 − 296.

    Google Scholar

    [42] LEMARCHAND E,SCHOTT J,GAILLARDET J. Boron isotopic fractionation related to boron sorption on humic acid and the structure of surface complexes formed[J]. Geochimica et Cosmochimica Acta,2005,69(14):3519 − 3533. doi: 10.1016/j.gca.2005.02.024

    CrossRef Google Scholar

    [43] XIAO Yingkai,LI Shizhen,WEI Haizhen,et al. An unusual isotopic fractionation of boron in synthetic calcium carbonate precipitated from seawater and saline water[J]. Science in China Series B:Chemistry,2006,49(5):454 − 465.

    Google Scholar

    [44] 卢胜城,韩凤清,马云麒,等. 柴达木盆地盐湖卤水及其沉积物硼同位素地球化学研究进展[J]. 盐湖研究,2020,28(4):112 − 124. [LU Shengcheng,HAN Fengqing,MA Yunqi,et al. Review of boron isotopic geochemistry of brines and their sediments in salt lakes,Qaidam Basin[J]. Journal of Salt Lake Research,2020,28(4):112 − 124. (in Chinese with English abstract)]

    Google Scholar

    LU Shengcheng, HAN Fengqing, MA Yunqi, et al. Review of boron isotopic geochemistry of brines and their sediments in salt lakes, Qaidam Basin[J]. Journal of Salt Lake Research, 2020, 28(4): 112 − 124. (in Chinese with English abstract)

    Google Scholar

    [45] VENGOSH A,KOLODNY Y,STARINSKY A,et al. Coprecipitation and isotopic fractionation of boron in modern biogenic carbonates[J]. Geochimica et Cosmochimica Acta,1991,55(10):2901 − 2910. doi: 10.1016/0016-7037(91)90455-E

    CrossRef Google Scholar

    [46] 肖军,肖应凯,刘丛强,等. 硼掺入Mg(OH)2形式及机理[J]. 地学前缘,2012,19(4):173 − 182. [XIAO Jun,XIAO Yingkai,LIU Congqiang,et al. The incorporation species and mechanism of boron into Mg(OH)2[J]. Earth Science Frontiers,2012,19(4):173 − 182. (in Chinese with English abstract)]

    Google Scholar

    XIAO Jun, XIAO Yingkai, LIU Congqiang, et al. The incorporation species and mechanism of boron into Mg(OH)2[J]. Earth Science Frontiers, 2012, 19(4): 173 − 182. (in Chinese with English abstract)

    Google Scholar

    [47] ZHENG Zhaoxian,ZHANG Hongda,CHEN Zongyu,et al. Hydrogeochemical and isotopic indicators of hydraulic fracturing flowback fluids in shallow groundwater and stream water,derived from dameigou shale gas extraction in the northern Qaidam Basin[J]. Environmental Science & Technology,2017,51(11):5889 − 5898.

    Google Scholar

    [48] RAVENSCROFT P,MCARTHUR J M. Mechanism of regional enrichment of groundwater by boron:The examples of Bangladesh and Michigan,USA[J]. Applied Geochemistry,2004,19(9):1413 − 1430. doi: 10.1016/j.apgeochem.2003.10.014

    CrossRef Google Scholar

    [49] 程东升,朱端卫,刘武定. 温度对硼在三种矿物上吸附—解吸特性的影响[J]. 土壤学报,2002,39(6):822 − 829. [CHENG Dongsheng,ZHU Duanwei,LIU Wuding. Effects of temperature on characteristics of boron adsorption-desorption by minerals[J]. Acta Pedologica Sinica,2002,39(6):822 − 829. (in Chinese with English abstract)] doi: 10.3321/j.issn:0564-3929.2002.06.007

    CrossRef Google Scholar

    CHENG Dongsheng, ZHU Duanwei, LIU Wuding. Effects of temperature on characteristics of boron adsorption-desorption by minerals[J]. Acta Pedologica Sinica, 2002, 39(6): 822 − 829. (in Chinese with English abstract) doi: 10.3321/j.issn:0564-3929.2002.06.007

    CrossRef Google Scholar

    [50] BARTH S R. Geochemical and boron,oxygen and hydrogen isotopic constraints on the origin of salinity in groundwaters from the crystalline basement of the Alpine Foreland[J]. Applied Geochemistry,2000,15(7):937 − 952. doi: 10.1016/S0883-2927(99)00101-8

    CrossRef Google Scholar

    [51] ZHANG Xiaolang,LUO Xin,JIAO Jiujiu,et al. Hydrogeochemistry and fractionation of boron isotopes in the inter-dune aquifer system of Badain Jaran Desert,China[J]. Journal of Hydrology,2021,595:125984. doi: 10.1016/j.jhydrol.2021.125984

    CrossRef Google Scholar

    [52] SCHMITT A D,VIGIER N,LEMARCHAND D,et al. Processes controlling the stable isotope compositions of Li,B,Mg and Ca in plants,soils and waters:A review[J]. Comptes Rendus Geoscience,2012,344(11/12):704 − 722.

    Google Scholar

    [53] YU Xiaocan,LIU Chenglin,WANG Chunlian,et al. Origin of geothermal waters from the Upper Cretaceous to Lower Eocene strata of the Jiangling Basin,South China:Constraints by multi-isotopic tracers and water-rock interactions[J]. Applied Geochemistry,2021,124:104810. doi: 10.1016/j.apgeochem.2020.104810

    CrossRef Google Scholar

    [54] ZHENG Zhaoxian,ZHANG Yan,LI Bingyan. Sensitivity assessment of boron isotope as indicator of contaminated groundwater for hydraulic fracturing flowback fluids produced from the dameigou shale of the northern Qaidam Basin[J]. Sustainability,2023,15(6):5481. doi: 10.3390/su15065481

    CrossRef Google Scholar

    [55] VENGOSH A,STARINSKY A,KOLODNY Y,et al. Boron isotope variations during fractional evaporation of sea water:New constraints on the marine vs. nonmarine debate[J]. Geology,1992,20(9):799 − 802. doi: 10.1130/0091-7613(1992)020<0799:BIVDFE>2.3.CO;2

    CrossRef Google Scholar

    [56] 文静,邓天龙,王士强,等. 东台吉乃尔盐湖夏季卤水变温蒸发实验研究[J]. 盐业与化工,2011,40(1):22 − 26. [WEN Jing,DENG Tianlong,WANG Shiqiang,et al. Caloric evaporation test for the summer salt lake brine in the Dongtaijilaier salt lake[J]. Journal of Salt and Chemical Industry,2011,40(1):22 − 26. (in Chinese with English abstract)]

    Google Scholar

    WEN Jing, DENG Tianlong, WANG Shiqiang, et al. Caloric evaporation test for the summer salt lake brine in the Dongtaijilaier salt lake[J]. Journal of Salt and Chemical Industry, 2011, 40(1): 22 − 26. (in Chinese with English abstract)

    Google Scholar

    [57] Lu Hsuehyu. Hydrochemistry and boron isotopes as natural tracers in the study of groundwaters from North Chianan Plain,Taiwan[J]. Isotopes in Environmental and Health Studies,2014,50(1):18 − 32. doi: 10.1080/10256016.2013.821468

    CrossRef Google Scholar

    [58] XIAO Yingkai,VOCKE R D,SWIHART G H,et al. Boron volatilization and its isotope fractionation during evaporation of boron solution[J]. Analytical Chemistry,1997,69(24):5203 − 5207. doi: 10.1021/ac970621j

    CrossRef Google Scholar

    [59] BARTH S. Application of boron isotopes for tracing sources of anthropogenic contamination in groundwater[J]. Water Research,1998,32(3):685 − 690. doi: 10.1016/S0043-1354(97)00251-0

    CrossRef Google Scholar

    [60] 张崇耿,肖应凯. 硼同位素分馏及其在环境研究中的应用[J]. 盐湖研究,2002,10(2):54 − 60. [ZHANG Chonggeng,XIAO Yingkai. Boron isotope fractionation and its application in environmental study[J]. Journal of Salt Lake Research,2002,10(2):54 − 60. (in Chinese with English abstract)] doi: 10.3969/j.issn.1008-858X.2002.02.008

    CrossRef Google Scholar

    ZHANG Chonggeng, XIAO Yingkai. Boron isotope fractionation and its application in environmental study[J]. Journal of Salt Lake Research, 2002, 10(2): 54 − 60. (in Chinese with English abstract) doi: 10.3969/j.issn.1008-858X.2002.02.008

    CrossRef Google Scholar

    [61] 王会霞,史浙明,姜永海,等. 地下水污染识别与溯源指示因子研究进展[J]. 环境科学研究,2021,34(8):1886 − 1898. [WANG Huixia,SHI Zheming,JIANG Yonghai,et al. Research progress on indicator of groundwater pollution identification and traceability[J]. Research of Environmental Sciences,2021,34(8):1886 − 1898. (in Chinese with English abstract)]

    Google Scholar

    WANG Huixia, SHI Zheming, JIANG Yonghai, et al. Research progress on indicator of groundwater pollution identification and traceability[J]. Research of Environmental Sciences, 2021, 34(8): 1886 − 1898. (in Chinese with English abstract)

    Google Scholar

    [62] NIGRO A,SAPPA G,BARBIERI M. Boron isotopes in groundwater:Evidence from contamination and interaction with terrigenous–evaporitic sequence,east-central Italy[J]. Geochemistry:Exploration,Environment,Analysis,2018,18(4):343 − 350.

    Google Scholar

    [63] CARY L,CASANOVA J,GAALOUL N,et al. Combining boron isotopes and carbamazepine to trace sewage in salinized groundwater:A case study in cap bon,Tunisia[J]. Applied Geochemistry,2013,34:126 − 139. doi: 10.1016/j.apgeochem.2013.03.004

    CrossRef Google Scholar

    [64] VENTURI S,VASELLI O,TASSI F,et al. Geochemical and isotopic evidences for a severe anthropogenic boron contamination:A case study from castelluccio (Arezzo,central Italy)[J]. Applied Geochemistry,2015,63:146 − 157. doi: 10.1016/j.apgeochem.2015.08.008

    CrossRef Google Scholar

    [65] SEILER R L. Combined use of 15N and 18O of nitrate and 11B to evaluate nitrate contamination in groundwater[J]. Applied Geochemistry,2005,20(9):1626 − 1636. doi: 10.1016/j.apgeochem.2005.04.007

    CrossRef Google Scholar

    [66] BRIAND C,PLAGNES V,SEBILO M,et al. Combination of nitrate (N,O) and boron isotopic ratios with microbiological indicators for the determination of nitrate sources in karstic groundwater[J]. Environmental Chemistry,2013,10(5):365. doi: 10.1071/EN13036

    CrossRef Google Scholar

    [67] 马宝强,王潇,汤超. 多种环境示踪剂在识别地下水硝酸盐来源方面的应用[J]. 环境科技,2021,34(6):37 − 40. [MA Baoqiang,WANG Xiao,TANG Chao. Application of various environmental tracers in identifying nitrate sources of groundwater[J]. Environmental Science and Technology,2021,34(6):37 − 40. (in Chinese with English abstract)] doi: 10.3969/j.issn.1674-4829.2021.06.008

    CrossRef Google Scholar

    MA Baoqiang, WANG Xiao, TANG Chao. Application of various environmental tracers in identifying nitrate sources of groundwater[J]. Environmental Science and Technology, 2021, 34(6): 37 − 40. (in Chinese with English abstract) doi: 10.3969/j.issn.1674-4829.2021.06.008

    CrossRef Google Scholar

    [68] XUE Dongmei,BOTTE J,DE BAETS B,et al. Present limitations and future prospects of stable isotope methods for nitrate source identification in surface and groundwater[J]. Water Research,2009,43(5):1159 − 1170. doi: 10.1016/j.watres.2008.12.048

    CrossRef Google Scholar

    [69] MARTIN C,PONZEVERA E,HARLOW G. In situ lithium and boron isotope determinations in mica,pyroxene,and serpentine by LA-MC-ICP-MS[J]. Chemical Geology,2015,412:107 − 116. doi: 10.1016/j.chemgeo.2015.07.022

    CrossRef Google Scholar

    [70] ÁLVAREZ-AMADO F,TARDANI D,POBLETE-GONZÁLEZ C,et al. Hydrogeochemical processes controlling the water composition in a hyperarid environment:New insights from Li,B,and Sr isotopes in the salar de Atacama[J]. Science of the Total Environment,2022,835:155470. doi: 10.1016/j.scitotenv.2022.155470

    CrossRef Google Scholar

    [71] 肖应凯,SWIHART G H,肖云,等. 海水蒸发时蒸气相硼的浓度及硼同位素分馏研究[J]. 盐湖研究,2001,9(4):15 − 23. [XIAO Yingkai,SWIHART G H,XIAO Yun,et al. A preliminary study of the boron concentration on vapor and the isotopic fractionation of boron during evaporation of seawater[J]. Journal of Salt Lake Research,2001,9(4):15 − 23. (in Chinese with English abstract)] doi: 10.3969/j.issn.1008-858X.2001.04.003

    CrossRef Google Scholar

    XIAO Yingkai, SWIHART G H, XIAO Yun, et al. A preliminary study of the boron concentration on vapor and the isotopic fractionation of boron during evaporation of seawater[J]. Journal of Salt Lake Research, 2001, 9(4): 15 − 23. (in Chinese with English abstract) doi: 10.3969/j.issn.1008-858X.2001.04.003

    CrossRef Google Scholar

    [72] PURNOMO B J,PICHLER T,YOU C F. Boron isotope variations in geothermal systems on Java,Indonesia[J]. Journal of Volcanology and Geothermal Research,2016,311:1 − 8. doi: 10.1016/j.jvolgeores.2015.12.014

    CrossRef Google Scholar

    [73] VENGOSH A,SPIVACK A J,ARTZI Y,et al. Geochemical and boron,strontium,and oxygen isotopic constraints on the origin of the salinity in groundwater from the Mediterranean Coast of Israel[J]. Water Resources Research,1999,35(6):1877 − 1894. doi: 10.1029/1999WR900024

    CrossRef Google Scholar

    [74] HE Zekang,MA Chuanming,ZHOU Aiguo,et al. Using hydrochemical and stable isotopic (δ2H,δ18O,δ11B,and δ37Cl) data to understand groundwater evolution in an unconsolidated aquifer system in the southern coastal area of Laizhou Bay,China[J]. Applied Geochemistry,2018,90:129 − 141. doi: 10.1016/j.apgeochem.2018.01.003

    CrossRef Google Scholar

    [75] HOGAN J F,BLUM J D. Boron and lithium isotopes as groundwater tracers:A study at the fresh kills landfill,Staten Island,New York,USA[J]. Applied Geochemistry,2003,18(4):615 − 627. doi: 10.1016/S0883-2927(02)00153-1

    CrossRef Google Scholar

    [76] TAMBORSKI J,BROWN C,BOKUNIEWICZ H,et al. Investigating boron isotopes for identifying nitrogen sources supplied by submarine groundwater discharge to coastal waters[J]. Frontiers in Environmental Science,2020,8:H033 − 13.

    Google Scholar

    [77] PENNISI M,BIANCHINI G,MUTI A,et al. Behaviour of boron and strontium isotopes in groundwater–aquifer interactions in the Cornia Plain (Tuscany,Italy)[J]. Applied Geochemistry,2006,21(7):1169 − 1183. doi: 10.1016/j.apgeochem.2006.03.001

    CrossRef Google Scholar

    [78] 刘丛强. 流体-岩石反应体系中的硼同位素地球化学[J]. 地球化学,1996,25(1):93 − 100. [LIU Congqiang. Application of boron isotope geochemistry to water-rock interaction system[J]. Geochimica,1996,25(1):93 − 100. (in Chinese with English abstract)] doi: 10.3321/j.issn:0379-1726.1996.01.011

    CrossRef Google Scholar

    LIU Congqiang. Application of boron isotope geochemistry to water-rock interaction system[J]. Geochimica, 1996, 25(1): 93 − 100. (in Chinese with English abstract) doi: 10.3321/j.issn:0379-1726.1996.01.011

    CrossRef Google Scholar

    [79] CHAUSSIDON M,ALBARÈDE F. Secular boron isotope variations in the continental crust:An ion microprobe study[J]. Earth and Planetary Science Letters,1992,108(4):229 − 241. doi: 10.1016/0012-821X(92)90025-Q

    CrossRef Google Scholar

    [80] ERCOLANI C,LEMARCHAND D,DOSSETO A. Insights on catchment-wide weathering regimes from boron isotopes in riverine material[J]. Geochimica et Cosmochimica Acta,2019,261:35 − 55. doi: 10.1016/j.gca.2019.07.002

    CrossRef Google Scholar

    [81] NEGREL P,PETELET-GIRAUD E,KLOPPMANN W,et al. Boron isotope signatures in the coastal groundwaters of French Guiana[J]. Water Resources Research,2002,38(11):44 − 1-44-5.

    Google Scholar

    [82] ANDRÉ L,MANCEAU J C,BOURBON P,et al. Cyclic variations of sulfate and boron concentrations and isotopes in deep groundwaters in the Aquitaine Basin,France[J]. Applied Geochemistry,2020,123:104818. doi: 10.1016/j.apgeochem.2020.104818

    CrossRef Google Scholar

    [83] MEREDITH K,MORIGUTI T,TOMASCAK P,et al. The lithium,boron and strontium isotopic systematics of groundwaters from an arid aquifer system:Implications for recharge and weathering processes[J]. Geochimica et Cosmochimica Acta,2013,112:20 − 31. doi: 10.1016/j.gca.2013.02.022

    CrossRef Google Scholar

    [84] HOU Gang,YAN Hui,YU Zhengzheng. Application of AI identification method and technology to boron isotope geochemical process and provenance tracing of water pollution in river basins[J]. Sustainability,2023,15(7):5942. doi: 10.3390/su15075942

    CrossRef Google Scholar

    [85] 刘明亮,正安婷,尚建波,等. 高温地热流体中硼的地球化学研究进展[J]. 地球科学,2023,48(3):878 − 893. [LIU Mingliang,ZHENG Anting,SHANG Jianbo,et al. Progress in study of boron geochemistry in high temperature geothermal fluids[J]. Earth Science,2023,48(3):878 − 893. (in Chinese with English abstract)]

    Google Scholar

    LIU Mingliang, ZHENG Anting, SHANG Jianbo, et al. Progress in study of boron geochemistry in high temperature geothermal fluids[J]. Earth Science, 2023, 48(3): 878 − 893. (in Chinese with English abstract)

    Google Scholar

    [86] LEEMAN W P,VOCKE R D,MCKIBBEN M A. Boron isotopic fractionation between coexisting vapor and liquid in natural geothermal systems[C]// 7th International Symp on Water-Rock Interaction. Park City : Int Assoc Geochem & Cosmochem, 1992: 1007-1010.

    Google Scholar

    [87] BATTISTEL M,HURWITZ S,EVANS W C,et al. The chemistry and isotopic composition of waters in the low-enthalpy geothermal system of Cimino-Vico Volcanic District,Italy[J]. Journal of Volcanology and Geothermal Research,2016,328:222 − 229. doi: 10.1016/j.jvolgeores.2016.11.005

    CrossRef Google Scholar

    [88] TAN Ying,JIANG Xiaowei,JI Taotao,et al. Identifying the source and fate of boron in geothermal water:Evidence from B/Na and B isotopes[J]. Science of the Total Environment,2024,914:169629. doi: 10.1016/j.scitotenv.2023.169629

    CrossRef Google Scholar

    [89] 周媛,闫瑞霞,许蕊,等. 水源性碘及氟对甲状腺疾病的影响[J]. 中华地方病学杂志,2019,38(3):249 − 252. [ZHOU Yuan,YAN Ruixia,XU Rui,et al. Effects of water-borne iodine and fluoride on thyroid diseases[J]. Chinese Journal of Endemiology,2019,38(3):249 − 252. (in Chinese with English abstract)]

    Google Scholar

    ZHOU Yuan, YAN Ruixia, XU Rui, et al. Effects of water-borne iodine and fluoride on thyroid diseases[J]. Chinese Journal of Endemiology, 2019, 38(3): 249 − 252. (in Chinese with English abstract)

    Google Scholar

    [90] 国家质量监督检验检疫总局,中国国家标准化管理委员会. 地下水质量标准:GB/T 14848—2017[S]. 北京: 中国标准出版社,2017. [General Administration of Quality Supervision,Inspection and Quarantine of the People’s Republic of China,Standardization Administration of the People’s Republic of China. Standard for groundwater quality: GB/T 14848—2017[S]. Beijing: Standards Press of China,2017. (in Chinese)]

    Google Scholar

    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Standard for groundwater quality: GB/T 14848—2017[S]. Beijing: Standards Press of China, 2017. (in Chinese)

    Google Scholar

    [91] LIU Mingliang,GUO Qinghai,LUO Li,et al. Environmental impacts of geothermal waters with extremely high boron concentrations:Insight from a case study in Tibet,China[J]. Journal of Volcanology and Geothermal Research,2020,397:106887. doi: 10.1016/j.jvolgeores.2020.106887

    CrossRef Google Scholar

    [92] ZANGO M S,SUNKARI E D,ABU M,et al. Hydrogeochemical controls and human health risk assessment of groundwater fluoride and boron in the semi-arid North East region of Ghana[J]. Journal of Geochemical Exploration,2019,207:106363. doi: 10.1016/j.gexplo.2019.106363

    CrossRef Google Scholar

    [93] THAPA R,GUPTA S,KAUR H. Geochemical pathways of fluoride and boron in the alluvialaquifer of the dwarka river basin,India[J]. Current Science,2020,118(8):1292. doi: 10.18520/cs/v118/i8/1292-1296

    CrossRef Google Scholar

    [94] 邢世平,郭华明,吴萍,等. 化隆—循化盆地不同类型含水层组高氟地下水的分布及形成过程[J]. 地学前缘,2022,29(3):115 − 128. [XING Shiping,GUO Huaming,WU Ping,et al. Distribution and formation processes of high fluoride groundwater in different types of aquifers in the Hualong-Xunhua Basin[J]. Earth Science Frontiers,2022,29(3):115 − 128. (in Chinese with English abstract)]

    Google Scholar

    XING Shiping, GUO Huaming, WU Ping, et al. Distribution and formation processes of high fluoride groundwater in different types of aquifers in the Hualong-Xunhua Basin[J]. Earth Science Frontiers, 2022, 29(3): 115 − 128. (in Chinese with English abstract)

    Google Scholar

    [95] 郭华明,倪萍,贾永锋,等. 内蒙古河套盆地地表水-浅层地下水化学特征及成因[J]. 现代地质,2015,29(2):229 − 237. [GUO Huaming,NI Ping,JIA Yongfeng,et al. Characteristics and their causes of surface water-groundwater geochemistry in the Hetao Basin,Inner Mongolia[J]. Geoscience,2015,29(2):229 − 237. (in Chinese with English abstract)] doi: 10.3969/j.issn.1000-8527.2015.02.001

    CrossRef Google Scholar

    GUO Huaming, NI Ping, JIA Yongfeng, et al. Characteristics and their causes of surface water-groundwater geochemistry in the Hetao Basin, Inner Mongolia[J]. Geoscience, 2015, 29(2): 229 − 237. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-8527.2015.02.001

    CrossRef Google Scholar

    [96] 贾永锋,郭华明. 高砷地下水研究的热点及发展趋势[J]. 地球科学进展,2013,28(1):51 − 61. [JIA Yongfeng,GUO Huaming. Hot topics and trends in the study of high arsenic groundwater[J]. Advances in Earth Science,2013,28(1):51 − 61. (in Chinese with English abstract)] doi: 10.11867/j.issn.1001-8166.2013.01.0051

    CrossRef Google Scholar

    JIA Yongfeng, GUO Huaming. Hot topics and trends in the study of high arsenic groundwater[J]. Advances in Earth Science, 2013, 28(1): 51 − 61. (in Chinese with English abstract) doi: 10.11867/j.issn.1001-8166.2013.01.0051

    CrossRef Google Scholar

    [97] SMEDLEY P L,KINNIBURGH D G. A review of the source,behaviour and distribution of arsenic in natural waters[J]. Applied Geochemistry,2002,17(5):517 − 568. doi: 10.1016/S0883-2927(02)00018-5

    CrossRef Google Scholar

    [98] 刘明亮. 西藏典型高温水热系统中硼的地球化学研究[D]. 武汉:中国地质大学(武汉),2018. [LIU Mingliang. Boron geochemistry of the geothermal waters from typical hydrothermal systems in Tibet [D]. Wuhan:China University of Geosciences(Wuhan),2018. (in Chinese with English abstract)]

    Google Scholar

    LIU Mingliang. Boron geochemistry of the geothermal waters from typical hydrothermal systems in Tibet [D]. Wuhan: China University of Geosciences(Wuhan), 2018. (in Chinese with English abstract)

    Google Scholar

    [99] YUCE G,UGURLUOGLU YASIN D. Assessment of an increase in boron and arsenic concentrations at the discharge area of Na-borate Mine (Kirka-Eskisehir,Turkey)[J]. Terrestrial,Atmospheric and Oceanic Sciences,2012,23(6):703. doi: 10.3319/TAO.2012.05.10.01(Hy)

    CrossRef Google Scholar

    [100] KOURAS A,KATSOYIANNIS I,VOUTSA D. Distribution of arsenic in groundwater in the area of Chalkidiki,Northern Greece[J]. Journal of Hazardous Materials,2007,147(3):890 − 899. doi: 10.1016/j.jhazmat.2007.01.124

    CrossRef Google Scholar

    [101] DENG Yamin,WANG Yanxin,MA Teng. Isotope and minor element geochemistry of high arsenic groundwater from Hangjinhouqi,the Hetao Plain,Inner Mongolia[J]. Applied Geochemistry,2009,24(4):587 − 599. doi: 10.1016/j.apgeochem.2008.12.018

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3)

Article Metrics

Article views(205) PDF downloads(28) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint