2024 Vol. 51, No. 4
Article Contents

FAN Qi, YUAN Linshan, ZHAO Cunfa, TIAN Rong. Study on optimization and time effect of ground-source heat pump system in Nanjing[J]. Hydrogeology & Engineering Geology, 2024, 51(4): 233-242. doi: 10.16030/j.cnki.issn.1000-3665.202311052
Citation: FAN Qi, YUAN Linshan, ZHAO Cunfa, TIAN Rong. Study on optimization and time effect of ground-source heat pump system in Nanjing[J]. Hydrogeology & Engineering Geology, 2024, 51(4): 233-242. doi: 10.16030/j.cnki.issn.1000-3665.202311052

Study on optimization and time effect of ground-source heat pump system in Nanjing

  • The reasonable design of hole spacing for buried heat exchangers is the first issue to be solved when developing shallow geothermal energy in the Nanjing erosion and accumulation plain area. In order to obtain the hole spacing for design reference and ensure ground-source heat pump system to operate long and stably, based on the ground-source heat pump test project at No. 102 Shimenkan, Qinhuai District of Nanjing, the hole spacing of ground heat exchanger and time effect of 10-year operation with ground-source heat pump system have been studied with the temperature monitoring system and numerical simulation method, and the hole spacing of ground heat exchanger and the operation mode have been obtained. The results show that : (1) during the complete operation cycle of summer, post summer recovery, winter and post winter recovery working conditions of ground-source heat pump system, formation temperature undergoes periodic change of heating, cooling, slow cooling and basic recovery. (2) The economical and reasonable hole spacing of ground heat exchanger is 4.0 meters suitable for the erosion accumulation plain of Nanjing. (3) In order to eliminate the heat accumulation during the summer working condition and promote the service life of ground-source heat pump system, the operation mode of equal cooling time in the summer and heating time in the winter is suggested, and the post summer recovery working condition is extended as much as possible. This study can provide scientific basis for the design of buried pipes and shallow geothermal energy engineering research in the Nanjing area.

  • 加载中
  • [1] 韩再生,冉伟彦,佟红兵,等. 浅层地热能勘查评价[J]. 中国地质,2007,34(6):1115 − 1121. [HAN Zaisheng,RAN Weiyan,TONG Hongbing,et al. Exploration and evaluation of shallow geothermal energy[J]. Geolohy in China,2007,34(6):1115 − 1121. (in Chinese with English abstract)]

    Google Scholar

    HAN Zaisheng, RAN Weiyan, TONG Hongbing, et al. Exploration and evaluation of shallow geothermal energy[J]. Geolohy in China, 2007, 34(6): 1115 − 1121. (in Chinese with English abstract)

    Google Scholar

    [2] 卫万顺,李翔. 未来10~15年中国浅层地热能发展方向战略分析[J]. 城市地质,2021,16(1):1 − 8. [WEI Wanshun,LI Xiang. Analysis on the development strategy of shallow geothermal energy in China in the next 10~15 years[J]. Urban Geology,2021,16(1):1 − 8. (in Chinese with English abstract)]

    Google Scholar

    WEI Wanshun, LI Xiang. Analysis on the development strategy of shallow geothermal energy in China in the next 10~15 years[J]. Urban Geology, 2021, 16(1): 1 − 8. (in Chinese with English abstract)

    Google Scholar

    [3] YU Yiqiang. Study on ground source heat pump system zoning and methods in the Northwest of Shandong Province[J]. Journal of Groundwater Science and Engineering,2018,6(3):171 − 177.

    Google Scholar

    [4] ZHAO Fanghua. Research on single hole heat transfer power of ground source heat pump system[J]. Journal of Groundwater Science and Engineering,2018,6(1):65 − 70.

    Google Scholar

    [5] WANG Guiling, WANG Wanli, ZHANG Wei, et al. The status quo and prospect of geothermal resources exploration and development in Beijing-Tianjin-Hebei region in China[J]. China Geology,2020,3(1):173 − 181.

    Google Scholar

    [6] 朱巍,张静,唐雯,等,城市浅层地热能开发地质环境问题研究[J]. 地质与勘探,2024,60(1):113-120. [ZHU Wei,ZHANG Jing,TANG Wen,et al. Geological environment problems of urban shallow geothermal energy development[J]. Geology and Exploration,2024,60(1):113-120. (in Chinese with English abstract)]

    Google Scholar

    ZHU Wei, ZHANG Jing, TANG Wen, et al. Geological environment problems of urban shallow geothermal energy development[J]. Geology and Exploration, 2024, 60(1): 113-120. (in Chinese with English abstract)

    Google Scholar

    [7] 蔺文静,吴庆华,王贵玲. 我国浅层地温能潜力评价及其环境效应分析[J]. 干旱区资源与环境,2012,26(3):57 − 61. [LIN Wenjing,WU Qinghua,WANG Guiling. Shallow geothermal energy resource potential evaluation and environmental effect in China[J]. Journal of Arid Land Resources and Environment,2012,26(3):57 − 61. (in Chinese with English abstract)]

    Google Scholar

    LIN Wenjing, WU Qinghua, WANG Guiling. Shallow geothermal energy resource potential evaluation and environmental effect in China[J]. Journal of Arid Land Resources and Environment, 2012, 26(3): 57 − 61. (in Chinese with English abstract)

    Google Scholar

    [8] 王婉丽,王贵玲,朱喜,等. 中国省会城市浅层地热能开发利用条件及潜力评价[J]. 中国地质,2017,44(6):1062 − 1073. [WANG Wanli,WANG Guiling,ZHU Xi,et al. Characteristics and potential of shallow geothermal resources in provincial capital cities of China[J]. Geology in China,2017,44(6):1062 − 1073. (in Chinese with English abstract)] doi: 10.12029/gc20170602

    CrossRef Google Scholar

    WANG Wanli, WANG Guiling, ZHU Xi, et al. Characteristics and potential of shallow geothermal resources in provincial capital cities of China[J]. Geology in China, 2017, 44(6): 1062 − 1073. (in Chinese with English abstract) doi: 10.12029/gc20170602

    CrossRef Google Scholar

    [9] 宋小庆,段启杉. 贵阳市土壤源浅层地温能适宜性分区及资源量评价[J]. 长江科学院院报,2015,32(12):14 − 17. [SONG Xiaoqing,DUAN Qishan. Suitability classification and resource evaluation of shallow geothermal energy from soils in Guiyang[J]. Journal of Yangtze River Scientific Research Institute,2015,32(12):14 − 17. (in Chinese with English abstract)]

    Google Scholar

    SONG Xiaoqing, DUAN Qishan. Suitability classification and resource evaluation of shallow geothermal energy from soils in Guiyang[J]. Journal of Yangtze River Scientific Research Institute, 2015, 32(12): 14 − 17. (in Chinese with English abstract)

    Google Scholar

    [10] 鄂建,陈明珠,杨露梅,等. 南京浅层地温能开发利用现状研究[J]. 地质学刊,2015,39(2):339 − 342. [E Jian,CHEN Mingzhu,YANG Lumei,et al. Exploitation and utilization of shallow geothermal energy in Nanjing[J]. Journal of Geology,2015,39(2):339 − 342. (in Chinese with English abstract)] doi: 10.3969/j.issn.1674-3636.2015.02.339

    CrossRef Google Scholar

    E Jian, CHEN Mingzhu, YANG Lumei, et al. Exploitation and utilization of shallow geothermal energy in Nanjing[J]. Journal of Geology, 2015, 39(2): 339 − 342. (in Chinese with English abstract) doi: 10.3969/j.issn.1674-3636.2015.02.339

    CrossRef Google Scholar

    [11] 张杰,王兴春,赵敬洗,等. 河北沽源、饶阳地区浅层地温场特征[J]. 物探与化探,2013,37(2):237-241. [ZHANG Jie,WANG Xingchun,ZHAO JingXi,et al. An analysis of the characteristics of shallow geothermal fields in Guyuan and Raoyang,Hebei Province[J]. Geophysical & Geochemical exploration,2013,37(2):237-241. (in Chinese with English abstract)]

    Google Scholar

    ZHANG Jie, WANG Xingchun, ZHAO JingXi, et al. An analysis of the characteristics of shallow geothermal fields in Guyuan and Raoyang, Hebei Province[J]. Geophysical & Geochemical exploration, 2013, 37(2): 237-241. (in Chinese with English abstract)

    Google Scholar

    [12] 杨露梅,鄂建,朱明君,等. 典型地埋管系统模拟工况地温场特征研究[J]. 水文地质工程地质,2017,44(2):178 − 183. [YANG Lumei,E Jian,ZHU Mingjun,et al. Characteristics of the ground temperature of the typical ground-source heat pumps system in Nanjing[J]. Hydrogeology & Engineering Geology,2017,44(2):178 − 183. (in Chinese with English abstract)]

    Google Scholar

    YANG Lumei, E Jian, ZHU Mingjun, et al. Characteristics of the ground temperature of the typical ground-source heat pumps system in Nanjing[J]. Hydrogeology & Engineering Geology, 2017, 44(2): 178 − 183. (in Chinese with English abstract)

    Google Scholar

    [13] 刘爱华,佟红兵,冉伟彦. 北京某垂直地埋管区地温场变化规律研究[J]. 水文地质工程地质,2016,43(4):165 − 170. [LIU Aihua,TONG Hongbing,RAN Weiyan. A study of ground temperature changes in a vertical heat exchanger area of Beijing[J]. Hydrogeology & Engineering Geology,2016,43(4):165 − 170. (in Chinese with English abstract)]

    Google Scholar

    LIU Aihua, TONG Hongbing, RAN Weiyan. A study of ground temperature changes in a vertical heat exchanger area of Beijing[J]. Hydrogeology & Engineering Geology, 2016, 43(4): 165 − 170. (in Chinese with English abstract)

    Google Scholar

    [14] 李新国,陈志豪,赵军,等. 桩埋管与井埋管实验与数值模拟[J]. 天津大学学报,2005,38(8):679 − 683. [LI Xinguo,CHEN Zhihao,ZHAO Jun,et al. Experiment and numerical simulation on U-vertical ground coupled heat exchanger with sandstone and cement backfills[J]. Journal of Tianjin University,2005,38(8):679 − 683. (in Chinese with English abstract)]

    Google Scholar

    LI Xinguo, CHEN Zhihao, ZHAO Jun, et al. Experiment and numerical simulation on U-vertical ground coupled heat exchanger with sandstone and cement backfills[J]. Journal of Tianjin University, 2005, 38(8): 679 − 683. (in Chinese with English abstract)

    Google Scholar

    [15] 李嘉舒,戴传山,雷海燕,等. 地埋管换热器动态热负荷下地层温度场的解析解[J]. 水文地质工程地质,2023,50(2):198 − 206. [LI Jiashu,DAI Chuanshan,LEI Haiyan,et al. Analytical solution of formation temperature distribution under dynamic heat load of borehole heat exchangers[J]. Hydrogeology & Engineering Geology,2023,50(2):198 − 206. (in Chinese with English abstract)]

    Google Scholar

    LI Jiashu, DAI Chuanshan, LEI Haiyan, et al. Analytical solution of formation temperature distribution under dynamic heat load of borehole heat exchangers[J]. Hydrogeology & Engineering Geology, 2023, 50(2): 198 − 206. (in Chinese with English abstract)

    Google Scholar

    [16] 李济琛,陈明珠,汤强,等. 南京市浅层地温场研究——基于分布式光纤测温技术[J]. 中国地质,2021,48(3):939 − 947. [LI Jichen,CHEN Mingzhu,TANG Qiang,et al. Study on shallow geothermal field in Nanjing:Based on distributed optical fiber temperature measurement system[J]. Geology in China,2021,48(3):939 − 947. (in Chinese with English abstract)]

    Google Scholar

    LI Jichen, CHEN Mingzhu, TANG Qiang, et al. Study on shallow geothermal field in Nanjing: Based on distributed optical fiber temperature measurement system[J]. Geology in China, 2021, 48(3): 939 − 947. (in Chinese with English abstract)

    Google Scholar

    [17] 张庆,李云峰,龚绪龙,等. 基于浅层地温及原位热物性参数地温场预测[J]. 地质通报,2021,40(10):1713 − 1719. [ZHANG Qing,LI Yunfeng,GONG Xulong,et al. Ground temperature prediction based on shallow-surface ground temperature and in-situ thermophysical parameters[J]. Geological Bulletin of China,2021,40(10):1713 − 1719. (in Chinese with English abstract)]

    Google Scholar

    ZHANG Qing, LI Yunfeng, GONG Xulong, et al. Ground temperature prediction based on shallow-surface ground temperature and in-situ thermophysical parameters[J]. Geological Bulletin of China, 2021, 40(10): 1713 − 1719. (in Chinese with English abstract)

    Google Scholar

    [18] 李继涛. 华东地质局机械修造中心办公综合楼项目岩土工程勘察报告[R]. 南京:南京勘察工程有限公司,2004:3 − 9. [LI Jitao. Geotechnical investigation report on the office complex building project of the machinery repair center of east China geological bureau[R]. Nanjing:Nanjing Survey Engineering Co. Ltd.,2004:3 − 9. (in Chinese)]

    Google Scholar

    LI Jitao. Geotechnical investigation report on the office complex building project of the machinery repair center of east China geological bureau[R]. Nanjing: Nanjing Survey Engineering Co. Ltd., 2004: 3 − 9. (in Chinese)

    Google Scholar

    [19] 朱娜. 地源热泵地埋管换热系统热堆积分析[D]. 武汉:华中科技大学,2007. [ZHU Na. Analysing heat accumulate in the groud heat exchanger system of ground source heat pump[D]. Wuhan:Huazhong University of Science and Technology,2007. (in Chinese with English abstract)]

    Google Scholar

    ZHU Na. Analysing heat accumulate in the groud heat exchanger system of ground source heat pump[D]. Wuhan: Huazhong University of Science and Technology, 2007. (in Chinese with English abstract)

    Google Scholar

    [20] 曾宪斌. 地源热泵垂直U型埋管换热器周围土壤温度场的数值模型[D]. 重庆:重庆大学,2007. [ZENG Xianbin. Numerical simulation on soil temperature field around vertical U-tube heat exchange used in ground source heat pump[D]. Chongqing:Chongqing University,2007. (in Chinese with English abstract)]

    Google Scholar

    ZENG Xianbin. Numerical simulation on soil temperature field around vertical U-tube heat exchange used in ground source heat pump[D]. Chongqing: Chongqing University, 2007. (in Chinese with English abstract)

    Google Scholar

    [21] 纪世昌. 土壤源热泵U型垂直埋管温度场数值模拟研究[D]. 武汉:华中科技大学,2006. [JI Shichang. The study of numeric simulation of temperature field of U-vertical buried pipe of GSHP[D]. Wuhan:Huazhong University of Science and Technology,2006. (in Chinese with English abstract)]

    Google Scholar

    JI Shichang. The study of numeric simulation of temperature field of U-vertical buried pipe of GSHP[D]. Wuhan: Huazhong University of Science and Technology, 2006. (in Chinese with English abstract)

    Google Scholar

    [22] 郎林智,段新胜,陈鹏宇,等. U型管传热数值模拟及恒热流模型分析[J]. 山东建筑大学学报,2010,25(5):539 − 542. [LANG Linzhi,DUAN Xinsheng,CHEN Pengyu,et al. Numerical simulation of U-tube and analysis of constant flux models[J]. Journal of Shandong Jianzhu University,2010,25(5):539 − 542. (in Chinese with English abstract)]

    Google Scholar

    LANG Linzhi, DUAN Xinsheng, CHEN Pengyu, et al. Numerical simulation of U-tube and analysis of constant flux models[J]. Journal of Shandong Jianzhu University, 2010, 25(5): 539 − 542. (in Chinese with English abstract)

    Google Scholar

    [23] 张鑫. 垂直式地埋管换热理论及岩土热物性参数试验方法[D]. 西安:长安大学,2012. [ZHANG Xin. The theory on heat transfer of vertical ground heat exchanger and the test method for parameter of the rock-soil thermal properties[D]. Xi’an:Chang’an University,2012. (in Chinese with English abstract)]

    Google Scholar

    ZHANG Xin. The theory on heat transfer of vertical ground heat exchanger and the test method for parameter of the rock-soil thermal properties[D]. Xi’an: Chang’an University, 2012. (in Chinese with English abstract)

    Google Scholar

    [24] 马子涵,邢会林,靳国栋,等. 基于微地震数据的增强型地热储层参数及采热的数值模拟研究[J]. 水文地质工程地质,2022,49(6):190 − 199. [MA Zihan,XING Huilin,JIN Guodong,et al. A study of numerical simulations for enhanced geothermal reservoir parameters and thermal extraction based on microseismic data[J]. Hydrogeology & Engineering Geology,2022,49(6):190 − 199. (in Chinese with English abstract)]

    Google Scholar

    MA Zihan, XING Huilin, JIN Guodong, et al. A study of numerical simulations for enhanced geothermal reservoir parameters and thermal extraction based on microseismic data[J]. Hydrogeology & Engineering Geology, 2022, 49(6): 190 − 199. (in Chinese with English abstract)

    Google Scholar

    [25] 王华军,赵军,沈亮. 地源热泵系统长期运行特性的实验研究[J]. 华北电力大学学报,2007,34(2):52 − 54. [WANG Huajun,ZHAO Jun,SHEN Liang. Experimental investigation on long term performance of ground source heat pump system[J]. Journal of North China Electric Power University,2007,34(2):52 − 54,(in Chinese with English abstract)]

    Google Scholar

    WANG Huajun, ZHAO Jun, SHEN Liang. Experimental investigation on long term performance of ground source heat pump system[J]. Journal of North China Electric Power University, 2007, 34(2): 52 − 54, (in Chinese with English abstract)

    Google Scholar

    [26] 郭炳跃,金鹏,祁超,等. 江苏高邮地埋管热响应试验及浅层地热能资源评价[J]. 地质学刊,2022,46(1):96 − 102. [GUO Bingyue,JIN Peng,QI Chao,et al. Thermal response test of buried tubes and evaluation of shallow geothermal energy resources in Gaoyou,Jiangsu Province[J]. Journal of Geology,2022,46(1):96 − 102. (in Chinese with English abstract)]

    Google Scholar

    GUO Bingyue, JIN Peng, QI Chao, et al. Thermal response test of buried tubes and evaluation of shallow geothermal energy resources in Gaoyou, Jiangsu Province[J]. Journal of Geology, 2022, 46(1): 96 − 102. (in Chinese with English abstract)

    Google Scholar

    [27] 张春雷. U型管地源热泵系统性能及地下温度场的研究[D]. 天津:天津大学,2005. [ZHANG Chunlei. Study on the system performance of U-type ground source heat pump and ground temperature field[D]. Tianjin:Tianjin University,2005. (in Chinese with English abstract)]

    Google Scholar

    ZHANG Chunlei. Study on the system performance of U-type ground source heat pump and ground temperature field[D]. Tianjin: Tianjin University, 2005. (in Chinese with English abstract)

    Google Scholar

    [28] 刘红卫,徐贵来,张睛,等. 回归分析在地源热泵系统地温场研究中的应用[J]. 工程地球物理学报,2009,6(4):512 − 515. [LIU Hongwei,XU Guilai,ZHANG Qing,et al. The application of multiple regression analysis in the geothermal field[J]. Chinese Journal of Engineering Geophysics,2009,6(4):512 − 515. (in Chinese with English abstract)]

    Google Scholar

    LIU Hongwei, XU Guilai, ZHANG Qing, et al. The application of multiple regression analysis in the geothermal field[J]. Chinese Journal of Engineering Geophysics, 2009, 6(4): 512 − 515. (in Chinese with English abstract)

    Google Scholar

    [29] 赵海丰,唐荣彬,桂树强,等. 双U型埋管能源桩桩周岩土体温度场分布特征试验研究[J]. 土木建筑与环境工程,2016,38(5):157 − 163. [ZHAO Haifeng,TANG Rongbin,GUI Shuqiang,et al. Experiment analysis of ground temperature distribution of double-U type energy piles[J]. Journal of Civil and Environmental Engineering,2016,38(5):157 − 163. (in Chinese with English abstract)]

    Google Scholar

    ZHAO Haifeng, TANG Rongbin, GUI Shuqiang, et al. Experiment analysis of ground temperature distribution of double-U type energy piles[J]. Journal of Civil and Environmental Engineering, 2016, 38(5): 157 − 163. (in Chinese with English abstract)

    Google Scholar

    [30] 刘春雷,王贵玲,王婉丽,等. 基于现场热响应测试方法的地下岩土热物性分析[J]. 吉林大学学报(地球科学版),2014,44(5):1602 − 1608. [LIU Chunlei,WANG Guiling,WANG Wanli,et al. Analysis of soil thermal properties with In-Situ Thermal Response test method[J]. Journal of Jilin University(Earth Science Edition),2014,44(5):1602 − 1608. (in Chinese with English abstract)]

    Google Scholar

    LIU Chunlei, WANG Guiling, WANG Wanli, et al. Analysis of soil thermal properties with In-Situ Thermal Response test method[J]. Journal of Jilin University(Earth Science Edition), 2014, 44(5): 1602 − 1608. (in Chinese with English abstract)

    Google Scholar

    [31] 赵军,陈雁,李新国. 基于跨季节地下蓄热系统的模拟对热储利用模式的优化[J]. 华北电力大学学报,2007,34(2):74 − 77. [ZHAO Jun,CHEN Yan,LI Xinguo. Optimization for heat storage operating modes based on simulation of seasonal underground storage of solar-GSHP system[J]. Journal of North China Electric Power University,2007,34(2):74 − 77. (in Chinese with English abstract)]

    Google Scholar

    ZHAO Jun, CHEN Yan, LI Xinguo. Optimization for heat storage operating modes based on simulation of seasonal underground storage of solar-GSHP system[J]. Journal of North China Electric Power University, 2007, 34(2): 74 − 77. (in Chinese with English abstract)

    Google Scholar

    [32] 刘炳成,刘伟,李庆领. 温度效应对非饱和土壤中湿分迁移影响的实验[J]. 华中理工大学学报,2006,34(4):106 − 108. [LIU Bingcheng,LIU Wei,LI Qingling. Experimental Studies on the influences of temperature on moisture transport in unsaturated porous soil[J]. Huazhong University of Science and Technology (Nature Science Edition ),2006,34(4):106 − 108. (in Chinese with English abstract)]

    Google Scholar

    LIU Bingcheng, LIU Wei, LI Qingling. Experimental Studies on the influences of temperature on moisture transport in unsaturated porous soil[J]. Huazhong University of Science and Technology (Nature Science Edition ), 2006, 34(4): 106 − 108. (in Chinese with English abstract)

    Google Scholar

    [33] 陈宝义,岳韬,曹品鲁,等. 挤密条件下U型地埋管换热器换热效率的理论分析及数值模拟[J]. 吉林大学学报(地球科学版),2016,46(6):1808 − 1814. [CHEN Baoyi,YUE Tao,CAO Pinlu,et al. Theoretical analysis and numerical simulation of heat exchange efficiency of U-tube ground heat exchanger under the condition of soil compaction[J]. Journal of Jilin University (Earth Science Edition),2016,46(6):1808 − 1814. (in Chinese with English abstract)]

    Google Scholar

    CHEN Baoyi, YUE Tao, CAO Pinlu, et al. Theoretical analysis and numerical simulation of heat exchange efficiency of U-tube ground heat exchanger under the condition of soil compaction[J]. Journal of Jilin University (Earth Science Edition), 2016, 46(6): 1808 − 1814. (in Chinese with English abstract)

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Tables(2)

Article Metrics

Article views(636) PDF downloads(121) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint