2024 Vol. 51, No. 4
Article Contents

ZUO Yumei, CHENG Jianmei, ZHAO Ruirui, LIU Haotian, WU Fan, XIE Xianjun, LIANG Tengfei. The impacts of deep faults on fluid migration, heat accumulation with implication to genesis of Yingshan geothermal system[J]. Hydrogeology & Engineering Geology, 2024, 51(4): 220-232. doi: 10.16030/j.cnki.issn.1000-3665.202309014
Citation: ZUO Yumei, CHENG Jianmei, ZHAO Ruirui, LIU Haotian, WU Fan, XIE Xianjun, LIANG Tengfei. The impacts of deep faults on fluid migration, heat accumulation with implication to genesis of Yingshan geothermal system[J]. Hydrogeology & Engineering Geology, 2024, 51(4): 220-232. doi: 10.16030/j.cnki.issn.1000-3665.202309014

The impacts of deep faults on fluid migration, heat accumulation with implication to genesis of Yingshan geothermal system

More Information
  • The distribution of the deep geothermal field and the tectonic thermal control mode in the Yingshan area were not understood systematically, which would bring in constraints to the sustainable exploration of local geothermal resources. Based on the field survey on continuous temperature, fracture measurements in the outcrops of granite rock, slug-test, and pumping test in the boreholes, a three-dimensional model coupling fluid flow and heat transfer process in fractured rock reservoir was established. Then the distribution of fluid pressure temperature and the Darcy velocity in the whole geothermal reservoir were calculated considering different treatment combinations of main faults. The results show that the deep temperature field and fluid pressure distribution are greatly affected by the faults system. At the location of bedrock and impermeable fault, the fluid movement is very weak, and the heat transfer is mainly controlled by heat conduction, while in the high permeable fault, it is mainly controlled by heat convection. Low temperature and fluid pressure occurred in the deep, high-permeable fault zone whereas high fluid pressure occurred in the impermeable fault zone. At a depth larger than 2000 m, the zones with high temperatures and intense hydraulic exchange coincide with the conductive fault zones, which indicates that the high-permeable faults are the most important channel for seepage and heat transfer in the reservoir. Therefore, the northeast faults are the dominant channel for fluid migration and heat conduction in the Yinshan area. Hot water migrates upward along the northeast faults and is blocked by the north-south fault. The hot spring is formed at the intersecting position of two groups of faults. This study is helpful for scientific, sustainable exploration of geothermal resources in the Yingshan area.

  • 加载中
  • [1] 拓明明,周训,郭娟,等. 重庆温泉及地下热水的分布及成因[J]. 水文地质工程地质,2018,45(1):165 − 172. [TA Mingming,ZHOU Xun,GUO Juan,et al. Occurrence and formation of the hot springs and thermal groundwater in Chongqing[J]. Hydrogeology & Engineering Geology,2018,45(1):165 − 172. (in Chinese with English abstract)]

    Google Scholar

    TA Mingming, ZHOU Xun, GUO Juan, et al. Occurrence and formation of the hot springs and thermal groundwater in Chongqing[J]. Hydrogeology & Engineering Geology, 2018, 45(1): 165 − 172. (in Chinese with English abstract)

    Google Scholar

    [2] 刘琼颖,何丽娟. 挽近重大构造-热事件及其对深层地热能的潜在影响[J]. 地球科学,2023,48(3):835 − 856. [LIU Qiongying,HE Lijuan. Neoid major tectono-thermal events and their potential impacts on deep geothermal energy[J]. Earth Science,2023,48(3):835 − 856. (in Chinese with English abstract)]

    Google Scholar

    LIU Qiongying, HE Lijuan. Neoid major tectono-thermal events and their potential impacts on deep geothermal energy[J]. Earth Science, 2023, 48(3): 835 − 856. (in Chinese with English abstract)

    Google Scholar

    [3] 闫佰忠, 李瑶, 秦光雄, 等. 基于遥感技术的贵德盆地多元信息干热岩靶区预测[J]. 吉林大学学报(地球科学版),2023,53(4):1288 − 1300. [YAN Baizhong, LI Yao, QIN Guangxiong, et al. Prediction of dry-hot rock targets with multivariate information in Guide Basin based on remote sensing technology[J]. Journal of Jilin University (Earth Science Edition),2023,53(4):1288 − 1300. (in Chinese with English abstract)]

    Google Scholar

    YAN Baizhong, LI Yao, QIN Guangxiong, et al. Prediction of dry-hot rock targets with multivariate information in Guide Basin based on remote sensing technology[J]. Journal of Jilin University (Earth Science Edition), 2023, 53(4): 1288 − 1300. (in Chinese with English abstract)

    Google Scholar

    [4] 尹政,柳永刚,张旭儒,等. 张掖盆地地热资源赋存特征及成因分析[J]. 水文地质工程地质,2023,50(1):168 − 178. [YIN Zheng,LIU Yonggang,ZHANG Xuru,et al. An analysis of the endowment characteristics and geneses of geothermal resources in the Zhangye Basin[J]. Hydrogeology & Engineering Geology,2023,50(1):168 − 178. (in Chinese with English abstract)]

    Google Scholar

    YIN Zheng, LIU Yonggang, ZHANG Xuru, et al. An analysis of the endowment characteristics and geneses of geothermal resources in the Zhangye Basin[J]. Hydrogeology & Engineering Geology, 2023, 50(1): 168 − 178. (in Chinese with English abstract)

    Google Scholar

    [5] 王贵玲,蔺文静. 我国主要水热型地热系统形成机制与成因模式[J]. 地质学报,2020,94(7):1923 − 1937. [WANG Guiling,LIN Wenjing. Main hydro-geothermal systems and their genetic models in China[J]. Acta Geologica Sinica,2020,94(7):1923 − 1937. (in Chinese with English abstract)]

    Google Scholar

    WANG Guiling, LIN Wenjing. Main hydro-geothermal systems and their genetic models in China[J]. Acta Geologica Sinica, 2020, 94(7): 1923 − 1937. (in Chinese with English abstract)

    Google Scholar

    [6] 康凤新,赵季初,黄迅,等. 华北盆地梁村古潜山岩溶热储聚热机制及资源潜力[J]. 地球科学,2023,48(3):1080 − 1092. [KANG Fengxin,ZHAO Jichu,HUANG Xun,et al. Heat accumulation mechanism and resources potential of the Karst geothermal reservoir in Liangcun buried uplift of Linqing depression[J]. Earth Science,2023,48(3):1080 − 1092. (in Chinese with English abstract)]

    Google Scholar

    KANG Fengxin, ZHAO Jichu, HUANG Xun, et al. Heat accumulation mechanism and resources potential of the Karst geothermal reservoir in Liangcun buried uplift of Linqing depression[J]. Earth Science, 2023, 48(3): 1080 − 1092. (in Chinese with English abstract)

    Google Scholar

    [7] 陆金波,王丹丹,丁郑军. 广东省花岗岩地区水热型地热成藏要素及探测实例分析[J]. 中国煤炭地质,2023,35(3):67 − 71. [LU Jinbo,WANG Dandan,DING Zhengjun. Analysis of hydrothermal geothermal reservoir forming and survey Case for granite areas in Guangdong[J]. Coal Geology of China,2023,35(3):67 − 71. (in Chinese with English abstract)]

    Google Scholar

    LU Jinbo, WANG Dandan, DING Zhengjun. Analysis of hydrothermal geothermal reservoir forming and survey Case for granite areas in Guangdong[J]. Coal Geology of China, 2023, 35(3): 67 − 71. (in Chinese with English abstract)

    Google Scholar

    [8] 汪集旸,胡圣标,庞忠和,等. 中国大陆干热岩地热资源潜力评估[J]. 科技导报,2012,30(32):25 − 31. [WANG Jiyang,HU Shengbiao,PANG Zhonghe,et al. Estimate of geothermal resources potential for hot dry rock in the continental area of China[J]. Science & Technology Review,2012,30(32):25 − 31. (in Chinese with English abstract)]

    Google Scholar

    WANG Jiyang, HU Shengbiao, PANG Zhonghe, et al. Estimate of geothermal resources potential for hot dry rock in the continental area of China[J]. Science & Technology Review, 2012, 30(32): 25 − 31. (in Chinese with English abstract)

    Google Scholar

    [9] 张英,冯建赟,何治亮,等. 地热系统类型划分与主控因素分析[J]. 地学前缘,2017,24(3):190 − 198. [ZHANG Ying,FENG Jianyun,HE Zhiliang,et al. Classification of geothermal systems and their formation key factors[J]. Earth Science Frontiers,2017,24(3):190 − 198. (in Chinese with English abstract)]

    Google Scholar

    ZHANG Ying, FENG Jianyun, HE Zhiliang, et al. Classification of geothermal systems and their formation key factors[J]. Earth Science Frontiers, 2017, 24(3): 190 − 198. (in Chinese with English abstract)

    Google Scholar

    [10] 何治亮,张英,冯建赟,等. 基于工程开发原则的干热岩目标区分类与优选[J]. 地学前缘,2020,27(1):81 − 93. [HE Zhiliang,ZHANG Ying,FENG Jianyun,et al. Classification of geothermal resources based on engineering considerations and HDR EGS site screening in China[J]. Earth Science Frontiers,2020,27(1):81 − 93. (in Chinese with English abstract)]

    Google Scholar

    HE Zhiliang, ZHANG Ying, FENG Jianyun, et al. Classification of geothermal resources based on engineering considerations and HDR EGS site screening in China[J]. Earth Science Frontiers, 2020, 27(1): 81 − 93. (in Chinese with English abstract)

    Google Scholar

    [11] 韩江涛, 牛璞, 刘立家, 等. 地热资源与地震活动共生深部驱动机制研究现状与展望[J]. 吉林大学学报(地球科学版),2023,53(6):1950 − 1968. [HAN Jiangtao, NIU Pu, LIU Lijia, et al. Research status and prospect of deep driving mechanism of co-occurrence of geothermal resources and seismic activity[J]. Journal of Jilin University (Earth Science Edition),2023,53(6):1950 − 1968. (in Chinese with English abstract)]

    Google Scholar

    HAN Jiangtao, NIU Pu, LIU Lijia, et al. Research status and prospect of deep driving mechanism of co-occurrence of geothermal resources and seismic activity[J]. Journal of Jilin University (Earth Science Edition), 2023, 53(6): 1950 − 1968. (in Chinese with English abstract)

    Google Scholar

    [12] 邱楠生,唐博宁,朱传庆. 中国大陆地区温泉分布的深部热背景[J]. 地质学报,2022,96(1):195 − 207. [QIU Nansheng,TANG Boning,ZHU Chuanqing. Deep thermal background of hot spring distribution in the Chinese continent[J]. Acta Geologica Sinica,2022,96(1):195 − 207. (in Chinese with English abstract)]

    Google Scholar

    QIU Nansheng, TANG Boning, ZHU Chuanqing. Deep thermal background of hot spring distribution in the Chinese continent[J]. Acta Geologica Sinica, 2022, 96(1): 195 − 207. (in Chinese with English abstract)

    Google Scholar

    [13] 王凯, 张杰, 白大为, 等. 雄安新区地热地质模型探究:来自地球物理的证据[J]. 中国地质,2021,48(5):1453 − 1468. [WANG Kai, ZHANG Jie, BAI Dawei, et al. Geothermal-geological model of Xiong‘an New Area: Evidence from geophysics[J]. Geology in China,2021,48(5):1453 − 1468. (in Chinese with English abstract)]

    Google Scholar

    WANG Kai, ZHANG Jie, BAI Dawei, et al. Geothermal-geological model of Xiong‘an New Area: Evidence from geophysics[J]. Geology in China, 2021, 48(5): 1453 − 1468. (in Chinese with English abstract)

    Google Scholar

    [14] 袁建飞,刘慧中,邓国仕,等. 广安市铜锣山背斜三叠纪岩溶热储结构特征及热水成因研究[J]. 中国岩溶,2022,41(4):623 − 635. [YUAN Jianfei,LIU Huizhong,DENG Guoshi,et al. Structural characteristics of Triassic carbonate geothermal reservoir and genesis of thermal water in the Tongluo Mountain anticline of Guang’an City,China[J]. Carsologica Sinica,2022,41(4):623 − 635. (in Chinese with English abstract)]

    Google Scholar

    YUAN Jianfei, LIU Huizhong, DENG Guoshi, et al. Structural characteristics of Triassic carbonate geothermal reservoir and genesis of thermal water in the Tongluo Mountain anticline of Guang’an City, China[J]. Carsologica Sinica, 2022, 41(4): 623 − 635. (in Chinese with English abstract)

    Google Scholar

    [15] 孙东,李金玺,曹楠,等. 四川盆地地热地质条件及勘探潜力评价[J]. 水文地质工程地质,2023,50(3):193 − 206. [SUN Dong,LI Jinxi,CAO Nan,et al. A preliminary study of the geothermal geological characteristics and exploration potential of the Sichuan Basin[J]. Hydrogeology & Engineering Geology,2023,50(3):193 − 206. (in Chinese with English abstract)]

    Google Scholar

    SUN Dong, LI Jinxi, CAO Nan, et al. A preliminary study of the geothermal geological characteristics and exploration potential of the Sichuan Basin[J]. Hydrogeology & Engineering Geology, 2023, 50(3): 193 − 206. (in Chinese with English abstract)

    Google Scholar

    [16] 徐梓矿,徐世光,张世涛. 安宁地热田浅部热储水化学特征及补给通道位置[J]. 地球科学,2021,46(11):4175 − 4187. [XU Zikuang,XU Shiguang,ZHANG Shitao. Hydro-geochemistry of Anning geothermal field and flow channels inferring of upper geothermal reservoir[J]. Earth Science,2021,46(11):4175 − 4187. (in Chinese with English abstract)]

    Google Scholar

    XU Zikuang, XU Shiguang, ZHANG Shitao. Hydro-geochemistry of Anning geothermal field and flow channels inferring of upper geothermal reservoir[J]. Earth Science, 2021, 46(11): 4175 − 4187. (in Chinese with English abstract)

    Google Scholar

    [17] 刘春雷,李亚松,洪炳义,等. 福建盐田海水补给型地热系统地球化学特征及其成因[J]. 水文地质工程地质,2023,50(1):158 − 167. [LIU Chunlei,LI Yasong,HONG Bingyi,et al. Geochemical characteristics and formation mechanisms of the seawater-recharged geothermal systems in Yantian of Fujian,China[J]. Hydrogeology & Engineering Geology,2023,50(1):158 − 167. (in Chinese with English abstract)]

    Google Scholar

    LIU Chunlei, LI Yasong, HONG Bingyi, et al. Geochemical characteristics and formation mechanisms of the seawater-recharged geothermal systems in Yantian of Fujian, China[J]. Hydrogeology & Engineering Geology, 2023, 50(1): 158 − 167. (in Chinese with English abstract)

    Google Scholar

    [18] 张梦昭,郭清海,刘明亮,等. 山西忻州盆地地热水地球化学特征及其成因机制[J]. 地球科学,2023,48(3):973 − 987. [ZHANG Mengzhao,GUO Qinghai,LIU Mingliang,et al. Geochemical characteristics and formation mechanisms of the geothermal waters in the Xinzhou Basin,Shanxi Province[J]. Earth Science,2023,48(3):973 − 987. (in Chinese with English abstract)]

    Google Scholar

    ZHANG Mengzhao, GUO Qinghai, LIU Mingliang, et al. Geochemical characteristics and formation mechanisms of the geothermal waters in the Xinzhou Basin, Shanxi Province[J]. Earth Science, 2023, 48(3): 973 − 987. (in Chinese with English abstract)

    Google Scholar

    [19] 张云辉,李晓,徐正宣,等. 川藏铁路康定隧址区地热水成因及其工程影响分析[J]. 水文地质工程地质,2021,48(5):46 − 53. [ZHANG Yunhui,LI Xiao,XU Zhengxuan,et al. An analysis of the genesis and engineering influence of geothermal water in the Kangding tunnel site of the Sichuan-Tibet Railway[J]. Hydrogeology & Engineering Geology,2021,48(5):46 − 53. (in Chinese with English abstract)]

    Google Scholar

    ZHANG Yunhui, LI Xiao, XU Zhengxuan, et al. An analysis of the genesis and engineering influence of geothermal water in the Kangding tunnel site of the Sichuan-Tibet Railway[J]. Hydrogeology & Engineering Geology, 2021, 48(5): 46 − 53. (in Chinese with English abstract)

    Google Scholar

    [20] 李馨馨,李典庆,徐轶. 地热对井系统裂隙岩体三维渗流传热耦合的等效模拟方法[J]. 工程力学,2019,36(7):238 − 247. [LI Xinxin,LI Dianqing,XU Yi. Equivalent simulation method of three-dimensional seepage and heat transfer coupling in fractured rock mass of geothermal-borehole system[J]. Engineering Mechanics,2019,36(7):238 − 247. (in Chinese with English abstract)]

    Google Scholar

    LI Xinxin, LI Dianqing, XU Yi. Equivalent simulation method of three-dimensional seepage and heat transfer coupling in fractured rock mass of geothermal-borehole system[J]. Engineering Mechanics, 2019, 36(7): 238 − 247. (in Chinese with English abstract)

    Google Scholar

    [21] 陈金龙,罗文行,窦斌,等. 涿鹿盆地三维多裂隙地质模型地温场数值模拟[J]. 地质科技通报,2021,40(3):22 − 33. [CHEN Jinlong,LUO Wenxing,DOU Bin,et al. Numerical simulation of geothermal field in a three-dimensional multi-fractured geological model of Zhuolu Basin[J]. Bulletin of Geological Science and Technology,2021,40(3):22 − 33. (in Chinese with English abstract)]

    Google Scholar

    CHEN Jinlong, LUO Wenxing, DOU Bin, et al. Numerical simulation of geothermal field in a three-dimensional multi-fractured geological model of Zhuolu Basin[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 22 − 33. (in Chinese with English abstract)

    Google Scholar

    [22] PRZYBYCIN A M,SCHECK-WENDEROTH M,SCHNEIDER M. The origin of deep geothermal anomalies in the German Molasse Basin:Results from 3D numerical models of coupled fluid flow and heat transport[J]. Geothermal Energy,2017,5(1):1. doi: 10.1186/s40517-016-0059-3

    CrossRef Google Scholar

    [23] POLA M,CACACE M,FABBRI P,et al. Fault control on a thermal anomaly:Conceptual and numerical modeling of a low-temperature geothermal system in the southern Alps foreland basin (NE Italy)[J]. Journal of Geophysical Research (Solid Earth),2020,125(5):e2019JB017394. doi: 10.1029/2019JB017394

    CrossRef Google Scholar

    [24] 刘波,陈金国. 英罗地区地热资源形成条件及找矿前景[J]. 资源环境与工程,2014,28(3):313 − 317. [LIU Bo,CHEN Jinguo. Forming conditions of geothermal resources and its prospecting potential in Yingshan-Luotian Area[J]. Resources Environment & Engineering,2014,28(3):313 − 317. (in Chinese with English abstract)]

    Google Scholar

    LIU Bo, CHEN Jinguo. Forming conditions of geothermal resources and its prospecting potential in Yingshan-Luotian Area[J]. Resources Environment & Engineering, 2014, 28(3): 313 − 317. (in Chinese with English abstract)

    Google Scholar

    [25] 王鹏,陈晓宏,沈立成,等. 西藏地热异常区热储温度及其地质环境效应[J]. 中国地质,2016,43(4):1429 − 1438. [WANG Peng,CHEN Xiaohong,SHEN Licheng,et al. Reservoir temperature of geothermal anomaly area and its environmental effect in Tibet[J]. Geology in China,2016,43(4):1429 − 1438. (in Chinese with English abstract)]

    Google Scholar

    WANG Peng, CHEN Xiaohong, SHEN Licheng, et al. Reservoir temperature of geothermal anomaly area and its environmental effect in Tibet[J]. Geology in China, 2016, 43(4): 1429 − 1438. (in Chinese with English abstract)

    Google Scholar

    [26] 高洪雷,胡志华,万汉平,等. 西藏谷露地热田地热地质特征[J]. 地球科学,2023,48(3):1014 − 1029. [GAO Honglei,HU Zhihua,WAN Hanping,et al. Characteristics of geothermal geology of the gulu geothermal field in Tibet[J]. Earth Science,2023,48(3):1014 − 1029. (in Chinese with English abstract)]

    Google Scholar

    GAO Honglei, HU Zhihua, WAN Hanping, et al. Characteristics of geothermal geology of the gulu geothermal field in Tibet[J]. Earth Science, 2023, 48(3): 1014 − 1029. (in Chinese with English abstract)

    Google Scholar

    [27] EGGER A E,GLEN J M G,MCPHEE D K. Structural controls on geothermal circulation in Surprise Valley,California:A re-evaluation of the Lake City fault zone[J]. Geological Society of America Bulletin,2014,126(3/4):523 − 531.

    Google Scholar

    [28] UZELLI T,BABA A,GÜL MUNGAN G,et al. Conceptual model of the Gülbahçe geothermal system,Western Anatolia,Turkey:Based on structural and hydrogeochemical data[J]. Geothermics,2017,68:67 − 85. doi: 10.1016/j.geothermics.2017.03.003

    CrossRef Google Scholar

    [29] 陶春辉,郭志馗,梁锦,等. 超慢速扩张西南印度洋中脊硫化物成矿模型[J]. 中国科学:地球科学,2023,53(6):1216 − 1234. [TAO Chunhui,GUO Zhidao,LIANG Jin,et al. Sulfide metallogenic model on the ultraslow-spreading Southwest Indian Ridge[J]. Scientia Sinica (Terrae),2023,53(6):1216 − 1234. (in Chinese with English abstract)] doi: 10.1360/SSTe-2023-0013

    CrossRef Google Scholar

    TAO Chunhui, GUO Zhidao, LIANG Jin, et al. Sulfide metallogenic model on the ultraslow-spreading Southwest Indian Ridge[J]. Scientia Sinica (Terrae), 2023, 53(6): 1216 − 1234. (in Chinese with English abstract) doi: 10.1360/SSTe-2023-0013

    CrossRef Google Scholar

    [30] LÓPEZ D L,SMITH L. Fluid flow in fault zones:Influence of hydraulic anisotropy and heterogeneity on the fluid flow and heat transfer regime[J]. Water Resources Research,1996,32(10):3227 − 3235. doi: 10.1029/96WR02101

    CrossRef Google Scholar

    [31] MCNAMARA D D,MASSIOT C,LEWIS B,et al. Heterogeneity of structure and stress in the Rotokawa Geothermal Field,New Zealand[J]. Journal of Geophysical Research (Solid Earth),2015,120(2):1243 − 1262. doi: 10.1002/2014JB011480

    CrossRef Google Scholar

    [32] 戴竹,詹文,陈金国. 东大别黄冈地区干热岩赋存条件及远景分析[J]. 资源环境与工程,2021,35(6):807 − 812. [DAI Zhu,ZHAN Wen,CHEN Jinguo. Occurrence conditions and prospect analysis of hot-dry-rocks in Huanggang Area,east dabie[J]. Resources Environment & Engineering,2021,35(6):807 − 812. (in Chinese with English abstract)]

    Google Scholar

    DAI Zhu, ZHAN Wen, CHEN Jinguo. Occurrence conditions and prospect analysis of hot-dry-rocks in Huanggang Area, east dabie[J]. Resources Environment & Engineering, 2021, 35(6): 807 − 812. (in Chinese with English abstract)

    Google Scholar

    [33] 潘桂棠,肖庆辉,陆松年,等. 中国大地构造单元划分[J]. 中国地质,2009,36(1):1 − 16. [PAN Guitang,XIAO Qinghui,LU Songnian,et al. Subdivision of tectonic units in China[J]. Geology in China,2009,36(1):1 − 16. (in Chinese with English abstract)]

    Google Scholar

    PAN Guitang, XIAO Qinghui, LU Songnian, et al. Subdivision of tectonic units in China[J]. Geology in China, 2009, 36(1): 1 − 16. (in Chinese with English abstract)

    Google Scholar

    [34] 王焰新,胡祥云,谢先军. 英山县深部高温地热资源预可行性勘查水文地质专项调查报告[R]. 武汉:中国地质大学(武汉),2023. [WANG Yanxin,HU Xiangyun,XIE Xianjun,et al. Special hydrogeological investigation report on the preliminary feasibility survey of deep high-temperature geothermal resources in Yingshan County[R]. Wuhan:China University of Geosciences,Wuhan,2023. (in Chinese)]

    Google Scholar

    WANG Yanxin, HU Xiangyun, XIE Xianjun, et al. Special hydrogeological investigation report on the preliminary feasibility survey of deep high-temperature geothermal resources in Yingshan County[R]. Wuhan: China University of Geosciences, Wuhan, 2023. (in Chinese)

    Google Scholar

    [35] 张攀,陈金国,傅清心. 英罗地区地热资源成因分析及勘查靶区预测[J]. 资源环境与工程,2018,32(增刊1):44 − 47. [ZHANG Pan,CHEN Jinguo,FU Qingxin. Genetic analysis of geothermal resources and prediction of exploration targets in yingluo area[J]. Resources Environment & Engineering,2018,32(Sup 1):44 − 47. (in Chinese)]

    Google Scholar

    ZHANG Pan, CHEN Jinguo, FU Qingxin. Genetic analysis of geothermal resources and prediction of exploration targets in yingluo area[J]. Resources Environment & Engineering, 2018, 32(Sup 1): 44 − 47. (in Chinese)

    Google Scholar

    [36] 毛官辉,张立勇,陈俊兵,等. 浙江省大地热流及其地热资源意义[J]. 地球科学,2023,48(3):1030 − 1039. [MAO Guanhui,ZHANG Liyong,CHEN Junbing,et al. Terrestrial heat flow in Zhejiang Province and its significance of geothermal resources[J]. Earth Science,2023,48(3):1030 − 1039. (in Chinese with English abstract)]

    Google Scholar

    MAO Guanhui, ZHANG Liyong, CHEN Junbing, et al. Terrestrial heat flow in Zhejiang Province and its significance of geothermal resources[J]. Earth Science, 2023, 48(3): 1030 − 1039. (in Chinese with English abstract)

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)

Tables(2)

Article Metrics

Article views(1064) PDF downloads(122) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint