2024 Vol. 51, No. 2
Article Contents

QIN Xiaopeng, LIU Fei, WANG Guangcai, WENG Liping. Review of environmental fate of chiral antibiotics in the vadose zone[J]. Hydrogeology & Engineering Geology, 2024, 51(2): 23-34. doi: 10.16030/j.cnki.issn.1000-3665.202311009
Citation: QIN Xiaopeng, LIU Fei, WANG Guangcai, WENG Liping. Review of environmental fate of chiral antibiotics in the vadose zone[J]. Hydrogeology & Engineering Geology, 2024, 51(2): 23-34. doi: 10.16030/j.cnki.issn.1000-3665.202311009

Review of environmental fate of chiral antibiotics in the vadose zone

  • To date, the systematic summarization and comprehensive review of analysis, distribution, migration, and degradation of chiral antibiotics in the vadose zone are limited. This review indicates that the physicochemical characteristics of chiral antibiotics are quite different, for instance, the solubility and octanol-water partition coefficient (lg Kow) of S-gemifloxacin are 301 times and 9.8 times larger than the values of R-gemifloxacin, which will affect their migration and degradation in the environment. High performance liquid chromatography with chiral column and chiral ligand-exchange chromatography are the common methods on the chiral antibiotics analysis. The concentrations of chiral antibiotics in soils, waters, and agricultural products in China and abroad are reported; flumequine, lomefloxacin and ofloxacin are the most common antibiotics. The adsorption rate and partition coefficient (Kd) of chiral antibiotics during their adsorption on minerals and microplastics are different, especially in the presence of natural organic matter (NOM); however, there is no relationship among the various types of chiral antibiotics. Chiral antibiotics can be complexed with the common cations, and their stability constants are quite different in the groundwater, for instance, the stability constant of Mg2+-levofloxacin is 22.9 times larger than that of Mg2+-ofloxacin. During the biodegradation process, the degradability and rate of chiral antibiotics are also different. Additionally, the chiral antibiotics can be transformed reciprocally. In this review, the distribution, migration, and degradation of chiral antibiotics in the vadose zone are investigated, which is beneficial to the study on the chiral antibiotics in the groundwater. As to the environmental fate of chiral antibiotics in the vadose zone, the following researches are recommended: (1) the resolution, analysis, toxicology, and standard establishment of chiral antibiotics; (2) the investigation, migration, and degradation of multiple chiral antibiotics; (3) the environmental processes of chiral antibiotics in the multi-interface.

  • 加载中
  • [1] 章伟光,张仕林,郭栋,等. 关注手性药物:从“反应停事件” 说起[J]. 大学化学,2019,34(9):1 − 12. [ZHANG Weiguang,ZHANG Shilin,GUO Dong,et al. Great concern for chiral pharmaceuticals from the thalidomide tragedy[J]. University Chemistry,2019,34(9):1 − 12. (in Chinese with English abstract)] doi: 10.3866/PKU.DXHX201904021

    CrossRef Google Scholar

    ZHANG Weiguang, ZHANG Shilin, GUO Dong, et al. Great concern for chiral pharmaceuticals from the thalidomide tragedy[J]. University Chemistry, 2019, 349): 112. (in Chinese with English abstract) doi: 10.3866/PKU.DXHX201904021

    CrossRef Google Scholar

    [2] RIBEIRO A R,CASTRO P M L,TIRITAN M E. Chiral pharmaceuticals in the environment[J]. Environmental Chemistry Letters,2012,10(3):239 − 253. doi: 10.1007/s10311-011-0352-0

    CrossRef Google Scholar

    [3] 刘瑞霞,李佳熹,刘晓玲. 环境介质中手性药物对映体分离分析及环境行为研究进展[J]. 环境工程学报,2017,11(6):3341 − 3351. [LIU Ruixia,LI Jiaxi,LIU Xiaoling. Research progress on separation,analysis and environmental behavior of chiral pharmaceutical enantiomers in environmental matrix[J]. Chinese Journal of Environmental Engineering,2017,11(6):3341 − 3351. (in Chinese with English abstract)] doi: 10.12030/j.cjee.201704158

    CrossRef Google Scholar

    LIU Ruixia, LI Jiaxi, LIU Xiaoling. Research progress on separation, analysis and environmental behavior of chiral pharmaceutical enantiomers in environmental matrix[J]. Chinese Journal of Environmental Engineering, 2017, 116): 33413351. (in Chinese with English abstract) doi: 10.12030/j.cjee.201704158

    CrossRef Google Scholar

    [4] SANGANYADO E,LU Zhijiang,FU Qiuguo,et al. Chiral pharmaceuticals:A review on their environmental occurrence and fate processes[J]. Water Research,2017,124:527 − 542. doi: 10.1016/j.watres.2017.08.003

    CrossRef Google Scholar

    [5] ZHOU Yaoyu,WU Shikang,ZHOU Hao,et al. Chiral pharmaceuticals:Environment sources,potential human health impacts,remediation technologies and future perspective[J]. Environment International,2018,121:523 − 537. doi: 10.1016/j.envint.2018.09.041

    CrossRef Google Scholar

    [6] PETRIE B,CAMACHO-MUÑOZ D. Analysis,fate and toxicity of chiral non-steroidal anti-inflammatory drugs in wastewaters and the environment:A review[J]. Environmental Chemistry Letters,2021,19(1):43 − 75. doi: 10.1007/s10311-020-01065-y

    CrossRef Google Scholar

    [7] MEJÍAS C,ARENAS M,MARTÍN J,et al. A systematic review on distribution and ecological risk assessment for chiral pharmaceuticals in environmental compartments[J]. Reviews of Environmental Contamination and Toxicology,2022,260(1):3. doi: 10.1007/s44169-021-00003-5

    CrossRef Google Scholar

    [8] FU K P,LAFREDO S C,FOLENO B,et al. In vitro and in vivo antibacterial activities of levofloxacin (l-ofloxacin),an optically active ofloxacin[J]. Antimicrobial Agents and Chemotherapy,1992,36(4):860-866.

    Google Scholar

    [9] COULET M,COX P,LOHUIS J. Pharmacodynamics of ibafloxacin in micro-organisms isolated from cats[J]. Journal of Veterinary Pharmacology and Therapeutics,2005,28(1):29 − 36. doi: 10.1111/j.1365-2885.2004.00622.x

    CrossRef Google Scholar

    [10] 秦晓鹏,刘菲,王广才,等. 抗生素在土壤/沉积物中吸附行为的研究进展[J]. 水文地质工程地质,2015,42(3):142 − 148. [QIN Xiaopeng,LIU Fei,WANG Guangcai,et al. Adsorption of antibiotics in soils/sediments:A review[J]. Hydrogeology & Engineering Geology,2015,42(3):142 − 148. (in Chinese with English abstract)]

    Google Scholar

    QIN Xiaopeng, LIU Fei, WANG Guangcai, et al. Adsorption of antibiotics in soils/sediments: A review[J]. Hydrogeology & Engineering Geology, 2015, 423): 142148. (in Chinese with English abstract)

    Google Scholar

    [11] 韦寿莲,严子军,戚利华. 毛细管电泳手性拆分喹诺酮类药物对映体[J]. 理化检验(化学分册),2009,45(6):714 − 716. [WEI Shoulian,YAN Zijun,QI Lihua. Chiral separation of enantiomers of quinolone drugs by capillary electrophoresis[J]. Physical Testing and Chemical Analysis Part B:Chemical Analysis,2009,45(6):714 − 716. (in Chinese with English abstract)]

    Google Scholar

    WEI Shoulian, YAN Zijun, QI Lihua. Chiral separation of enantiomers of quinolone drugs by capillary electrophoresis[J]. Physical Testing and Chemical Analysis Part B: Chemical Analysis, 2009, 456): 714716. (in Chinese with English abstract)

    Google Scholar

    [12] 刘丹,魏瑞霞,谢天尧. 毛细管电泳/非接触式电导法分离检测氧氟沙星对映体[J]. 分析化学,2009,37(11):1687 − 1690. [LIU Dan,WEI Ruixia,XIE Tianyao. Simple and efficient enantioseparation of ofloxacin by capillary electrophoresis with contactless conductivity detedction using binary chiral selectors[J]. Chinese Journal of Analytical Chemistry,2009,37(11):1687 − 1690. (in Chinese with English abstract)] doi: 10.3321/j.issn:0253-3820.2009.11.025

    CrossRef Google Scholar

    LIU Dan, WEI Ruixia, XIE Tianyao. Simple and efficient enantioseparation of ofloxacin by capillary electrophoresis with contactless conductivity detedction using binary chiral selectors[J]. Chinese Journal of Analytical Chemistry, 2009, 3711): 16871690. (in Chinese with English abstract) doi: 10.3321/j.issn:0253-3820.2009.11.025

    CrossRef Google Scholar

    [13] 庄晓庆,毛白杨,狄斌,等. 毛细管电泳手性拆分西他沙星异构体[J]. 药物分析杂志,2012,32(8):1389 − 1393. [ZHUANG Xiaoqing,MAO Baiyang,DI Bin,et al. Capillary electrophoresis and chiral separation of sitafloxacin isomers[J]. Chinese Journal of Pharmaceutical Analysis,2012,32(8):1389 − 1393. (in Chinese with English abstract)]

    Google Scholar

    ZHUANG Xiaoqing, MAO Baiyang, DI Bin, et al. Capillary electrophoresis and chiral separation of sitafloxacin isomers[J]. Chinese Journal of Pharmaceutical Analysis, 2012, 328): 13891393. (in Chinese with English abstract)

    Google Scholar

    [14] MENG Ranran,KANG Jingwu. Determination of the stereoisomeric impurities of sitafloxacin by capillary electrophoresis with dual chiral additives[J]. Journal of Chromatography A,2017,1506:120 − 127. doi: 10.1016/j.chroma.2017.05.010

    CrossRef Google Scholar

    [15] CHEN Bin,DU Yingxiang,WANG Hao. Study on enantiomeric separation of basic drugs by NACE in methanol-based medium using erythromycin lactobionate as a chiral selector[J]. Electrophoresis,2010,31(2):371 − 377. doi: 10.1002/elps.200900343

    CrossRef Google Scholar

    [16] ARAI T,NIMURA N,KINOSHITA T. Investigation of enantioselective separation of quinolonecarboxylic acids by capillary zone electrophoresis using vancomycin as a chiral selector[J]. Journal of Chromatography A,1996,736(1/2):303 − 311.

    Google Scholar

    [17] MATSUOKA M,BANNO K,SATO T. Analytical chiral separation of a new quinolone compound in biological fluids by high-performance liquid chromatography[J]. Journal of Chromatography B:Biomedical Sciences and Applications,1996,676(1):117 − 124. doi: 10.1016/0378-4347(95)00375-4

    CrossRef Google Scholar

    [18] KANNAPPAN V,MANNEMALA S S. Multiple response optimization of a HPLC method for the determination of enantiomeric purity of S-ofloxacin[J]. Chromatographia,2014,77(17):1203 − 1211.

    Google Scholar

    [19] CASTRIGNANÒ E,KANNAN A M,FEIL E J,et al. Enantioselective fractionation of fluoroquinolones in the aqueous environment using chiral liquid chromatography coupled with tandem mass spectrometry[J]. Chemosphere,2018,206:376 − 386. doi: 10.1016/j.chemosphere.2018.05.005

    CrossRef Google Scholar

    [20] REBIZI M N,SEKKOUM K,BELBOUKHARI N,et al. Liquid chromatographic enantioseparation of some fluoroquinoline drugs using several polysaccharide-based chiral stationary phases[J]. Journal of Chromatographic Science,2018,56(9):835 − 845. doi: 10.1093/chromsci/bmy061

    CrossRef Google Scholar

    [21] ZENG S,ZHONG J,PAN L,et al. High-performance liquid chromatography separation and quantitation of ofloxacin enantiomers in rat microsomes[J]. Journal of Chromatography B,1999,728:151 − 155. doi: 10.1016/S0378-4347(99)00085-7

    CrossRef Google Scholar

    [22] TIAN M,YAN Hn,ROW K H. Investigation of ofloxacin enantioseparation by ligand exchange chromatography[J]. Journal of Chemical Technology and Biotechnology,2009,84(7):1001 − 1006. doi: 10.1002/jctb.2123

    CrossRef Google Scholar

    [23] BRODFUEHRER J I,PRIEBE S,GUTTENDORF R. Achiral and chiral high-performance liquid chromatographic methods for clinafloxacin,a fluoroquinolone antibacterial,in human plasma[J]. Journal of Chromatography B,Biomedical Sciences and Applications,1998,709(2):265 − 272. doi: 10.1016/S0378-4347(98)00078-4

    CrossRef Google Scholar

    [24] SHAO Bing,SUN Xiaojie,ZHANG Jing,et al. Determination of ofloxacin enantiomers in sewage using two-step solid-phase extraction and liquid chromatography with fluorescence detection[J]. Journal of Chromatography A,2008,1182(1):77 − 84. doi: 10.1016/j.chroma.2007.12.073

    CrossRef Google Scholar

    [25] 仲小飞,秦晓鹏,杜平,等. 高效液相色谱法同时测定水体中氧氟沙星及其手性异构体[J]. 色谱,2018,36(11):1167 − 1172. [ZHONG Xiaofei,QIN Xiaopeng,DU Ping,et al. Simultaneous determination of ofloxacin enantiomers in water by high performance liquid chromatography[J]. Chinese Journal of Chromatography,2018,36(11):1167 − 1172. (in Chinese with English abstract)] doi: 10.3724/SP.J.1123.2018.07018

    CrossRef Google Scholar

    ZHONG Xiaofei, QIN Xiaopeng, DU Ping, et al. Simultaneous determination of ofloxacin enantiomers in water by high performance liquid chromatography[J]. Chinese Journal of Chromatography, 2018, 3611): 11671172. (in Chinese with English abstract) doi: 10.3724/SP.J.1123.2018.07018

    CrossRef Google Scholar

    [26] ZAIDI S A,HAN K M,KIM S S,et al. Open tubular layer of S-ofloxacin imprinted polymer fabricated in silica capillary for chiral CEC separation[J]. Journal of Separation Science,2009,32(7):996 − 1001. doi: 10.1002/jssc.200800631

    CrossRef Google Scholar

    [27] SHI Xiaoxu,XU Liang,DUAN Hongquan,et al. CEC separation of ofloxacin enantiomers using imprinted microparticles prepared in molecular crowding conditions[J]. Electrophoresis,2011,32(11):1348 − 1356. doi: 10.1002/elps.201000515

    CrossRef Google Scholar

    [28] YANG Xiangqing,HANG Yali. Enantiomeric separation by capillary electro chromatography with a novel β-cyclodextrin-hyperbranched carbosilane–silica polymer coating[J]. Journal of the Chemical Society of Pakistan,2023,45(2):136. doi: 10.52568/0012152/JCSP/45.02.2023

    CrossRef Google Scholar

    [29] 赵鑫宇,陈慧,赵波,等. 石家庄市土壤中喹诺酮类抗生素时空分布及其风险评估[J]. 环境科学,2023,44(4):2223 − 2233. [ZHAO Xinyu,CHEN Hui,ZHAO Bo,et al. Spatial-temporal distribution and risk assessment of quinolones antibiotics in soil of Shijiazhuang city[J]. Environmental Science,2023,44(4):2223 − 2233. (in Chinese with English abstract)]

    Google Scholar

    ZHAO Xinyu, CHEN Hui, ZHAO Bo, et al. Spatial-temporal distribution and risk assessment of quinolones antibiotics in soil of Shijiazhuang city[J]. Environmental Science, 2023, 444): 22232233. (in Chinese with English abstract)

    Google Scholar

    [30] LIN Yenching,LAI Webber Weipo,TUNG Hsinhsin,et al. Occurrence of pharmaceuticals,hormones,and perfluorinated compounds in groundwater in Taiwan[J]. Environmental Monitoring and Assessment,2015,187(5):256. doi: 10.1007/s10661-015-4497-3

    CrossRef Google Scholar

    [31] CHEN Liang,LANG Hang,LIU Fei,et al. Presence of antibiotics in shallow groundwater in the northern and southwestern regions of China[J]. Groundwater,2018,56(3):451 − 457. doi: 10.1111/gwat.12596

    CrossRef Google Scholar

    [32] MEJÍAS C,SANTOS J L,MARTÍN J,et al. Automatised on-line SPE-chiral LC-MS/MS method for the enantiomeric determination of main fluoroquinolones and their metabolites in environmental water samples[J]. Microchemical Journal,2023,185:108217. doi: 10.1016/j.microc.2022.108217

    CrossRef Google Scholar

    [33] MACLEOD S L,WONG C S. Loadings,trends,comparisons,and fate of achiral and chiral pharmaceuticals in wastewaters from urban tertiary and rural aerated lagoon treatments[J]. Water Research,2010,44(2):533 − 544. doi: 10.1016/j.watres.2009.09.056

    CrossRef Google Scholar

    [34] REH R,LICHA T,GEYER T,et al. Occurrence and spatial distribution of organic micro-pollutants in a complex hydrogeological karst system during low flow and high flow periods,results of a two-year study[J]. Science of the Total Environment,2013,443:438 − 445. doi: 10.1016/j.scitotenv.2012.11.005

    CrossRef Google Scholar

    [35] 邰义萍,莫测辉,吴小莲,等. 绿色和有机蔬菜基地土壤中喹诺酮类抗生素的污染特征[J]. 农业环境科学学报,2012,31(1):125 − 130. [TAI Yiping,MO Cehui,WU Xiaolian,et al. Occurrence of quinolone antibiotics in the soils from a green and an organic vegetable fields[J]. Journal of Agro-Environment Science,2012,31(1):125 − 130. (in Chinese with English abstract)]

    Google Scholar

    TAI Yiping, MO Cehui, WU Xiaolian, et al. Occurrence of quinolone antibiotics in the soils from a green and an organic vegetable fields[J]. Journal of Agro-Environment Science, 2012, 311): 125130. (in Chinese with English abstract)

    Google Scholar

    [36] TONG Lei,QIN Liting,XIE Cong,et al. Distribution of antibiotics in alluvial sediment near animal breeding areas at the Jianghan Plain,Central China[J]. Chemosphere,2017,186:100 − 107. doi: 10.1016/j.chemosphere.2017.07.141

    CrossRef Google Scholar

    [37] 方林发,叶苹苹,方标,等. 重庆开州区菜地土壤抗生素污染特征及潜在生态环境风险评估[J]. 环境科学,2022,43(11):5244 − 5252. [FANG Linfa,YE Pingping,FANG Biao,et al. Pollution characteristics and ecological risk assessment of antibiotics in vegetable field in Kaizhou,Chongqing[J]. Environmental Science,2022,43(11):5244 − 5252. (in Chinese with English abstract)]

    Google Scholar

    FANG Linfa, YE Pingping, FANG Biao, et al. Pollution characteristics and ecological risk assessment of antibiotics in vegetable field in Kaizhou, Chongqing[J]. Environmental Science, 2022, 4311): 52445252. (in Chinese with English abstract)

    Google Scholar

    [38] ZHANG Yunxin,CHEN Haiyang,JING Lijun,et al. Ecotoxicological risk assessment and source apportionment of antibiotics in the waters and sediments of a peri-urban river[J]. Science of the Total Environment,2020,731:139128. doi: 10.1016/j.scitotenv.2020.139128

    CrossRef Google Scholar

    [39] 李清雪,董天羽,孙王茹,等. 典型北方城市河流中抗生素污染特征及风险评价[J]. 生态毒理学报,2022,17(4):213 − 229. [LI Qingxue,DONG Tianyu,SUN Wangru,et al. Pollution characteristics and risk assessment of antibiotics in typical northern urban rivers[J]. Asian Journal of Ecotoxicology,2022,17(4):213 − 229. (in Chinese with English abstract)]

    Google Scholar

    LI Qingxue, DONG Tianyu, SUN Wangru, et al. Pollution characteristics and risk assessment of antibiotics in typical northern urban rivers[J]. Asian Journal of Ecotoxicology, 2022, 174): 213229. (in Chinese with English abstract)

    Google Scholar

    [40] 杨聪,童蕾,马乃进,等. 洪湖水体和沉积物中抗生素的分布特征及其影响因素研究[J]. 安全与环境工程,2022,29(5):78 − 90. [YANG Cong,TONG Lei,MA Naijin,et al. Distribution characteristics and influencing factors of antibiotics in water and sediments of Honghu lake[J]. Safety and Environmental Engineering,2022,29(5):78 − 90. (in Chinese with English abstract)]

    Google Scholar

    YANG Cong, TONG Lei, MA Naijin, et al. Distribution characteristics and influencing factors of antibiotics in water and sediments of Honghu lake[J]. Safety and Environmental Engineering, 2022, 295): 7890. (in Chinese with English abstract)

    Google Scholar

    [41] RIMKUS G G,HOFFMANN D. Enantioselective analysis of chloramphenicol residues in honey samples by chiral LC-MS/MS and results of a honey survey[J]. Food Additives & Contaminants Part A,Chemistry,Analysis,Control,Exposure & Risk Assessment,2017,34(6):950-961.

    Google Scholar

    [42] LIANG Ning,HUANG Peiting,HOU Xiaohong,et al. Solid-phase extraction in combination with dispersive liquid-liquid microextraction and ultra-high performance liquid chromatography-tandem mass spectrometry analysis:The ultra-trace determination of 10 antibiotics in water samples[J]. Analytical and Bioanalytical Chemistry,2016,408(6):1701 − 1713. doi: 10.1007/s00216-015-9284-z

    CrossRef Google Scholar

    [43] HANNA N D,SUN Pan,SUN Qiang,et al. Presence of antibiotic residues in various environmental compartments of Shandong province in eastern China:Its potential for resistance development and ecological and human risk[J]. Environment International,2018,114:131 − 142. doi: 10.1016/j.envint.2018.02.003

    CrossRef Google Scholar

    [44] 尹春艳,骆永明,滕应,等. 典型设施菜地土壤抗生素污染特征与积累规律研究[J]. 环境科学,2012,33(8):2810 − 2816. [YIN Chunyan,LUO Yongming,TENG Ying,et al. Pollution characteristics and accumulation of antibiotics in typical protected vegetable soils[J]. Environmental Science,2012,33(8):2810 − 2816. (in Chinese with English abstract)]

    Google Scholar

    YIN Chunyan, LUO Yongming, TENG Ying, et al. Pollution characteristics and accumulation of antibiotics in typical protected vegetable soils[J]. Environmental Science, 2012, 338): 28102816. (in Chinese with English abstract)

    Google Scholar

    [45] WANG Zhi,DU Yun,YANG Chao,et al. Occurrence and ecological hazard assessment of selected antibiotics in the surface waters in and around Lake Honghu,China[J]. Science of the Total Environment,2017,609:1423 − 1432. doi: 10.1016/j.scitotenv.2017.08.009

    CrossRef Google Scholar

    [46] ZHANG Guodong,LIU Xiaohui,LU Shaoyong,et al. Occurrence of typical antibiotics in Nansi Lake’s inflowing rivers and antibiotic source contribution to Nansi Lake based on principal component analysis-multiple linear regression model[J]. Chemosphere,2020,242:125269. doi: 10.1016/j.chemosphere.2019.125269

    CrossRef Google Scholar

    [47] 文峰,曲洁婷,陈历铌,等. 成都市地表水典型抗生素分布特征及生态风险评估[J]. 当代化工研究,2022,14:1 − 5. [WEN Feng,QU Jieting,CHEN Lini,et al. Distrbution characteristics and ecological risk assessment of typical antibiotics in Chengdu surface water[J]. Modern Chemical Research,2022,14:1 − 5. (in Chinese with English abstract)] doi: 10.3969/j.issn.1672-8114.2022.14.001

    CrossRef Google Scholar

    WEN Feng, QU Jieting, CHEN Lini, et al. Distrbution characteristics and ecological risk assessment of typical antibiotics in Chengdu surface water[J]. Modern Chemical Research, 2022, 14: 15. (in Chinese with English abstract) doi: 10.3969/j.issn.1672-8114.2022.14.001

    CrossRef Google Scholar

    [48] FERNANDES M J,PAÍGA P,SILVA A,et al. Antibiotics and antidepressants occurrence in surface waters and sediments collected in the north of Portugal[J]. Chemosphere,2020,239:124729. doi: 10.1016/j.chemosphere.2019.124729

    CrossRef Google Scholar

    [49] XUE Moyong,GU Xu,QIN Yuchang,et al. Enantioselective behavior of flumequine enantiomers and metabolites’ identification in sediment[J]. Journal of Analytical Methods in Chemistry,2022,2184024.

    Google Scholar

    [50] TANAKA M,KURATA T,FUJISAWA C,et al. Mechanistic study of inhibition of levofloxacin absorption by aluminum hydroxide[J]. Antimicrobial Agents and Chemotherapy,1993,37(10):2173 − 2178. doi: 10.1128/AAC.37.10.2173

    CrossRef Google Scholar

    [51] QIN Xiaopeng,ZHONG Xiaofei,DU Ping,et al. Competitive adsorption of ofloxacin enantiomers to goethite:Experiments and modeling[J]. Environmental Chemistry,2021,18:38 − 44 doi: 10.1071/EN20123

    CrossRef Google Scholar

    [52] QIN Xiaopeng,ZHONG Xiaofei,WANG Bin,et al. Fractionation of levofloxacin and ofloxacin during their transport in NOM-goethite:Batch and column studies[J]. Environmental Pollution,2023,316:120542 doi: 10.1016/j.envpol.2022.120542

    CrossRef Google Scholar

    [53] 王朋. 氧氟沙星在不同性质吸附剂上的吸附动力学研究[D]. 昆明:昆明理工大学,2013. [WANG Peng. Sorption kinetics of ofloxacin in particles with different properties[D]. Kunming:Kunming University of Science and Technology,2013. (in Chinese with English abstract)]

    Google Scholar

    WANG Peng. Sorption kinetics of ofloxacin in particles with different properties[D]. Kunming: Kunming University of Science and Technology, 2013. (in Chinese with English abstract)

    Google Scholar

    [54] PAUL T,LIU J Y,MACHESKY M L,et al. Adsorption of zwitterionic fluoroquinolone antibacterials to goethite:A charge distribution-multisite complexation model[J]. Journal of Colloid and Interface Science,2014,428:63 − 72. doi: 10.1016/j.jcis.2014.04.034

    CrossRef Google Scholar

    [55] QIN Xiaopeng,LIU Fei,WANG Guangcai,et al. Modeling of levofloxacin adsorption to goethite and the competition with phosphate[J]. Chemosphere,2014,111:283 − 290. doi: 10.1016/j.chemosphere.2014.04.032

    CrossRef Google Scholar

    [56] CHEN Yanan,QIAN Yunkun,SHI Yijun,et al. Accumulation of chiral pharmaceuticals (ofloxacin or levofloxacin) onto polyethylene microplastics from aqueous solutions[J]. Science of the Total Environment,2022,823:153765. doi: 10.1016/j.scitotenv.2022.153765

    CrossRef Google Scholar

    [57] KAWAI Y,MATSUBAYASHI K,HAKUSUI H,et al. Interaction of quinolones with metal cations in aqueous solution[J]. Chemical & Pharmaceutical Bulletin,1996,44(8):1425 − 1430.

    Google Scholar

    [58] DJURDJEVIĆ P,JOKSOVIĆ L,JELIĆ R,et al. Solution equilibria between aluminum(III) ion and some fluoroquinolone family members. spectroscopic and potentiometric study[J]. Chemical and Pharmaceutical Bulletin,2007,55(12):1689 − 1699. doi: 10.1248/cpb.55.1689

    CrossRef Google Scholar

    [59] SULTANA N,NAZ A,ARAYNE M S,et al. Synthesis,characterization,antibacterial,antifungal and immunomodulating activities of gatifloxacin-metal complexes[J]. Journal of Molecular Structure,2010,969(1):17 − 24.

    Google Scholar

    [60] URBANIAK B,KOKOT Z J. Analysis of the factors that significantly influence the stability of fluoroquinolone-metal complexes[J]. Analytica Chimica Acta,2009,647(1):54 − 59. doi: 10.1016/j.aca.2009.05.039

    CrossRef Google Scholar

    [61] MAIA A S,CASTRO P M L,TIRITAN M E. Integrated liquid chromatography method in enantioselective studies:Biodegradation of ofloxacin by an activated sludge consortium[J]. Journal of Chromatography B,Analytical Technologies in the Biomedical and Life Sciences,2016,1029/1030:174 − 183. doi: 10.1016/j.jchromb.2016.06.026

    CrossRef Google Scholar

    [62] MAIA A S,TIRITAN M E,CASTRO P M L. Enantioselective degradation of ofloxacin and levofloxacin by the bacterial strains Labrys portucalensis F11 and Rhodococcus sp. FP1[J]. Ecotoxicology and Environmental Safety,2018,155:144 − 151. doi: 10.1016/j.ecoenv.2018.02.067

    CrossRef Google Scholar

    [63] MAIA A S,RIBEIRO A R,AMORIM C L,et al. Degradation of fluoroquinolone antibiotics and identification of metabolites/transformation products by liquid chromatography-tandem mass spectrometry[J]. Journal of Chromatography A,2014,1333:87 − 98. doi: 10.1016/j.chroma.2014.01.069

    CrossRef Google Scholar

    [64] ELDER F C T,FEIL E J,PASCOE B,et al. Stereoselective bacterial metabolism of antibiotics in environmental bacteria:A novel biochemical workflow[J]. Frontiers in Microbiology,2021,12:562157.

    Google Scholar

    [65] WANG Yanfei,GAO Xiaofeng,JIN Huoxi,et al. Validation of a chiral liquid chromatographic method for the degradation behavior of flumequine enantiomers in mariculture pond water[J]. Chirality,2016,28(9):649 − 655. doi: 10.1002/chir.22625

    CrossRef Google Scholar

    [66] 高小峰. 养殖海水中氧氟沙星及氟甲喹对映体降解行为研究[D]. 舟山:浙江海洋学院,2015. [GAO Xiaofeng. Degradation behavior of ofloxacin and flumequine enantiomers in mariculture pond water[D]. Zhoushan:Zhejiang Ocean University,2015. (in Chinese with English abstract)]

    Google Scholar

    GAO Xiaofeng. Degradation behavior of ofloxacin and flumequine enantiomers in mariculture pond water[D]. Zhoushan: Zhejiang Ocean University, 2015. (in Chinese with English abstract)

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(2)

Tables(2)

Article Metrics

Article views(813) PDF downloads(61) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint