2023 Vol. 50, No. 1
Article Contents

LI Wenbin, FENG Wenkai, HU Yunpeng, ZHOU Yongjian, CHEN Kai, LIU Yun. Roughness coefficient of rock discontinuities based on random forest regression analyses[J]. Hydrogeology & Engineering Geology, 2023, 50(1): 87-93. doi: 10.16030/j.cnki.issn.1000-3665.202110048
Citation: LI Wenbin, FENG Wenkai, HU Yunpeng, ZHOU Yongjian, CHEN Kai, LIU Yun. Roughness coefficient of rock discontinuities based on random forest regression analyses[J]. Hydrogeology & Engineering Geology, 2023, 50(1): 87-93. doi: 10.16030/j.cnki.issn.1000-3665.202110048

Roughness coefficient of rock discontinuities based on random forest regression analyses

More Information
  • The peak shear strength of the discontinuities can be estimated quickly by the roughness of the discontinuities. However, it is difficult to quantify the roughness of the structural surface using the single statistical parameter. In order to improve the prediction accuracy of the standard discontinuities roughness, eight statistical parameters in the aspects of undulating degree and trace length of 112 structural profile curves are collected, and the method of cross-validation of random forest regression model is used to evaluate the importance of statistical parameters. The evaluation results show that the importance of six statistical parameters, including the maximum undulation, undulation height standard deviation, mean undulating angle, undulating angle standard deviation, mean relative undulation rave and roughness profile index, accounts for 93.2%, and the regression fitting coefficient tends to be stable. Based on the importance assessment results, a random forest regression model is established. The model prediction results fitting excellence is up to 98.1%, showing the excellent prediction results. Compared with the traditional linear regression results, such as the results of the slope-based mean square root, structural function and roughness profile index, the random forest regression model has higher accuracy, smaller error and better fit. The random forest regression model is more suitable for structural roughness inversion.

  • 加载中
  • [1] BARTON N. Review of a new shear-strength criterion for rock joints[J]. Engineering Geology,1973,7(4):287 − 332. doi: 10.1016/0013-7952(73)90013-6

    CrossRef Google Scholar

    [2] BARTON N,CHOUBEY V. The shear strength of rock joints in theory and practice[J]. Rock Mechanics,1977,10(1/2):1 − 54.

    Google Scholar

    [3] BARTON N. Suggested methods for the quantitative description of discontinuities in rock masses[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts,1978,15(6):319-368.

    Google Scholar

    [4] 邓华锋,熊雨,肖瑶,等. 基于单试件法的节理岩体抗剪强度参数分析[J]. 岩土工程学报,2020,42(8):1509 − 1515. [DENG Huafeng,XIONG Yu,XIAO Yao,et al. Shear strength parameters of jointed rock mass based on single test sample method[J]. Chinese Journal of Geotechnical Engineering,2020,42(8):1509 − 1515. (in Chinese with English abstract)

    Google Scholar

    [5] TSE R,CRUDEN D M. Estimating joint roughness coefficients[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1979,16(5):303 − 307.

    Google Scholar

    [6] YANG Z Y,LO S C,DI C C. Reassessing the joint roughness coefficient (JRC) estimation using Z_2[J]. Rock Mechanics and Rock Engineering,2001,34(3):243 − 251. doi: 10.1007/s006030170012

    CrossRef Google Scholar

    [7] YU Xianbin,VAYSSADE B. Joint profiles and their roughness parameters[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1991,28(4):333 − 336.

    Google Scholar

    [8] 孙辅庭,佘成学,万利台. Barton标准剖面JRC与独立于离散间距的统计参数关系研究[J]. 岩石力学与工程学报,2014,33(增刊 2):3539 − 3544. [SUN Futing,SHE Chengxue,WAN Litai. Research on relationship between JRC of Barton’s standard profiles and statistic parameters independent of sampling interval[J]. Chinese Journal of Rock Mechanics and Engineering,2014,33(Sup 2):3539 − 3544. (in Chinese with English abstract)

    Google Scholar

    [9] ZHANG Guangcheng,KARAKUS M,TANG Huiming,et al. A new method estimating the 2D Joint Roughness Coefficient for discontinuity surfaces in rock masses[J]. International Journal of Rock Mechanics and Mining Sciences,2014,72:191 − 198. doi: 10.1016/j.ijrmms.2014.09.009

    CrossRef Google Scholar

    [10] 吉峰. 硬性结构面粗糙度系数量化确定及其工程应用[J]. 水文地质工程地质,2010,37(3):84 − 86,101. [JI Feng. Quantization research and project application of roughness coefficient of a rigid structure plane[J]. Hydrogeology & Engineering Geology,2010,37(3):84 − 86,101. (in Chinese)

    Google Scholar

    [11] 李化,黄润秋. 岩石结构面粗糙度系数JRC定量确定方法研究[J]. 岩石力学与工程学报,2014,33(增刊 2):3489 − 3496. [LI Hua,HUANG Runqiu. Method of quantitative determination of joint roughness coefficient[J]. Chinese Journal of Rock Mechanics and Engineering,2014,33(Sup 2):3489 − 3496. (in Chinese with English abstract)

    Google Scholar

    [12] 徐光黎. 岩石结构面几何特征的分形与分维[J]. 水文地质工程地质,1993,20(2):20 − 22. [XU Guangli. Fractal analysis for rock mass joint geometry[J]. Hydrogeology and Engineering Geology,1993,20(2):20 − 22. (in Chinese with English abstract)

    Google Scholar

    [13] 谢和平. 岩石节理的分形描述[J]. 岩土工程学报,1995,17(1):18 − 23. [XIE Heping. Fractal description of rock joints[J]. Chinese Journal of Geotechnical Engineering,1995,17(1):18 − 23. (in Chinese)

    Google Scholar

    [14] 杜时贵,陈禹,樊良本. JRC修正直边法的数学表达[J]. 工程地质学报,1996,4(2):36 − 43. [DU Shigui,CHEN Yu,FAN Liangben. Mathematical expression of JRC modified straight edge[J]. Journal of Engineering Geology,1996,4(2):36 − 43. (in Chinese)

    Google Scholar

    [15] BARTON, BANDIS S. Effects of block size on the shear behavior of jointed rock[C]// The 23rd US Symposium on Rock Mechanics. 1982: 739-760.

    Google Scholar

    [16] 胡越,罗东阳,花奎,等. 关于深度学习的综述与讨论[J]. 智能系统学报,2019,14(1):1 − 19. [HU Yue,LUO Dongyang,HUA Kui,et al. Overview on deep learning[J]. CAAI Transactions on Intelligent Systems,2019,14(1):1 − 19. (in Chinese with English abstract)

    Google Scholar

    [17] 李欣海. 随机森林模型在分类与回归分析中的应用[J]. 应用昆虫学报,2013,50(4):1190 − 1197. [LI Xinhai. Using “random forest” for classification and regression[J]. Chinese Journal of Applied Entomology,2013,50(4):1190 − 1197. (in Chinese with English abstract)

    Google Scholar

    [18] BREIMAN L. Random forests[J]. Machine Learning,2001,45(1):5 − 32. doi: 10.1023/A:1010933404324

    CrossRef Google Scholar

    [19] 李扬,祁乐,聂佩芸. 大规模数据的随机森林算法[J]. 统计与信息论坛,2020,35(6):24 − 33. [LI Yang,QI Le,NIE Peiyun. A distributed random forest algorithm for massive data[J]. Statistics & Information Forum,2020,35(6):24 − 33. (in Chinese with English abstract)

    Google Scholar

    [20] 刘新荣,邓志云,刘永权,等. 岩石节理峰前循环直剪试验颗粒流宏细观分析[J]. 煤炭学报,2019,44(7):2103 − 2115. [LIU Xinrong,DENG Zhiyun,LIU Yongquan,et al. Macroscopic and microscopic analysis of particle flow in pre-peak cyclic direct shear test of rock joint[J]. Journal of China Coal Society,2019,44(7):2103 − 2115. (in Chinese with English abstract)

    Google Scholar

    [21] 黄曼,洪陈杰,杜时贵,等. 岩石结构面形貌分级方法及两级粗糙特性研究[J]. 岩石力学与工程学报,2020,39(6):1153 − 1164. [HUANG Man,HONG Chenjie,DU Shigui,et al. Study on morphological classification method and two-order roughness of rock joints[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(6):1153 − 1164. (in Chinese with English abstract)

    Google Scholar

    [22] 陈世江,赵自豪,王超. 基于修正线粗糙度法的岩石节理粗糙度估值[J]. 金属矿山,2012(6):22 − 25. [CHEN Shijiang,ZHAO Zihao,WANG Chao. Estimation of rock joint roughness based on modified line-roughness[J]. Metal Mine,2012(6):22 − 25. (in Chinese with English abstract)

    Google Scholar

    [23] LI Yanrong,ZHANG Yongbo. Quantitative estimation of joint roughness coefficient using statistical parameters[J]. International Journal of Rock Mechanics and Mining Sciences,2015,77:27 − 35. doi: 10.1016/j.ijrmms.2015.03.016

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(2)

Article Metrics

Article views(1558) PDF downloads(83) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint