Citation: | ZHAO Zhen, QIN Guangxiong, LUO Yinfei, CHAO Jiahao, GENG Songhe, ZHANG Liang. Characteristics of geothermal water in the Xining Basin and risk of reinjection scaling[J]. Hydrogeology & Engineering Geology, 2021, 48(5): 193-204. doi: 10.16030/j.cnki.issn.1000-3665.202103058 |
The Xining Basin in Qinghai Province is rich in geothermal resources of low to medium temperature, but the geothermal reservoir is dominated by weakly consolidated sandstone containing clay minerals, and the geothermal water has high salinity, which causes a significant risk of scaling during reinjection. In this paper, based on the analysis of the geothermal genesis and resource distribution characteristics in the Xining Basin, different methods, such as the mineral solubility method and saturation index method, are used to assess the scaling tendency and risk in typical geothermal water during reinjection. The results show that the “convex in concave” structure of the Xining Basin is beneficial for the enrichment and warming of thermal groundwater in the deep geothermal reservoir, and at the same time, a large number of dissolved minerals are brought to the central bulge in the Xining Basin. The geothermal reservoir in the Xining Bain is mainly buried at a depth of 700−1600 m with water temperature of 30−70 ℃. The hydrochemical type is mainly of SO4·Cl—Na type, and the salinity range from 1.85×103 to 4.80×104 mg/L. The main scaling product during reinjection is CaCO3. When the characteristics of reinjection water and geothermal water are similar, the risk of scaling mainly occurs in the reinjection wellbore, and the risk of formation scaling is relatively small. When the characteristics of reinjection water and geothermal water are quite different, the incompatibility will greatly increase the risk of formation scaling. Among them, when the water from Yaowangquan is mixed with that from DR2005Y by 1∶1, the maximum scaling amount can reach 177.57 mg/L, while the scaling amount from other geothermal water is smaller. Based on the above characteristics, three sets of comprehensive measures are proposed as the follows: physical anti-scaling + pipe anti-corrosion, system pressurization anti-scaling + pipe anti-corrosion and ground pretreatment + pipe anti-corrosion, supplemented by measures such as cathodic protection anticorrosion, optimized displacement, and pickling the wellbore. The results of this study can provide theoretical basis and technical support for the formulation of measures to ensure the reinjection capacity of geothermal water in the future.
[1] | 拓明明, 周训, 郭娟, 等. 重庆温泉及地下热水的分布及成因[J]. 水文地质工程地质,2018,45(1):165 − 172. [TA Mingming, ZHOU Xun, GUO Juan, et al. Occurrence and formation of the hot springs and thermal groundwater in Chongqing[J]. Hydrogeology & Engineering Geology,2018,45(1):165 − 172. (in Chinese with English abstract) |
[2] | 王洁青, 周训, 李晓露, 等. 云南兰坪盆地羊吃蜜温泉水化学特征与成因分析[J]. 现代地质,2017,31(4):822 − 831. [WANG Jieqing, ZHOU Xun, LI Xiaolu, et al. Hydrochemistry and formation of the Yangchimi hot spring in the Lanping Basin of Yunnan[J]. Geoscience,2017,31(4):822 − 831. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-8527.2017.04.016 |
[3] | 薛宇泽, 陶鹏飞, 韩元红. 渭河盆地中深层地热资源开发存在问题及改进措施[J]. 资源环境与工程,2020,34(3):428 − 431. [XUE Yuze, TAO Pengfei, HAN Yuanhong. The problem and improvement measures of middle and deep geothermal resources development in Weihe Basin[J]. Resources Environment & Engineering,2020,34(3):428 − 431. (in Chinese with English abstract) |
[4] | 马正孔. 砂岩地热尾水回灌技术的研究[J]. 华北国土资源,2018(4):72 − 73. [MA Zhengkong. The research on reinjection technology of geothermal tail water into sandstone[J]. Huabei Land and Resources,2018(4):72 − 73. (in Chinese) doi: 10.3969/j.issn.1672-7487.2018.04.030 |
[5] | 梅博, 郭亮, 王鹏, 等. 地热井尾水回灌技术及其应用进展[J]. 中国资源综合利用,2018,36(1):168 − 170. [MEI Bo, GUO Liang, WANG Peng, et al. The technology and application of water recharge in the tail water of geothermal well[J]. China Resources Comprehensive Utilization,2018,36(1):168 − 170. (in Chinese with English abstract) |
[6] | ZHANG L, CHAO J H, GENG S H, et al. Particle migration and blockage in geothermal reservoirs during water reinjection: Laboratory experiment and reaction kinetic model[J]. Energy,2020,206:118234. doi: 10.1016/j.energy.2020.118234 |
[7] | 杨亚军, 丁桂伶, 徐巍, 等. 基于示踪试验及动态数据的北京小汤山地区地热资源量评价[J]. 水文地质工程地质,2020,47(5):196 − 200. [YANG Yajun, DING Guiling, XU Wei, et al. Tracer test and geothermal resource quantity evaluation based on dynamic data in the Xiaotangshan area of Beijing[J]. Hydrogeology & Engineering Geology,2020,47(5):196 − 200. (in Chinese with English abstract) |
[8] | 张薇, 王贵玲, 刘峰, 等. 中国沉积盆地型地热资源特征[J]. 中国地质,2019,46(2):255 − 268. [ZHANG Wei, WANG Guiling, LIU Feng, et al. Characteristics of geothermal resources in sedimentary basins[J]. Geology in China,2019,46(2):255 − 268. (in Chinese with English abstract) |
[9] | 洪增林, 张银龙, 周阳. 关中盆地南部山前中深层地热资源赋存特征及应用[J]. 中国地质,2019,46(5):1224 − 1235. [HONG Zenglin, ZHANG Yinlong, ZHOU Yang. Research on the modes of occurrence and application of geothermal resources in the middle and deep layers of the piedmont area in southern Guanzhong Basin[J]. Geology in China,2019,46(5):1224 − 1235. (in Chinese with English abstract) doi: 10.12029/gc20190522 |
[10] | 孟宪级, 白丽萍, 齐金生. 地热水结垢趋势的判断[J]. 工业水处理,1997,17(5):6 − 7. [MENG Xianji, BAI Liping, QI Jinsheng. The judgment of scaling tendency in geothermal water in China[J]. Industrial Water Treatment,1997,17(5):6 − 7. (in Chinese with English abstract) doi: 10.11894/1005-829x.1997.17(5).6 |
[11] | 曹倩, 方朝合, 李云, 等. 国内外地热回灌发展现状及启示[J]. 石油钻采工艺,2021,43(2):203 − 211. [CAO Qian, FANG Chaohe, LI Yun, et al. Development status of geothermal reinjection at home and abroad and its enlightenment[J]. Oil Drilling & Production Technology,2021,43(2):203 − 211. (in Chinese with English abstract) |
[12] | 戴群, 王聪, 罗杨, 等. 砂岩地热储层回灌堵塞机理研究及治理对策[J]. 精细石油化工进展,2017,18(6):10 − 13. [DAI Qun, WANG Cong, LUO Yang, et al. Research on sandstone geothermal reservoir reinjection plugging mechanism and measures against it[J]. Advances in Fine Petrochemicals,2017,18(6):10 − 13. (in Chinese with English abstract) doi: 10.3969/j.issn.1009-8348.2017.06.003 |
[13] | 刘明言. 地热流体的腐蚀与结垢控制现状[J]. 新能源进展,2015,3(1):38 − 46. [LIU Mingyan. A review on controls of corrosion and scaling in geothermal fluids[J]. Advances in New and Renewable Energy,2015,3(1):38 − 46. (in Chinese with English abstract) doi: 10.3969/j.issn.2095-560X.2015.01.007 |
[14] | 豆肖辉, 张大磊, 荆赫, 等. 不锈钢在低温地热水环境中的腐蚀与结垢行为[J]. 腐蚀与防护,2020,41(7):61 − 66. [DOU Xiaohui, ZHANG Dalei, JING He, et al. Corrosion and scaling behavior of stainless steel in low-temperature geothermal water environment[J]. Corrosion & Protection,2020,41(7):61 − 66. (in Chinese with English abstract) doi: 10.11973/fsyfh-202007010 |
[15] | 马致远, 侯晨, 席临平, 等. 超深层孔隙型热储地热尾水回灌堵塞机理[J]. 水文地质工程地质,2013,40(5):133 − 139. [MA Zhiyuan, HOU Chen, XI Linping, et al. Reinjection clogging mechanism of used geothermal water in a super-deep-porous reservoir[J]. Hydrogeology & Engineering Geology,2013,40(5):133 − 139. (in Chinese with English abstract) |
[16] | 王连成. 天津市新近系馆陶组地热流体回灌研究[D]. 北京: 中国地质大学(北京), 2014. WANG Liancheng. A study of geothermal reinjection in the Guantao reservoir in Tianjin[D]. Beijing: China University of Geosciences (Beijing), 2014. (in Chinese with English abstract) |
[17] | 赵季初. 鲁北砂岩热储地热尾水回灌试验研究[J]. 山东国土资源,2013,29(9):23 − 30. [ZHAO Jichu. Lubei geothermal tail water reinjection experiments in sandstone reservoir[J]. Shandong Land and Resources,2013,29(9):23 − 30. (in Chinese with English abstract) doi: 10.3969/j.issn.1672-6979.2013.09.005 |
[18] | 赵振, 于漂罗, 陈惠娟, 等. 青海省西宁地热田成因分析及资源评价[J]. 中国地质,2015,42(3):803 − 810. [ZHAO Zhen, YU Piaoluo, CHEN Huijuan, et al. Genetic analysis and resource evaluation of the Xining geothermal field in Qinghai Province[J]. Geology in China,2015,42(3):803 − 810. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3657.2015.03.029 |
[19] | 尚小刚. 青海省威远镇地热田热储特征及其开发利用潜力评价[D]. 北京: 中国地质大学(北京), 2013. SHANG Xiaogang. Development use and potential evaluation of the thermal reservoir characteristics and geothermal resources of geothermal field in Weiyuan town, Qinghai Province[D]. Beijing: China University of Geosciences (Beijing), 2013. (in Chinese with English abstract) |
[20] | 马致远, 李嘉祺, 翟美静, 等. 沉积型和火山型地热流体的同位素水文地球化学对比研究[J]. 水文地质工程地质,2019,46(6):9 − 18. [MA Zhiyuan, LI Jiaqi, ZHAI Meijing, et al. A comparative study of isotopic hydrogeochemistry of geothermal fluids of sedimentary basin type and volcanic type[J]. Hydrogeology & Engineering Geology,2019,46(6):9 − 18. (in Chinese with English abstract) |
[21] | 蔡义汉. 地热直接利用[M]. 天津: 天津大学出版社, 2004. CAI Yihan. Geothermal direct-use[M]. Tianjin: Tianjin University Press, 2004.(in Chinese) |
[22] | 李义曼, 庞忠和. 地热系统碳酸钙垢形成原因及定量化评价[J]. 新能源进展,2018,6(4):274 − 281. [LI Yiman, PANG Zhonghe. Carbonate calcium scale formation and quantitative assessment in geothermal system[J]. Advances in New and Renewable Energy,2018,6(4):274 − 281. (in Chinese with English abstract) doi: 10.3969/j.issn.2095-560X.2018.04.004 |
[23] | 任加国, 武倩倩. 水文地球化学基础[M]. 北京: 地质出版社, 2014. REN Jiaguo, WU Qianqian. Hydro-geochemistry[M]. Beijing: Geological Publishing House, 2014.(in Chinese) |
[24] | 柴蕊. 天津市周良庄地热田地下热水的水化学及钙华研究[D]. 北京: 中国地质大学(北京), 2006. CHAI Rui. A study of hydrochemistry and tufa in thermal groundwater in the Zhouliangzhuang geothermal fileld, Tianjin[D]. Beijing: China University of Geosciences (Beijing), 2006. (in Chinese with English abstract) |
[25] | 刘光启. 化工物性算图手册[M]. 北京: 化学工业出版社, 2002. LIU Guangqi. The manual of calculation about chemical physical properties[M]. Beijing: Chemical Industry Press, 2002.(in Chinese) |
[26] | 李雪娇. 硫酸钡结垢影响因素及化学阻垢实验研究[D]. 成都: 西南石油大学, 2015. LI Xuejiao. Experimental research on influencing factors of barium sulfate scaling and chemical scale inhibition[D]. Chengdu: Southwest Petroleum University, 2015. (in Chinese with English abstract) |
[27] | ODDO J E, TOMSON M B. Why scale forms and how to predict[J]. SPE Production & Facilities,1997,9(1):47 − 54. |
[28] | ODDO J E, TOMSON M B. Simplified calculation of CaCO3 saturation at high temperatures and pressures in brine solutions[J]. Journal of Petroleum Technology,1982,34(7):1583 − 1590. doi: 10.2118/10352-PA |
[29] | 王磊, 唐红伟, 高雨. 油气田地面集输系统结垢预测模型研究[J]. 管道技术与设备,2012(3):12 − 13. [WANG Lei, TANG Hongwei, GAO Yu. Study of gathering system scaling prediction[J]. Pipeline Technique and Equipment,2012(3):12 − 13. (in Chinese with English abstract) doi: 10.3969/j.issn.1004-9614.2012.03.005 |
[30] | 贾红育, 曲志浩. 注水开发油田油层结垢趋势研究[J]. 石油勘探与开发,2001,28(1):89 − 91. [JIA Hongyu, QU Zhihao. A study on formation scaling tendency for waterflooding oilfields[J]. Petroleum Exploration and Development,2001,28(1):89 − 91. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-0747.2001.01.029 |
[31] | 陈易, 徐燕来, 王闰, 等. 油田注水硫酸盐垢结垢趋势预测研究[J]. 内江科技,2012,33(5):23. [CHEN Yi, XU Yanlai, WANG Run, et al. Research on prediction of sulfate scaling trend in oilfield water injection[J]. Neijiang Science & Technology,2012,33(5):23. (in Chinese) doi: 10.3969/j.issn.1006-1436.2012.05.020 |
[32] | 韩淑彬. G104区块注水井井筒结垢机理及防垢技术研究[D]. 成都: 西南石油大学, 2016. HAN Shubin. Research on scaling mechanism and anti-scaling technology of water injection well in G104 block[D]. Chengdu: Southwest Petroleum University, 2016. (in Chinese with English abstract) |
[33] | 刘明言, 朱家玲. 地热能利用中的防腐防垢研究进展[J]. 化工进展,2011,30(5):1120 − 1123. [LIU Mingyan, ZHU Jialing. Progress of corrosion and fouling prevention in utilization of geothermal energy[J]. Chemical Industry and Engineering Progress,2011,30(5):1120 − 1123. (in Chinese with English abstract) |
Sketch map of tectonic units in the Xining Basin (modified from Ref. [19])
Longitudinal section of the conceptual model of Mesozoic thermal reservoir structure in the Xining Basin (modified from Ref. [18])
Distribution characteristics of geothermal water in the study area
Comparison of the maximum formation and solubility curves of carbonate scale in different geothermal waters
Comparison of the maximum formation and solubility curves of sulfate scale in different geothermal waters
CaCO3 saturation index and scaling trend in geothermal water reinjection and heating process in wellbore
Distribution of scaling tendency during different geothermal water reinjections