2021 Vol. 48, No. 6
Article Contents

SUN Xiaozhuo, ZENG Xiankui, WU Jichun, SUN Yuanyuan. An improved method of groundwater model structural uncertainty analysis[J]. Hydrogeology & Engineering Geology, 2021, 48(6): 24-33. doi: 10.16030/j.cnki.issn.1000-3665.202012061
Citation: SUN Xiaozhuo, ZENG Xiankui, WU Jichun, SUN Yuanyuan. An improved method of groundwater model structural uncertainty analysis[J]. Hydrogeology & Engineering Geology, 2021, 48(6): 24-33. doi: 10.16030/j.cnki.issn.1000-3665.202012061

An improved method of groundwater model structural uncertainty analysis

More Information
  • Gaussian Process Regression (GPR) is a supervised learning algorithm based on Bayesian theory, which is widely used in model structural uncertainty analysis based on data-driven method (DDM). In this study, it is usually assumed that the physical parameters and hyperparameters are independent and identified jointly, which will lead to parameter compensation. In this paper, a two-stage based DDM method is proposed to quantify the model structural errors, and two case studies are used to compare and analyze the results of parameter identification and model prediction with considering the model structural errors (joint calibration based DDM and two-stage based DDM) and without considering the model structural errors. The results show that when the parameters are identified directly without considering the model structural errors, the parameters will be overfitted and compensate the model structural errors, thereby affecting the model prediction performance. When considering the model structure deviation based on DDM, the independence assumption of physical parameters and hyperparameters will affect the parameter estimation results. The proposed two-stage based DDM method does not assume that the physical parameters and hyperparameters are independent, and can reduce parameter overfitting caused by the independence assumption of physical parameters and hyperparameters, portraying more accurate structural errors and effectively improving the model prediction performance.

  • 加载中
  • [1] 薛禹群. 中国地下水数值模拟的现状与展望[J]. 高校地质学报,2010,16(1):1 − 6. [XUE Yuqun. Present situation and prospect of groundwater numerical simulation in China[J]. Geological Journal of China Universities,2010,16(1):1 − 6. (in Chinese with English abstract) doi: 10.3969/j.issn.1006-7493.2010.01.001

    CrossRef Google Scholar

    [2] DUMEDAH G, WALKER J P. Assessment of model behavior and acceptable forcing data uncertainty in the context of land surface soil moisture estimation[J]. Advances in Water Resources,2017,101:23 − 36. doi: 10.1016/j.advwatres.2017.01.001

    CrossRef Google Scholar

    [3] 周燕怡, 王旭升. 巴丹吉林沙漠潜水蒸发的数值模拟研究[J]. 水文地质工程地质,2019,46(5):44 − 54. [ZHOU Yanyi, WANG Xusheng. Numerical simulation of groundwater evaporation in the Badain Jaran Desert of China[J]. Hydrogeology & Engineering Geology,2019,46(5):44 − 54. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.2019.05.07

    CrossRef Google Scholar

    [4] 高烨, 梁收运, 王申宁, 等. 地下水数值模拟不确定性分析研究进展[J]. 地下水,2020,42(1):28 − 31. [GAO Ye, LIANG Shouyun, WANG Shenning, et al. Research progress on uncertainty analysis of groundwater numerical simulation[J]. Ground Water,2020,42(1):28 − 31. (in Chinese with English abstract)

    Google Scholar

    [5] 陈梦佳, 吴剑锋, 孙晓敏, 等. 地下水典型非水相液体污染运移模拟的尺度提升研究[J]. 水文地质工程地质,2020,47(1):11 − 18. [CHEN Mengjia, WU Jianfeng, SUN Xiaomin, et al. Upscaling of PCE transport modeling based on UTCHEM in heterogeneous porous media[J]. Hydrogeology & Engineering Geology,2020,47(1):11 − 18. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.201901032

    CrossRef Google Scholar

    [6] REFSGAARD J C, VAN DER SLUIJS J P, BROWN J, et al. A framework for dealing with uncertainty due to model structure error[J]. Advances in Water Resources,2006,29(11):1586 − 1597. doi: 10.1016/j.advwatres.2005.11.013

    CrossRef Google Scholar

    [7] WATSON T A, DOHERTY J E, CHRISTENSEN S. Parameter and predictive outcomes of model simplification[J]. Water Resources Research,2013,49(7):3952 − 3977. doi: 10.1002/wrcr.20145

    CrossRef Google Scholar

    [8] WU J C, ZENG X K. Review of the uncertainty analysis of groundwater numerical simulation[J]. Chinese Science Bulletin,2013,58(25):3044 − 3052. doi: 10.1007/s11434-013-5950-8

    CrossRef Google Scholar

    [9] DOHERTY J, WELTER D. A short exploration of structural noise[J]. Water Resources Research,2010,46(5):W05525.

    Google Scholar

    [10] DOHERTY J, CHRISTENSEN S. Use of paired simple and complex models to reduce predictive bias and quantify uncertainty[J]. Water Resources Research,2011,47(12):W12534.

    Google Scholar

    [11] ERDAL D, NEUWEILER I, HUISMAN J A. Estimating effective model parameters for heterogeneous unsaturated flow using error models for bias correction[J]. Water Resources Research,2012,48(6):W06530.

    Google Scholar

    [12] WHITE J T, DOHERTY J E, HUGHES J D. Quantifying the predictive consequences of model error with linear subspace analysis[J]. Water Resources Research,2014,50(2):1152 − 1173. doi: 10.1002/2013WR014767

    CrossRef Google Scholar

    [13] DRAPER D. Assessment and propagation of model uncertainty[J]. Journal of the Royal Statistical Society: Series B (Methodological),1995,57(1):45 − 70. doi: 10.1111/j.2517-6161.1995.tb02015.x

    CrossRef Google Scholar

    [14] HOETING J A, MADIGAN D, VOLINSKY R C T. Bayesian model averaging: a tutorial[J]. Statistical Science,1999,14(4):382 − 401.

    Google Scholar

    [15] 杜新忠, 李叙勇, 王慧亮, 等. 基于贝叶斯模型平均的径流模拟及不确定性分析[J]. 水文,2014,34(3):6 − 10. [DU Xinzhong, LI Xuyong, WANG Huiliang, et al. Multi-model ensemble runoff simulation based on Bayesian model averaging method and model structure uncertainty analysis[J]. Journal of China Hydrology,2014,34(3):6 − 10. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-0852.2014.03.002

    CrossRef Google Scholar

    [16] 王亮. 贝叶斯模型平均方法研究综述与展望[J]. 技术经济与管理研究,2016(3):19 − 23. [WANG Liang. Overview and prospect of Bayesian model averaging[J]. Technoeconomics & Management Research,2016(3):19 − 23. (in Chinese with English abstract) doi: 10.3969/j.issn.1004-292X.2016.03.004

    CrossRef Google Scholar

    [17] 王倩, 师鹏飞, 宋培兵, 等. 基于贝叶斯模型平均法的洪水集合概率预报[J]. 水电能源科学,2016,34(6):64 − 66. [WANG Qian, SHI Pengfei, SONG Peibing, et al. Multi-model ensemble flood probability forecasting based on BMA[J]. Water Resources and Power,2016,34(6):64 − 66. (in Chinese with English abstract)

    Google Scholar

    [18] 江善虎, 任立良, 刘淑雅, 等. 基于贝叶斯模型平均的水文模型不确定性及集合模拟[J]. 中国农村水利水电,2017(1):107 − 112. [JIANG Shanhu, REN Liliang, LIU Shuya, et al. An analysis of hydrological modeling and ensemble simulation uncertainty using the Bayesian model averaging[J]. China Rural Water and Hydropower,2017(1):107 − 112. (in Chinese with English abstract) doi: 10.3969/j.issn.1007-2284.2017.01.025

    CrossRef Google Scholar

    [19] ROJAS R, FEYEN L, DASSARGUES A. Conceptual model uncertainty in groundwater modeling: Combining generalized likelihood uncertainty estimation and Bayesian model averaging[J]. Water Resources Research,2008,44(12):W12418.

    Google Scholar

    [20] LIU Z, MERWADE V. Separation and prioritization of uncertainty sources in a raster based flood inundation model using hierarchical Bayesian model averaging[J]. Journal of Hydrology,2019,578:124100. doi: 10.1016/j.jhydrol.2019.124100

    CrossRef Google Scholar

    [21] LU D, YE M, CURTIS G P. Maximum likelihood Bayesian model averaging and its predictive analysis for groundwater reactive transport models[J]. Journal of Hydrology,2015,529(3):1859 − 1873.

    Google Scholar

    [22] CAO T T, ZENG X K, WU J C, et al. Integrating MT-DREAMzs and nested sampling algorithms to estimate marginal likelihood and comparison with several other methods[J]. Journal of Hydrology,2018,563:750 − 765. doi: 10.1016/j.jhydrol.2018.06.055

    CrossRef Google Scholar

    [23] DEMISSIE Y K, VALOCCHI A J, MINSKER B S, et al. Integrating a calibrated groundwater flow model with error-correcting data-driven models to improve predictions[J]. Journal of Hydrology,2009,364(3/4):257 − 271.

    Google Scholar

    [24] KHALIL A, ALMASRI M N, MCKEE M, et al. Applicability of statistical learning algorithms in groundwater quality modeling[J]. Water Resources Research,2005,41(5):W05010.

    Google Scholar

    [25] TESORIERO A J, GRONBERG J A, JUCKEM P F, et al. Predicting redox-sensitive contaminant concentrations in groundwater using random forest classification[J]. Water Resources Research,2017,53(8):7316 − 7331. doi: 10.1002/2016WR020197

    CrossRef Google Scholar

    [26] XU T F, VALOCCHI A J. A Bayesian approach to improved calibration and prediction of groundwater models with structural error[J]. Water Resources Research,2015,51(11):9290 − 9311. doi: 10.1002/2015WR017912

    CrossRef Google Scholar

    [27] XU T F, VALOCCHI A J, YE M, et al. Quantifying model structural error: Efficient Bayesian calibration of a regional groundwater flow model using surrogates and a data-driven error model[J]. Water Resources Research,2017,53(5):4084 − 4105. doi: 10.1002/2016WR019831

    CrossRef Google Scholar

    [28] PAN Y, ZENG X K, XU H X, et al. Assessing human health risk of groundwater DNAPL contamination by quantifying the model structure uncertainty[J]. Journal of Hydrology,2020,584:124690. doi: 10.1016/j.jhydrol.2020.124690

    CrossRef Google Scholar

    [29] REICHERT P, SCHUWIRTH N. Linking statistical bias description to multiobjective model calibration[J]. Water Resources Research,2012,48(9):W09543.

    Google Scholar

    [30] BRYNJARSDÓTTIR J, OʼHAGAN A. Learning about physical parameters: the importance of model discrepancy[J]. Inverse Problems,2014,30(11):114007. doi: 10.1088/0266-5611/30/11/114007

    CrossRef Google Scholar

    [31] KENNEDY M C, O'HAGAN A. Bayesian calibration of computer models[J]. Journal of the Royal Statistical Society: Series B Statistical Methodology,2001,63(3):425 − 464. doi: 10.1111/1467-9868.00294

    CrossRef Google Scholar

    [32] RASMUSSEN C E, WILLIAMS C K I. Gaussian processes for machine learning[M]. Cambridge: MIT Press, 2006: 69-106.

    Google Scholar

    [33] VRUGT J A, BRAAK C J F T, DIKS C G H, et al. Accelerating Markov Chain Monte Carlo simulation by differential evolution with self-adaptive randomized subspace sampling[J]. International Journal of Nonlinear Sciences & Numerical Simulation,2009,10(3):273 − 290.

    Google Scholar

    [34] LALOY E, VRUGT J A. High-dimensional posterior exploration of hydrologic models using multiple-try DREAM(ZS) and high-performance computing[J]. Water Resources Research,2012,50(3):182 − 205.

    Google Scholar

    [35] KASS R E, RAFTERY A E. Bayesian factors[J]. Journal of the American statistical association,1995,90(430):773 − 795. doi: 10.1080/01621459.1995.10476572

    CrossRef Google Scholar

    [36] LIU P G, ELSHALL A S, YE M, et al. Evaluating marginal likelihood with thermodynamic integration method and comparison with several other numerical methods[J]. Water Resources Research,2016,52(2):734 − 758. doi: 10.1002/2014WR016718

    CrossRef Google Scholar

    [37] SMOLYAK S A. Quadrature and interpolation formulas for tensor products of certain classes of functions[J]. Soviet Math Dokl,1963(4):240 − 243.

    Google Scholar

    [38] MA X, ZABARAS N. An adaptive hierarchical sparse grid collocation algorithm for the solution of stochastic differential equations[J]. Journal of Computational Physics,2009,228(8):3084 − 3113. doi: 10.1016/j.jcp.2009.01.006

    CrossRef Google Scholar

    [39] ZENG X K, YE M, BURKARDT J, et al. Evaluating two sparse grid surrogates and two adaptation criteria for groundwater Bayesian uncertainty quantification[J]. Journal of Hydrology,2016,535:120 − 134. doi: 10.1016/j.jhydrol.2016.01.058

    CrossRef Google Scholar

    [40] 侯泽宇, 卢文喜, 王宇. 基于替代模型的地下水DNAPLs污染源反演识别[J]. 中国环境科学,2019,39(1):188 − 195. [HOU Zeyu, LU Wenxi, WANG Yu. Surrogate-based source identification of DNAPLs-contaminated groundwater[J]. China Environmental Science,2019,39(1):188 − 195. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-6923.2019.01.021

    CrossRef Google Scholar

    [41] 高鑫宇, 曾献奎, 吴吉春. 基于改进稀疏网格替代模拟的地下水DNAPLs运移不确定性分析[J]. 水文地质工程地质,2020,47(1):1 − 10. [GAO Xinyu, ZENG Xiankui, WU Jichun. Uncertainty analysis of groundwater DNAPLs migration based on improved sparse grids surrogate model[J]. Hydrogeology & Engineering Geology,2020,47(1):1 − 10. (in Chinese with English abstract)

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(4)

Article Metrics

Article views(1571) PDF downloads(82) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint