2021 Vol. 48, No. 6
Article Contents

LI Lulu, ZHOU Zhichao, SHAO Jingli, CUI Yali, ZHAO Jingbo. Advances in groundwater numerical simulation in deep geological disposal of high-level radioactive waste[J]. Hydrogeology & Engineering Geology, 2021, 48(6): 13-23. doi: 10.16030/j.cnki.issn.1000-3665.202010061
Citation: LI Lulu, ZHOU Zhichao, SHAO Jingli, CUI Yali, ZHAO Jingbo. Advances in groundwater numerical simulation in deep geological disposal of high-level radioactive waste[J]. Hydrogeology & Engineering Geology, 2021, 48(6): 13-23. doi: 10.16030/j.cnki.issn.1000-3665.202010061

Advances in groundwater numerical simulation in deep geological disposal of high-level radioactive waste

More Information
  • Groundwater numerical model is not only an effective tool for understanding the formation and evolution mechanism of deep groundwater dynamic field, but also the basis for establishing numerical model of nuclide migration. Therefore, it is an important technical means in the site selection and safety assessment of high-level radioactive waste (HLW) disposal repository. There are many numerical simulation methods for groundwater flow in deep geological disposal of HLW, and how to choose the suitable method is also a problem worth paying attention to. This article focuses on the research of groundwater numerical simulation technology for deep geological disposal of HLW. Through reviewing a lot of relevant papers, systematically expounds the research progress, applicable conditions and practical applications of four kinds of commonly used groundwater numerical simulation methods. In addition, summarizes the model uncertainty analysis methods and research results commonly used in deep geological disposal, and lists the numerical simulation software of groundwater flow suitable for geological disposal of HLW and its application in waste disposal selection and safety assessment. The results show that the equivalent continuum model is suitable for large, long sequence and high fracture development or uniform areas, with the advantages of mature method and easy to obtain the required data and parameters, but the flow characteristics of groundwater in fractured media cannot be described accurately. The discrete fracture network model is suitable for solving the groundwater flow problems that need to be finely described, such as disposal site and repository canister. However, due to the need for a large number of fracture characteristics, connectivity and related parameters data, this method has the disadvantages of heavy workload and time-consuming. The dual medium model is mainly used to solve the problem of regional-scale fractured groundwater flow, but it cannot show the characteristics of anisotropy and discontinuity of fractured media, so the scope of application has certain limitations. The equivalent discrete coupling model can adopt the equivalent continuum model for the area with high fracture density and the discrete fracture network model for the area with low fracture density through the domain decomposition method, which is more in line with the characteristics of fracture seepage under general geological conditions, but there is also the problems that the exchange capacity is difficult to determine and the coupling technology of two models. Sensitivity analysis sorts the influence degree of different sensitive factors on the model sensitive indexes, so as to improve the model accuracy and reduce the workload of parameter uncertainty analysis. Monte Carlo method is a commonly used method for model uncertainty analysis, which is simple in principle and beneficial to implementation. Finally, the author points out that numerical model simulation ability, uncertainty analysis, prediction simulation and multi-medium coupling model research should be strengthen in the future.

  • 加载中
  • [1] 潘自强, 钱七虎. 我国高放废物地质处置战略研究[J]. 中国核电,2013,6(2):98 − 100. [PAN Ziqiang, QIAN Qihu. The geological disposal of high-level radioactive waste strategy research in our country[J]. China Nuclear Power,2013,6(2):98 − 100. (in Chinese with English abstract)

    Google Scholar

    [2] 王驹, 苏锐, 陈伟明, 等. 中国高放废物深地质处置[J]. 岩石力学与工程学报,2006,25(4):649 − 658. [WANG Ju, SU Rui, CHEN Weiming, et al. Deep geological disposal of high-level radioactive wastes in China[J]. Chinese Journal of Rock Mechanics and Engineering,2006,25(4):649 − 658. (in Chinese with English abstract)

    Google Scholar

    [3] 周志芳, 王锦国. 裂隙介质水动力学[M]. 北京: 中国水利水电出版社, 2004.

    Google Scholar

    ZHOU Zhifang, WANG Jinguo. Dynamics of fluids in fractured media[M]. Beijing: China Water Power Press, 2004. (in Chinese)

    Google Scholar

    [4] LONG J C S, REMER J S, WILSON C R, et al. Porous media equivalents for networks of discontinuous fractures[J]. Water Resources Research,1982,18(3):645 − 658. doi: 10.1029/WR018i003p00645

    CrossRef Google Scholar

    [5] LONG J C S, WITHERSPOON P A. The relationship of the degree of interconnection to permeability in fracture networks[J]. Journal of Geophysical Research: Solid Earth,1985,90(B4):3087 − 3098. doi: 10.1029/JB090iB04p03087

    CrossRef Google Scholar

    [6] DAVID T SNOW. Anisotropie permeability of fractured media[J]. Water Resources Research,1969,5(6):1273 − 1289. doi: 10.1029/WR005i006p01273

    CrossRef Google Scholar

    [7] MASANOBU ODA. An equivalent continuum model for coupled stress and fluid flow analysis in jointed rock masses[J]. Water Resources Research,1986,22(13):1845 − 1856. doi: 10.1029/WR022i013p01845

    CrossRef Google Scholar

    [8] 田开铭, 万力. 各向异性裂隙介质渗透性的研究与评价[M]. 北京: 学苑出版社, 1989.

    Google Scholar

    TIAN Kaiming, WAN Li. Research and evaluation of the permeability of anisotropic fractured media[M]. Beijing: Xueyuan Publishing House, 1989. (in Chinese)

    Google Scholar

    [9] WITTKE, WALTER. Rock mechanics: theory and applications, with case histories[M]. Berlin: Springer Verlag, 1990.

    Google Scholar

    [10] WILSON C R, WITHERSPOON P A. Steady state flow in rigid networks of fractures[J]. Water Resources Research,1974,10(2):328 − 335. doi: 10.1029/WR010i002p00328

    CrossRef Google Scholar

    [11] 王明玉, 陈劲松, 万力. 离散裂隙渗流方法与裂隙化渗透介质建模[J]. 地球科学,2002,27(1):90 − 96. [WANG Mingyu, CHEN Jinsong, WAN Li. Groundwater (fluid) flow modeling in fractured rocks via discrete fracture fluid flow approach[J]. Earth Science,2002,27(1):90 − 96. (in Chinese with English abstract)

    Google Scholar

    [12] LONG J C S, GILMOUR P, WITHERSPOON P A. A model for steady fluid flow in random three-dimensional networks of disc-shaped fractures[J]. Water Resources Research,1985,21(8):1105 − 1115. doi: 10.1029/WR021i008p01105

    CrossRef Google Scholar

    [13] NORDQVIST A W, TSANG Y W, TSANG C F, et al. A variable aperture fracture network model for flow and transport in fractured rocks[J]. Water Resources Research,1992,28(6):1703 − 1713. doi: 10.1029/92WR00216

    CrossRef Google Scholar

    [14] 魏亚强, 董艳辉, 周鹏鹏, 等. 基于离散裂隙网络模型的核素粒子迁移数值模拟研究[J]. 水文地质工程地质,2017,44(1):123 − 130. [WEI Yaqiang, DONG Yanhui, ZHOU Pengpeng, et al. Numerical simulation of radionuclide particle tracking based on discrete fracture network[J]. Hydrogeology & Engineering Geology,2017,44(1):123 − 130. (in Chinese with English abstract)

    Google Scholar

    [15] ANDERSSON J, DVERSTORP B. Conditional simulations of fluid flow in three-dimensional networks of discrete fractures[J]. Water Resources Research,1987,23(10):1876 − 1886. doi: 10.1029/WR023i010p01876

    CrossRef Google Scholar

    [16] DVERSTORP B, ANDERSSON J, NORDQVIST W. Discrete fracture network interpretation of field tracer migration in sparsely fractured rock[J]. Water Resources Research,1992,28(9):2327 − 2343. doi: 10.1029/92WR01182

    CrossRef Google Scholar

    [17] 何杨, 柴军瑞, 唐志立, 等. 三维裂隙网络非稳定渗流数值分析[J]. 水动力学研究与进展(A辑),2007,22(3):338 − 344. [HE Yang, CHAI Junrui, TANG Zhili, et al. Numerical analysis of 3-D unsteady seepage through fracture network in rock mass[J]. Journal of Hydrodynamics (Series A),2007,22(3):338 − 344. (in Chinese with English abstract)

    Google Scholar

    [18] 宗自华, 王驹, 苏锐, 等. BS03钻孔周围裂隙特征分析及3D裂隙网络模拟[C]//中国岩石力学与工程学会. 第二届废物地下处置学术研讨会论文集.2008.

    Google Scholar

    ZONG Zihua, WANG Ju, SU Rui, et al. Characteristics of fracture and modeling of 3D fracture network surrounding borehole BS03[C]//Chinese Society for Rock Mechanics & Engineering. Proceedings of the second symposium on underground waste disposal. 2008. (in Chinese with English abstract)

    Google Scholar

    [19] 黄帆, 姚池, 周创兵, 等. 考虑裂隙迹长和开度相关性的随机裂隙网络数值模拟及渗流分析[J]. 水利水运工程学报,2018(2):35 − 42. [HUANG Fan, YAO Chi, ZHOU Chuangbing, et al. Numerical simulation and seepage analysis of stochastic fracture network considering correlation between fracture trace length and aperture[J]. Hydro-Science and Engineering,2018(2):35 − 42. (in Chinese with English abstract)

    Google Scholar

    [20] EZZEDINE S, DE MARSILY G. Study of transient flow in hard fractured rocks with a discrete fracture network model[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1993,30(7):1605 − 1609.

    Google Scholar

    [21] BARENBLATT G I, ZHELTOV I P, KOCHINA I N. Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks strata[J]. Journal of Applied Mathematics and Mechanics,1960,24(5):1286 − 1303. doi: 10.1016/0021-8928(60)90107-6

    CrossRef Google Scholar

    [22] WARREN J E, ROOT P J. The behavior of naturally fractured reservoirs[J]. Society of Petroleum Engineers Journal,1963,3(3):245 − 255. doi: 10.2118/426-PA

    CrossRef Google Scholar

    [23] ZIMMERMAN R W, CHEN G, HADGU T, et al. A numerical dual-porosity model with semianalytical treatment of fracture/matrix flow[J]. Water Resources Research,1993,29(7):2127 − 2137. doi: 10.1029/93WR00749

    CrossRef Google Scholar

    [24] 杨栋, 赵阳升, 段康廉, 等. 广义双重介质岩体水力学模型及有限元模拟[J]. 岩石力学与工程学报,2000,19(2):182 − 185. [YANG Dong, ZHAO Yangsheng, DUAN Kanglian, et al. The hydraulic model of rockmass with generalized double porosity media and its FEM simulation[J]. Chinese Journal of Rock Mechanics and Engineering,2000,19(2):182 − 185. (in Chinese with English abstract)

    Google Scholar

    [25] 黄勇. 多尺度裂隙介质中的水流和溶质运移随机模拟研究[D]. 南京: 河海大学, 2005.

    Google Scholar

    HUANG Yong. Stochastic simulation study of flow and solute transport in multi-scales fractured media[D]. Nanjing: Hohai University, 2005. (in Chinese with English abstract)

    Google Scholar

    [26] CACAS M C, LEDOUX E, DE MARSILY G, et al. Modeling fracture flow with a stochastic discrete fracture network: calibration and validation: 1. The flow model[J]. Water Resources Research,1990,26(3):479 − 489.

    Google Scholar

    [27] 黄勇, 周志芳. 基于区域分解算法的地下水耦合模型及其应用[J]. 工程地质学报,2007,15(1):103 − 107. [HUANG Yong, ZHOU Zhifang. Domain decomposition algorithm for calculating seepage in rock mass with fractured zones and its application in dam foundation[J]. Journal of Engineering Geology,2007,15(1):103 − 107. (in Chinese with English abstract)

    Google Scholar

    [28] MCLAREN R G, FORSYTH P A, SUDICKY E A, et al. Flow and transport in fractured tuff at Yucca Mountain: numerical experiments on fast preferential flow mechanisms[J]. Journal of Contaminant Hydrology,2000,43(3/4):211 − 238.

    Google Scholar

    [29] BODVARSSON G S, WU Y S, ZHANG K N. Development of discrete flow paths in unsaturated fractures at Yucca Mountain[J]. Journal of Contaminant Hydrology,2003,62/63:23 − 42. doi: 10.1016/S0169-7722(02)00177-8

    CrossRef Google Scholar

    [30] SCHWARTZ M O. Modelling radionuclide transport in large fractured-media systems: the example of Forsmark, Sweden[J]. Hydrogeology Journal,2012,20(4):673 − 687. doi: 10.1007/s10040-012-0837-3

    CrossRef Google Scholar

    [31] SHAHKARAMI P, LIU L C, MORENO L, et al. Radionuclide migration through fractured rock for arbitrary-length decay chain: Analytical solution and global sensitivity analysis[J]. Journal of Hydrology,2015,520:448 − 460. doi: 10.1016/j.jhydrol.2014.10.060

    CrossRef Google Scholar

    [32] 彭志娟. 高放废物处置库EDZ中核素129I、135Cs的迁移模拟研究[D]. 抚州: 东华理工大学, 2019.

    Google Scholar

    PENG Zhijuan. Numerical simulation of 129I &135Cs nuclide migration in EDZ of the high-level radioactive waste repository[D]. Fuzhou: East China Institute of Technology, 2019. (in Chinese with English abstract)

    Google Scholar

    [33] WARREN J E, PRICE H S. Flow in heterogeneous porous media[J]. Society of Petroleum Engineers Journal,1961,1(3):153 − 169. doi: 10.2118/1579-G

    CrossRef Google Scholar

    [34] 吴吉春, 陆乐. 地下水模拟不确定性分析[J]. 南京大学学报(自然科学版),2011,47(3):227 − 234. [WU Jichun, LU Le. Uncertainty analysis for groundwater modeling[J]. Journal of Nanjing University (Natural Sciences),2011,47(3):227 − 234. (in Chinese with English abstract)

    Google Scholar

    [35] VAITINEN T, NIEMI A, KUUSELA L A, et al. Estimation of block conductivities from hydrologically calibrated fracture networks-description of methodology and application to Romuvaara investigation area[R]. Finland: Posiva Oy, 1999.

    Google Scholar

    [36] JOYCE S, HARTLEY L, APPLEGATE D, et al. Multi-scale groundwater flow modeling during temperate climate conditions for the safety assessment of the proposed high-level nuclear waste repository site at Forsmark, Sweden[J]. Hydrogeology Journal,2014,22(6):1233 − 1249. doi: 10.1007/s10040-014-1165-6

    CrossRef Google Scholar

    [37] PANDEY M, DATTA D, KUMAR B, et al. Uncertainty quantification of contaminant transport through geological repository using 2D Monte Carlo simulation[J]. BARC Newsletter,2013,330:1 − 7.

    Google Scholar

    [38] 苏锐, 王驹, 陈伟明, 等. 放射性核素在CRP-GEORC地质处置库远场中迁移的灵敏性与不确定性分析[C]//中国岩石力学与工程学会. 第二届废物地下处置学术研讨会论文集. 2008.

    Google Scholar

    SU Rui, WANG Ju, CHEN Weiming, et al. Sensitivity analysis and uncertainty simulation of the migration of radionuclide in the system of geological disposal-CRP-GEORC model[C]//Chinese Society for Rock Mechanics & Engineering. Proceedings of the second conference on underground waste disposal. 2008. (in Chinese with English abstract)

    Google Scholar

    [39] 林达. 某铀尾矿(库)地域浅层地下水中铀迁移的随机模拟研究[D]. 衡阳: 南华大学, 2008.

    Google Scholar

    LIN Da. Stochastic simulation research of uranium migration in shallow groundwater at uranium mill-tailing sites[D]. Hengyang: University of South China, 2008. (in Chinese with English abstract)

    Google Scholar

    [40] BELCHER W R. Death Valley regional groundwater flow system, Nevada and California: hydrogeologic framework and transient groundwater flow model[M]. U.S: Dept. of the Interior, 2010.

    Google Scholar

    [41] LÖFMAN J, MÉSZÉROS F. Simulation of hydraulic disturbances caused by the underground rock characterization facility in olkiluoto, Finland[C]//Dynamics of fluids and transport in fractured rock. Washington: American Geophysical Union, 2013: 129−149.

    Google Scholar

    [42] 董艳辉, 李国敏, 黎明. 甘肃北山大区域地下水流动模拟[J]. 科学通报,2009,54(23):3790 − 3792. [DONG Yanhui, LI Guomin, LI Ming. Groundwater flow simulation in Beishan area of Gansu[J]. Chinese Science Bulletin,2009,54(23):3790 − 3792. (in Chinese with English abstract) doi: 10.1360/csb2009-54-23-3790

    CrossRef Google Scholar

    [43] 王海龙. 高放废物处置库北山预选区区域地下水流模拟及岩体渗透特征研究[D]. 北京: 核工业北京地质研究院, 2014.

    Google Scholar

    WANG Hailong. Regional groundwater flow simulation and rock mass permeability characteristics in Beishan preselected area of high-level radioactive waste repository[D]. Beijing: Beijing Research Institute of Uranium Geology, 2014. (in Chinese with English abstract with English abstract)

    Google Scholar

    [44] 季瑞利. 处置单元放射性核素135Cs、129I迁移模拟研究[D]. 北京: 核工业北京地质研究院, 2009.

    Google Scholar

    JI Ruili. Simulation study on the migration of radionuclides 135Cs and 129I in the disposal unit[D]. Beijing: Beijing Research Institute of Uranium Geology, 2009. (in Chinese with English abstract)

    Google Scholar

    [45] WERNER K, BOSSON E, BERGLUND S. Flow and radionuclide transport from rock to surface systems: characterization and modelling of potential repository sites in Sweden[C]//Proceedings of the 11th International conference on environmental remediation and radioactive waste management, september 2−6, 2007. Bruges: Belgium. 2009: 867−872.

    Google Scholar

    [46] LIU H H, DOUGHTY C, BODVARSSON G S. An active fracture model for unsaturated flow and transport in fractured rocks[J]. Water Resources Research,1998,34(10):2633 − 2646. doi: 10.1029/98WR02040

    CrossRef Google Scholar

    [47] RECHARD R P, COTTON T A, VOEGELE M D. Site selection and regulatory basis for the Yucca Mountain disposal system for spent nuclear fuel and high-level radioactive waste[J]. Reliability Engineering & System Safety,2014,122:7 − 31.

    Google Scholar

    [48] RECHARD R P. Results from past performance assessments for the Yucca Mountain disposal system for spent nuclear fuel and high-level radioactive waste[J]. Reliability Engineering & System Safety,2014,122(13):207 − 222.

    Google Scholar

    [49] 王礼恒. 甘肃北山区域-盆地-岩体多尺度地下水数值模拟研究[D]. 北京: 中国科学院大学, 2015.

    Google Scholar

    WANG Liheng. Multi-scale groundwater numerical simulation study of regional-basin-site in Gansu Beishan area[D]. Beijing: University of Chinese Academy of Sciences, 2015. (in Chinese with English abstract)

    Google Scholar

    [50] 曹潇元, 侯德义, 胡立堂. 甘肃北山区域地下水流数值模拟研究[J]. 水文地质工程地质,2020,47(2):9 − 16. [CAO Xiaoyuan, HOU Deyi, HU Litang. Numerical simulation of regional groundwater flow in the Beishan area of Gansu[J]. Hydrogeology & Engineering Geology,2020,47(2):9 − 16. (in Chinese with English abstract)

    Google Scholar

    [51] BLESSENT D, THERRIEN R, GABLE C W. Large-scale numerical simulation of groundwater flow and solute transport in discretely-fractured crystalline bedrock[J]. Advances in Water Resources,2011,34(12):1539 − 1552. doi: 10.1016/j.advwatres.2011.09.008

    CrossRef Google Scholar

    [52] 朱君, 陈超, 李婷, 等. 丘陵山区地下水流动特征及核素迁移数值模拟[J]. 山西大学学报(自然科学版),2019,42(2):465 − 472. [ZHU Jun, CHEN Chao, LI Ting, et al. Numerical simulation of groundwater flow characteristics and radionuclide migration in hilly area[J]. Journal of Shanxi University (Natural Science Edition),2019,42(2):465 − 472. (in Chinese with English abstract)

    Google Scholar

    [53] 包敏, 王群书. 熔岩玻璃体239Pu在地下水中的迁移模拟研究[J]. 原子能科学技术,2014,48(10):1757 − 1765. [BAO Min, WANG Qunshu. Migration simulation of 239Pu in groundwater from melt glass[J]. Atomic Energy Science and Technology,2014,48(10):1757 − 1765. (in Chinese with English abstract)

    Google Scholar

    [54] YI S P, MA H Y, ZHENG C M, et al. Assessment of site conditions for disposal of low- and intermediate-level radioactive wastes: a case study in Southern China[J]. Science of the Total Environment,2012,414:624 − 631. doi: 10.1016/j.scitotenv.2011.10.060

    CrossRef Google Scholar

    [55] BUGAI D, SKALSKYY A, DZHEPO S, et al. Radionuclide migration at experimental polygon at Red Forest waste site in Chernobyl zone. Part 2: Hydrogeological characterization and groundwater transport modeling[J]. Applied Geochemistry,2012,27(7):1359 − 1374. doi: 10.1016/j.apgeochem.2011.09.028

    CrossRef Google Scholar

    [56] 吴晓艳, 熊正为, 彭小勇, 等. 降雨对铀尾矿库地下水中核素迁移影响的模拟研究[J]. 安全与环境学报,2013,13(1):92 − 95. [WU Xiaoyan, XIONG Zhengwei, PENG Xiaoyong, et al. Simulation research on the effects of precipitation on the nuclide migration in groundwater of the uranium tailings impoundment[J]. Journal of Safety and Environment,2013,13(1):92 − 95. (in Chinese with English abstract)

    Google Scholar

    [57] CHO W J, LEE J O, CHOI H J. Radionuclide migration through an unsaturated clay buffer under thermal and hydraulic gradients for a nuclear waste repository[J]. Annals of Nuclear Energy,2012,50:71 − 81. doi: 10.1016/j.anucene.2012.07.010

    CrossRef Google Scholar

    [58] 彭志娟, 李寻, 陈经明, 等. 处置单元核素135Cs迁移数值模拟研究[J]. 地下水,2018,40(6):113 − 116. [PENG Zhijuan, LI Xun, CHEN Jingming, et al. Numerical simulation study on migration of nuclide 135Cs in disposal unit[J]. Ground Water,2018,40(6):113 − 116. (in Chinese with English abstract)

    Google Scholar

    [59] PONTEDEIRO E M, VAN GENUCHTEN M T, COTTA R M, et al. The effects of preferential flow and soil texture on risk assessments of a NORM waste disposal site[J]. Journal of Hazardous Materials,2010,174(1/2/3):648 − 655.

    Google Scholar

    [60] MERK R. Numerical modeling of the radionuclide water pathway with HYDRUS and comparison with the IAEA model of SR 44[J]. Journal of Environmental Radioactivity,2012,105:60 − 69. doi: 10.1016/j.jenvrad.2011.10.014

    CrossRef Google Scholar

    [61] ROBINSON B A, LI C H, HO C K. Performance assessment model development and analysis of radionuclide transport in the unsaturated zone, Yucca Mountain, Nevada[J]. Journal of Contaminant Hydrology,2003,62/63:249 − 268. doi: 10.1016/S0169-7722(02)00166-3

    CrossRef Google Scholar

    [62] LEE Y M, HWANG Y. A GOLDSIM model for the safety assessment of an HLW repository[J]. Progress in Nuclear Energy,2009,51(6/7):746 − 759.

    Google Scholar

    [63] LEE Y M, JEONG J. Evaluation of nuclide release scenarios for a hypothetical LILW repository[J]. Progress in Nuclear Energy,2011,53(6):760 − 774. doi: 10.1016/j.pnucene.2011.05.010

    CrossRef Google Scholar

    [64] 黄勇, 周志芳, 余钟波. HydroGeoSphere在锦屏水电站坝址区水流和溶质运移模拟中的应用[J]. 水动力学研究与进展,2009,24(2):242 − 249. [HUANG Yong, ZHOU Zhifang, YU Zhongbo. Application of HydroGeoSphere in simulating flow and solute transport of dam site in Jinping hydropower station[J]. Chinese Journal of Hydronynamics,2009,24(2):242 − 249. (in Chinese with English abstract)

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Tables(1)

Article Metrics

Article views(3041) PDF downloads(105) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint