2021 Vol. 48, No. 2
Article Contents

HOU Shengshan, CAO Peng, CHEN Liang, FENG Zhen, WANG Lichao, LI Ang, LIU Junyou, LI Yangguang, ZHENG Hao. Debris flow hazard assessment of the Eryang River watershed based on numerical simulation[J]. Hydrogeology & Engineering Geology, 2021, 48(2): 143-151. doi: 10.16030/j.cnki.issn.1000-3665.202003057
Citation: HOU Shengshan, CAO Peng, CHEN Liang, FENG Zhen, WANG Lichao, LI Ang, LIU Junyou, LI Yangguang, ZHENG Hao. Debris flow hazard assessment of the Eryang River watershed based on numerical simulation[J]. Hydrogeology & Engineering Geology, 2021, 48(2): 143-151. doi: 10.16030/j.cnki.issn.1000-3665.202003057

Debris flow hazard assessment of the Eryang River watershed based on numerical simulation

More Information
  • The middle reach of the Taohe River in the southern part of Gansu Province is severely threatened by debris flow hazard. The Eryang River is an important branch of the Taohe River. On May 10, 2012, a large amount of debris flows was triggered by extreme heavy rainfall (with 1% frequency), resulting in serious losses of human life and property in Minxian County of Gansu Province. In order to recognize the hazard of debris flow in small watersheds, six key debris flow gullies in the Eryang watershed were selected as the research areas. The numerical simulation software FLO-2D was used to simulate the debris flow movement and accumulation characteristics of each debris flow gully under the actual “5·10” rainfall conditions, so as to reconstruct the "5·10" debris flow disaster scenario. Numerical simulation results show that the flow speed increased to the maximum after 15~30 minutes since the outburst. The flow lasted for about 3 hours. The speed in the moving section was very high, and decreased sharply at the gully-mouth, deposits accumulated in the river valley. According to the remote sensing and field investigation, the simulation results were compared with the actual situation. The comparison shows the simulation effect is good, and the deposition area, the discharge process, and the main damage area are well reconstructed by FLO-2D simulation. The same method and parameters are used to simulate the accumulation range, depth and velocity of debris flow under the precipitation of 2.0% and 0.2% frequencies, and the risk zoning map is produced by the simulation data. The potentially threatened houses and properties are also outlined. These provide references to the local government to control the debris risk. This work also provides a practical approach for the debris flow hazard assessment.

  • 加载中
  • [1] 黄崇福. 自然灾害基本定义的探讨[J]. 自然灾害学报,2009,18(5):41 − 50. [HUANG Chongfu. A discussion on basic definition of natural disaster[J]. Journal of Natural Disasters,2009,18(5):41 − 50. (in Chinese with English abstract) doi: 10.3969/j.issn.1004-4574.2009.05.007

    CrossRef Google Scholar

    [2] 韩征, 徐林荣, 苏志满, 等. 基于流域形态完整系数的泥石流容重计算方法[J]. 水文地质工程地质,2012,39(2):100 − 105. [HAN Zheng, XU Linrong, SU Zhiman, et al. Research on the method for calculating the bulk density of debris flow based on the integrity coefficient of watershed morphology[J]. Hydrogeology & Engineering Geology,2012,39(2):100 − 105. (in Chinese with English abstract)

    Google Scholar

    [3] 宋兵, 沈军辉, 李金洋, 等. RAMMS在泥石流运动模拟中的应用: 以白沙沟泥石流为例[J]. 泥沙研究,2018,43(1):32 − 37. [SONG Bing, SHEN Junhui, LI Jinyang, et al. Application of RAMMS model on simulation of debris flow in the Basha Gully[J]. Journal of Sediment Research,2018,43(1):32 − 37. (in Chinese with English abstract)

    Google Scholar

    [4] HUNGR O. A model for the runout analysis of rapid flow slides, debris flows, and avalanches[J]. Canadian Geotechnical Journal,1995,32(4):610 − 623. doi: 10.1139/t95-063

    CrossRef Google Scholar

    [5] MAGIRL C S, GRIFFITHS P G, WEBB R H. Analyzing debris flows with the statistically calibrated empirical model LAHARZ in southeastern Arizona, USA[J]. Geomorphology,2010,119(1/2):111 − 124.

    Google Scholar

    [6] HORTON A J, HALES T C, OUYANG Chaojun, et al. Identifying post-earthquake debris flow hazard using Massflow[J]. Engineering Geology,2019,258:105134. doi: 10.1016/j.enggeo.2019.05.011

    CrossRef Google Scholar

    [7] LIN J Y, YANG M D, LIN B R, et al. Risk assessment of debris flows in Songhe Stream, Taiwan[J]. Engineering Geology,2011,123(1/2):100 − 112.

    Google Scholar

    [8] 常鸣, 窦向阳, 唐川, 等. 降雨驱动泥石流危险性评价[J]. 地球科学,2019,44(8):2794 − 2802. [CHANG Ming, DOU Xiangyang, TANG Chuan, et al. Risk assessment of rainfall driven debris flow[J]. Geosciences,2019,44(8):2794 − 2802. (in Chinese with English abstract)

    Google Scholar

    [9] 史培军. 三论灾害研究的理论与实践[J]. 自然灾害学报,2002,11(3):1 − 9. [SHI Peijun. Theory on disaster science and disaster dynamics[J]. Journal of Natural Disasters,2002,11(3):1 − 9. (in Chinese with English abstract) doi: 10.3969/j.issn.1004-4574.2002.03.001

    CrossRef Google Scholar

    [10] 王春磊, 徐大录. 甘肃省定西市岷县地质灾害详细调查报告[R]. 兰州: 甘肃省地矿局水文地质工程地质勘察院, 2013.

    Google Scholar

    WANG Chunlei, XU Dalu. Report of detailed geo-hazard survey of Min County, Dingxi City, Gansu Province[R]. Lanzhou: Hydrogeological and Engineering Geological Survey Institute of Gansu Bureau of Geology and Miner Resources, 2013. (in Chinese)

    Google Scholar

    [11] 李鸿琏, 曾思伟. 甘肃泥石流[M]. 北京: 人民交通出版杜, 1982.

    Google Scholar

    LI H L, ZENG S W. Mudslide in Gansu Province [M]. Beijing: People's Communications Publishing, 1982. (in Chinese)

    Google Scholar

    [12] O'Brien J S. FLO-2D Reference manual version 2009[R]. Arizona: FLO-2D software, Inc, 2009.

    Google Scholar

    [13] O'BRIEN J S, JULIEN P Y, FULLERTON W T. Two-dimensional water flood and mudflow simulation[J]. Journal of Hydraulic Engineering,1993,119(2):244 − 261. doi: 10.1061/(ASCE)0733-9429(1993)119:2(244)

    CrossRef Google Scholar

    [14] 郭富赟, 孟兴民, 尹念文, 等. 甘肃省岷县耳阳沟“5·10”泥石流基本特征及危险度评价[J]. 兰州大学学报(自然科学版),2014,50(5):628 − 632. [GUO Fuyun, MENG Xingmin, YIN Nianwen, et al. Basic characteristics and risk assessment of "5·10" debris flow in Eryanggou, Minxian County, Gansu Province[J]. Journal of Lanzhou University (Natural Science Edition),2014,50(5):628 − 632. (in Chinese with English abstract)

    Google Scholar

    [15] 王裕宜, 詹钱登, 韩文亮, 等. 粘性泥石流体的应力应变特性和流速参数的确定[J]. 中国地质灾害与防治学报,2003,14(1):9 − 13. [WANG Yuyi, ZHAN Qiandeng, HAN Wenliang, et al. Stress-strain properties of viscous debris flow and determination of volocity parameter[J]. The Chinese Journal of Geological Hazard and Control,2003,14(1):9 − 13. (in Chinese with English abstract) doi: 10.3969/j.issn.1003-8035.2003.01.002

    CrossRef Google Scholar

    [16] 程瑛, 黄武斌, 沙宏娥. 甘肃岷县两次强降水致山洪泥石流灾害特征对比分析[J]. 干旱区地理,2018,41(3):443 − 448. [CHENG Ying, HUANG Wubin, SHA Honger. Cause of two heavy rainfall causing massive mudslide in Minxian County, Gansu Province[J]. Arid Land Geography,2018,41(3):443 − 448. (in Chinese with English abstract)

    Google Scholar

    [17] 常鸣. 基于遥感及数值模拟的强震区泥石流定量风险评价研究[D]. 成都: 成都理工大学, 2014.

    Google Scholar

    CHANG Ming. Quantitative risk assessment of debris flow in strong earthquake zone based on remote sensing and numerical simulation [D]. Chengdu: Chengdu University of Technology, 2014. (in Chinese with English abstract)

    Google Scholar

    [18] 丛凯, 李瑞冬, 毕远宏. 基于FLO-2D模型的泥石流治理工程效益评价[J]. 西北地质,2019,52(3):209 − 216. [CONG Kai, LI Ruidong, BI Yuanhong. Benefit evaluation of debris flow control engineering based on the FLO-2D model[J]. Northwestern Geology,2019,52(3):209 − 216. (in Chinese with English abstract)

    Google Scholar

    [19] 杨涛, 唐川, 常鸣, 等. 基于数值模拟的小流域泥石流危险性评价研究[J]. 长江流域资源与环境,2018,27(1):197 − 204. [YANG Tao, TANG Chuan, CHANG Ming, et al. Hazard assessment of debris flow in small watershed based on numerical simulation[J]. Resources and Environment in the Yangtze Basin,2018,27(1):197 − 204. (in Chinese with English abstract)

    Google Scholar

    [20] ERENA S H, WORKU H, DE PAOLA F. Flood hazard mapping using FLO-2D and local management strategies of Dire Dawa City, Ethiopia[J]. Journal of Hydrology: Regional Studies,2018,19:224 − 239. doi: 10.1016/j.ejrh.2018.09.005

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(6)

Article Metrics

Article views(1467) PDF downloads(110) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint