2021 Vol. 48, No. 2
Article Contents

REN Zhanqiang, SONG Zhang, LIN Qiwen, CHENG Qiangong, LIU Yi, DENG Kaifeng, MENG Hao, TU Jin. A study of the similar material characteristics of fragmenting rock mass physical model[J]. Hydrogeology & Engineering Geology, 2021, 48(2): 132-142. doi: 10.16030/j.cnki.issn.1000-3665.202002024
Citation: REN Zhanqiang, SONG Zhang, LIN Qiwen, CHENG Qiangong, LIU Yi, DENG Kaifeng, MENG Hao, TU Jin. A study of the similar material characteristics of fragmenting rock mass physical model[J]. Hydrogeology & Engineering Geology, 2021, 48(2): 132-142. doi: 10.16030/j.cnki.issn.1000-3665.202002024

A study of the similar material characteristics of fragmenting rock mass physical model

More Information
  • Similar materials in the physical model test of avalanche are the key to the success of the model test. However, the strength of similar materials is high at present, it is difficult to be fractured within the scope of the experiment. The materials can reproduce the clastic process of landslide in the scale model experiment. Thus, we choose five raw materials to formulate similar materials. The five raw materials are barite, quartz sand, gypsum, sodium carboxymethyl cellulose, glycerin and water content. Five influencing factors are analyzed, including the ratio of barite to quartz sand, the ratio of aggregate to gypsum, contents of sodium carboxymethyl cellulose and glycerin, and water content. The aggregate consists of barite and quartz sand. The results show that (1) in all the experiments, the uniaxial compressive strength ranges from 0.12 to 1.47 MPa, the elastic modulus, from 25.51 to 148.12 MPa, the cohesion, from 1.63 kPa to 87.39 kPa, the angle of internal friction, from 22.70° to 35.89°, and the brittleness index, from 0.033 to 0.145. (2) The ratio of barite to quartz sand has the great effect on the angle of internal friction. (3) With the decrease in the ratio of aggregate and cement, the cohesion first increases and then decreases. Sodium carboxymethyl cellulose has the greatest influence on the parameters of the similar materials, especially the uniaxial compressive strength. Therefore, it is important to control the sodium carboxymethyl cellulose, glycerin and water content and adjust the mass ratio of barite to quartz sand and the mass ratio of aggregate and cement. The obtained similar materials can be used to simulate the clastic process of avalanche when the similarity ratio is approximately 1∶600.

  • 加载中
  • [1] 程谦恭, 张倬元, 黄润秋. 高速远程崩滑动力学的研究现状及发展趋势[J]. 山地学报,2007,25(1):72 − 84. [CHENG Qiangong, ZHANG Zhuoyuan, HUANG Ruiqiu. Study on dynamics of rock avalanches: state of the art report[J]. Journal of Mountain Science,2007,25(1):72 − 84. (in Chinese with English abstract) doi: 10.3969/j.issn.1008-2786.2007.01.007

    CrossRef Google Scholar

    [2] 吴锦华, 袁智洪, 周泳峰. 古滑坡泥灰岩模拟相似材料实验研究[J]. 重庆交通大学学报(自然科学版),2019,38(10):81 − 86. [WU Jinhua, YUAN Zhihong, ZHOU Yongfeng. Experimental study on simulated similar materials of ancient landslide marl[J]. Journal of Chongqing Jiaotong University (Natural Science),2019,38(10):81 − 86. (in Chinese with English abstract)

    Google Scholar

    [3] 崔雪婷, 张子东, 范珊. 基于相似理论的力学模型实验材料研究[J]. 人民珠江,2019,40(5):82 − 86. [CUI Xueting, ZHANG Zidong, FAN Shan. Research on mechanical model test materials based on the similar theory[J]. Pearl River,2019,40(5):82 − 86. (in Chinese with English abstract) doi: 10.3969/j.issn.1001-9235.2019.05.014

    CrossRef Google Scholar

    [4] 徐楚, 胡新丽, 何春灿, 等. 水库型滑坡模型试验相似材料的研制及应用[J]. 岩土力学,2018,39(11):4287 − 4293. [XU Chu, HU Xinli, HE Chuncan, et al. Development and application of similar material for reservoir landslide model test[J]. Rock and Soil Mechanics,2018,39(11):4287 − 4293. (in Chinese with English abstract)

    Google Scholar

    [5] 肖先煊, 许模. 水库滑坡变形特征的模型试验研究[J]. 水文地质工程地质,2014,41(5):107 − 112. [XIAO Xianxuan, XU Mo. Deformation behavior of landslide in reservoir by model tests[J]. Hydrogeology & Engineering Geology,2014,41(5):107 − 112. (in Chinese)

    Google Scholar

    [6] LOURENÇO S D N, SASSA K, FUKUOKA H. Failure process and hydrologic response of a two layer physical model: Implications for rainfall-induced landslides[J]. Geomorphology,2006,73(1/2):115 − 130.

    Google Scholar

    [7] KHOSRAVI M H, PIPATPONGSA T, TAKAHASHI A, et al. Arch action over an excavated pit on a stable scarp investigated by physical model tests[J]. Soils and Foundations,2011,51(4):723 − 735. doi: 10.3208/sandf.51.723

    CrossRef Google Scholar

    [8] TAKE W A, BOLTON M D, WONG P C P, et al. Evaluation of landslide triggering mechanisms in model fill slopes[J]. Landslides,2004,1(3):173 − 184. doi: 10.1007/s10346-004-0025-1

    CrossRef Google Scholar

    [9] 王玉峰, 程谦恭, 张柯宏, 等. 高速远程滑坡裹气流态化模型试验研究[J]. 岩土力学,2014,35(10):2775 − 2786. [WANG Yufeng, CHENG Qiangong, ZHANG Kehong, et al. Study of fluidized characteristics of rock avalanches under effect of entrapped air[J]. Rock and Soil Mechanics,2014,35(10):2775 − 2786. (in Chinese with English abstract)

    Google Scholar

    [10] 王玉峰, 许强, 程谦恭, 等. 复杂三维地形条件下滑坡–碎屑流运动与堆积特征物理模拟实验研究[J]. 岩石力学与工程学报,2016,35(9):1776 − 1791. [WANG Yufeng, XU Qiang, CHENG Qiangong, et al. Experimental study on the propagation and deposit features of rock avalanche along 3D complex topography[J]. Chinese Journal of Rock Mechanics and Engineering,2016,35(9):1776 − 1791. (in Chinese with English abstract)

    Google Scholar

    [11] 郝明辉, 许强, 杨兴国, 等. 高速滑坡-碎屑流颗粒反序实验及其成因机制探讨[J]. 岩石力学与工程学报,2015,34(3):472 − 479. [HAO Minghui, XU Qiang, YANG Xingguo, et al. Physical modeling tests on inverse grading of particles in high speed landslide debris[J]. Chinese Journal of Rock Mechanics and Engineering,2015,34(3):472 − 479. (in Chinese with English abstract)

    Google Scholar

    [12] 郑光. 滑坡-碎屑流远程运动距离研究[D]. 成都: 成都理工大学, 2018.

    Google Scholar

    ZHENG Guang. Study on the long-runout distance of rock avalanche[D]. Chengdu: Chengdu University of Technology, 2018. (in Chinese with English abstract)

    Google Scholar

    [13] 眭静, 姜元俊, 樊晓一, 等. 碎屑流冲击刚性挡墙的力学模型研究[J]. 岩石力学与工程学报,2019,38(1):121 − 132. [SUI Jing, JIANG Yuanjun, FAN Xiaoyi, et al. An impact model of granular flows on a rigid wall[J]. Chinese Journal of Rock Mechanics and Engineering,2019,38(1):121 − 132. (in Chinese with English abstract)

    Google Scholar

    [14] GAËTAN P, EMMANUEL T, MOHAMED N. A physical model use as a rheometer to determine the friction parameter of granular flow[J]. Rock Mechanics,2000,22(2):117 − 122.

    Google Scholar

    [15] DAVIES T R, MCSAVENEY M J, HODGSON K A. A fragmentation-spreading model for long-runout rock avalanches[J]. Canadian Geotechnical Journal,1999,36(6):1096 − 1110. doi: 10.1139/t99-067

    CrossRef Google Scholar

    [16] BLASIO F V D, CROSTA G B. Fragmentation and boosting of rock falls and rock avalanches[J]. Geophysical Research Letters,2015,42(20):8463 − 8470. doi: 10.1002/2015GL064723

    CrossRef Google Scholar

    [17] PERINOTTO H, CHNEIDER J L, BACHÈLERY P, et al. The extreme mobility of debris avalanches: a new model of transport mechanism[J]. Journal of Geophysical Research: Solid Earth,2015,120(12):8110 − 8119. doi: 10.1002/2015JB011994

    CrossRef Google Scholar

    [18] LOCAT P, COUTURE R, LEROUEIL S, et al. Fragmentation energy in rock avalanches[J]. Canadian Geotechnical Journal,2006,43(8):830 − 851. doi: 10.1139/t06-045

    CrossRef Google Scholar

    [19] BOWMAN E T, TAKE W A, RAIT K L, et al. Physical models of rock avalanche spreading behaviour with dynamic fragmentation[J]. Canadian Geotechnical Journal,2012,49(4):460 − 476. doi: 10.1139/t2012-007

    CrossRef Google Scholar

    [20] HAUG Ø T. ROSENAU M, LEEVER, K, et al. Modelling fragmentation in rock [C]// SASSA K, CANUTI C, YIN Y P. Landslide science for a safer geoenvironment, volume 2: Methods of landslide studies. Switzerland: Springer, 2014: 93-100.

    Google Scholar

    [21] HAUG Ø T, ROSENAU M, LEEVER K, et al. On the energy budgets of fragmenting rockfalls and rockslides: Insights from experiments[J]. Journal of Geophysical Research: Earth Surface,2016,121(7):1310 − 1327. doi: 10.1002/2014JF003406

    CrossRef Google Scholar

    [22] 杜应吉. 地质力学模型实验的研究现状与发展趋势[J]. 西北水资源与水工程,1996,7(2):64 − 67. [DU Yingji. Research status and development trend of geomechanics model test[J]. Northwest Water Resources and Water Engineering,1996,7(2):64 − 67. (in Chinese)

    Google Scholar

    [23] 袁文忠. 相似理论与静力学模型实验[M]. 成都: 西南交通大学出版社, 1998: 18-42.

    Google Scholar

    YUAN Wenzhong. Theory of similarily and statics model test[M]. Chengdu: Southwest Jiaotong University Press, 1998: 18-42. (in Chinese)

    Google Scholar

    [24] 刘玲霞, 李向全, 周志超, 等. 强震条件下谢家店滑坡碎屑流发生机制试验研究[J]. 水文地质工程地质,2011,38(3):104 − 109. [LIU Lingxia, LI Xiangquan, ZHOU Zhichao, et al. An experimental study of the initiation mechanism of landslide debris flow under a strong earthquake[J]. Hydrogeology & Engineering Geology,2011,38(3):104 − 109. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3665.2011.03.019

    CrossRef Google Scholar

    [25] 殷跃平. 西藏波密易贡高速巨型滑坡特征及减灾研究[J]. 水文地质工程地质,2000,27(4):8 − 11. [YIN Yueping. Rapid huge landslide and hazard reduction of Yigong River in the Bomi of Tibet[J]. Hydrogeology & Engineering Geology,2000,27(4):8 − 11. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3665.2000.04.003

    CrossRef Google Scholar

    [26] 戴兴建, 殷跃平, 邢爱国. 易贡滑坡-碎屑流-堰塞坝溃坝链生灾害全过程模拟与动态特征分析[J]. 中国地质灾害与防治学报,2019,30(5):1 − 8. [DAI Xingjian, YIN Yueping, XING Aiguo. Simulation and dynamic analysis of Yigong rockslide-debris avalanche-dam breaking disaster chain[J]. The Chinese Journal of Geological Hazard and Control,2019,30(5):1 − 8. (in Chinese with English abstract)

    Google Scholar

    [27] 张涛, 杨志华, 张永双,等. 四川茂县新磨村高位滑坡铲刮作用分析[J]. 水文地质工程地质,2019,46(3):142 − 149. [ZHAN Tao, YANG Zhihua, ZHANG Yongshuang, et al. An analysis of the entrainment of the Xinmo high-position landslide in Maoxian county, Sichuan[J]. Hydrogeology & Engineering Geology,2019,46(3):142 − 149. (in Chinese with English abstract)

    Google Scholar

    [28] 温铭生, 陈红旗, 张鸣之,等. 四川茂县"6·24"特大滑坡特征与成因机制分析[J]. 中国地质灾害与防治学报,2017,28(3):1 − 7. [WEN Mingsheng, CHEN Hongqi, ZHANG Mingzhi, et al. Characteristics and formation mechanism analysis of the“6·24”catastrophic landslide of the June 24 of 2017, at Maoxian,Sichuan[J]. The Chinese Journal of Geological Hazard and Control,2017,28(3):1 − 7. (in Chinese with English abstract)

    Google Scholar

    [29] 陈陆望, 白世伟. 脆性岩体岩爆倾向性相似材料概化配比实验研究[J]. 岩土力学,2006,27(增刊):1054 − 1058. [CHEN Luwang, BAI Shiwei. Proportioning test study on similar material generalization of rockburst tendency of brittle rock-mass[J]. Rock and Soil Mechanics,2006,27(Sup):1054 − 1058. (in Chinese with English abstract)

    Google Scholar

    [30] 李天斌, 王湘锋, 孟陆波. 岩爆的相似材料物理模拟研究[J]. 岩石力学与工程学报,2011,30(1):2610 − 2616. [LI Tianbin, WANG Xiangfeng, MENG Lubo. Physical simulation study of similar materials for rockburst[J]. Chinese Journal of Rock Mechanics and Engineering,2011,30(1):2610 − 2616. (in Chinese with English abstract)

    Google Scholar

    [31] 周辉, 陈珺, 张传庆, 等. 低强高脆岩爆模型材料配比试验研究[J]. 岩土力学,2019,40(6):2039 − 2049. [ZHOU Hui, CHEN Jun, ZHANG Chuanqing, et al. Experimental study of the rockburst model material with low-strength and high-brittleness[J]. Rock and Soil Mechanics,2019,40(6):2039 − 2049. (in Chinese with English abstract)

    Google Scholar

    [32] 李光, 马凤山, 徐佩华. 原料组分对动力学相似材料性质影响的试验研究[J]. 工程地质学报,2019,27(3):676 − 681. [LI Guang, MA Fengshan, XU Peihua. Experimental study on property of dynamic similar material made of different raw materials[J]. Journal of Engineering Geology,2019,27(3):676 − 681. (in Chinese with English abstract)

    Google Scholar

    [33] 周辉, 孟凡震, 张传庆, 等. 基于应力-应变曲线的岩石脆性特征定量评价方法[J]. 岩石力学与工程学报,2014,33(6):1114 − 1122. [ZHOU Hui, MENG Fanzhen, ZHANG Chuanqing, et al. Quantitative evaluation of rock brittleness based on stress-strain curve[J]. Chinese Journal of Rock Mechanics and Engineering,2014,33(6):1114 − 1122. (in Chinese with English abstract)

    Google Scholar

    [34] MENG F Z, ZHOU H, ZHANG C Q, et al. Evaluation methodology of brittleness of rock based on post-peak stress-strain curves[J]. Rock Mechanics and Rock Engineering,2015,48(5):1787 − 1805. doi: 10.1007/s00603-014-0694-6

    CrossRef Google Scholar

    [35] 耿晓阳, 张子新. 砂岩相似材料制作方法研究[J]. 地下空间与工程学报,2015,11(1):23 − 28. [GENG Xiaoyang, ZHANG Zixin. Study on preparation methods for similar materials of sandstone[J]. Chinese Journal of Underground Space and Engineering,2015,11(1):23 − 28. (in Chinese with English abstract)

    Google Scholar

    [36] WANG Y F, CHENG Q G, LIN Q W, et al. Insights into the kinematics and dynamics of the Luanshibao rock avalanche(Tibetan Plateau, China) based on its complex surface landforms[J]. Geomorphology,2018,317:170183.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(11)

Article Metrics

Article views(952) PDF downloads(88) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint