2024 Vol. 40, No. 9
Article Contents

TONG Changliang, WU Xiangbai, CHEN Fei, ZHU Yu, LI Gaocong, JIA Jianjun. Analysis of dynamic geomorphology at the east entrance of Qiongzhou Strait based on tidal current numerical simulation[J]. Marine Geology Frontiers, 2024, 40(9): 38-48. doi: 10.16028/j.1009-2722.2024.005
Citation: TONG Changliang, WU Xiangbai, CHEN Fei, ZHU Yu, LI Gaocong, JIA Jianjun. Analysis of dynamic geomorphology at the east entrance of Qiongzhou Strait based on tidal current numerical simulation[J]. Marine Geology Frontiers, 2024, 40(9): 38-48. doi: 10.16028/j.1009-2722.2024.005

Analysis of dynamic geomorphology at the east entrance of Qiongzhou Strait based on tidal current numerical simulation

More Information
  • The tidal pattern of the east entrance of Qiongzhou Strait that separating Hainan Island from Chinese mainland is irregular diurnal tide, and characterized by east-west reciprocating flow, in which strong tidal current is the main dynamic factor of shaping the seabed morohology. The study of sediment transport characteristics under tidal current is crucial for better understanding the fluxes of water and sediment, sedimentary processes and geomorphological evolution in Qiongzhou Strait. Survey data of surface sediments collected in 2008 and 2015 from 249 stations show that the sediments at the east entrance of the strait were mainly sandy and gravelly, forming the bed load that transported on seabed. To study the sediment transport and seabed morphology, the tidal current process, sediment transport rate and erosion and sedimentation intensity of the east entrance of Qiongzhou Strait were dynamically modeled. The results show that the maximum eastward flow is between 0.9 and 2.0 m/s, and the maximum westward flow is between 0.8 and 1.7 m/s, and the tidal flow in the middle and neap tides is roughly 50% to 60% of that in the spring tides. In general, the eastward flow is stronger than the westward flow, but in the north and the middle part of Qiongzhou Strait, the westward flow is always stronger than the eastward. During spring tides, the frequency of sediments movement in the study area is generally high, with an average of 60%, and the average transport rate is 10−2 kg/(m·s). During the middle and neap tides, the average frequency is only about 18%, and the average transport rate is 1-2 orders of magnitude smaller than that during the spring tides. The sediment transport direction is mainly eastward. We found that there is a higher accumulation rate near shoals and a higher erosion rate, reaching 10−1 m/a.

  • 加载中
  • [1] HUTHNANCE J M. On one mechanism forming linear sand banks[J]. Estuarine Coastal and Shelf Science,1982,14:79-99. doi: 10.1016/S0302-3524(82)80068-6

    CrossRef Google Scholar

    [2] 高抒,方国洪,于克俊,等. 沉积物输运对砂质海底稳定性影响的评估方法及应用实例[J]. 海洋科学集刊,2001,43:25-37.

    Google Scholar

    GAO Shu,FANG Guohong,YU Kejun,et al. Methodology for evaluating the stability of sandy seabed controlled by sediment movement,with an example of application[J]. Studia Marina Sinica,2001,43:25-37.

    Google Scholar

    [3] 杜晓琴,李炎,高抒. 台湾浅滩大型沙波、潮流结构和推移质输运特征[J]. 海洋学报,2008,30(5):124-136. doi: 10.3321/j.issn:0253-4193.2008.05.017

    CrossRef Google Scholar

    DU Xiaoqin,LI Yan,GAO Shu. Characteristics of the large-scale sandwaves,tidal flow structure and bedload transport over the Taiwan Bank in southern China[J]. Acta Oceanologica Sinica,2008,30(5):124-136. doi: 10.3321/j.issn:0253-4193.2008.05.017

    CrossRef Google Scholar

    [4] 陆永军,季荣耀. 潮汐通道系统动力地貌演变的数值模拟研究进展[J]. 水利水运工程学报,2009,31(2):93-104. doi: 10.3969/j.issn.1009-640X.2009.02.017

    CrossRef Google Scholar

    LU Yongjun,JI Rongyao. Advances in morphodynamic modeling of tidal inlet systems[J]. Hydro-Science and Engineering,2009,31(2):93-104. doi: 10.3969/j.issn.1009-640X.2009.02.017

    CrossRef Google Scholar

    [5] 吴自银,金翔龙,曹振轶,等. 东海陆架沙脊分布及其形成演化[J]. 中国科学:地球科学,2010,40(2):188-198.

    Google Scholar

    WU Ziyin,JIN Xianglong,CAO Zhentie,et al. Distribution and evolution of sand ridges on the East China Sea Shelf [J]. Science China Earth Sciences,2009,31(2):93-104.

    Google Scholar

    [6] 倪文斐,汪亚平,邹欣庆,等. 南黄海辐射沙脊群苦水洋海域的沉积动力特征及稳定性研究[J]. 海洋通报,2013,32(6):668-677. doi: 10.11840/j.issn.1001-6392.2013.06.009

    CrossRef Google Scholar

    NI Wenfei,WANG Yaping,ZOU Xinqing,et al. Study on the sediment dynamics and stability of the Kushuiyang tidal channel at radial sand ridges in the South Yellow Sea[J]. Marine Science Bulletin,2013,32(6):668-677. doi: 10.11840/j.issn.1001-6392.2013.06.009

    CrossRef Google Scholar

    [7] YUAN B,HUIB E S,CARLES P. Modeling the finite-height behavior of offshore tidal sand ridges,a sensitivity study[J]. Continental Shelf Research,2017,137:72-83. doi: 10.1016/j.csr.2017.02.007

    CrossRef Google Scholar

    [8] 周洁琼. 台湾浅滩多尺度海底沙波特征、迁移规律及动力机制研究[D]. 杭州:浙江大学,2019.

    Google Scholar

    ZHOU Jieqiong. Characteristics,migration and dynamic mechanism of multi-scale sand waves in the Taiwan Banks[D]. Hangzhou:Zhejiang University,2019

    Google Scholar

    [9] 陈沈良. 琼州海峡南岸海岸动力地貌研究[J]. 热带海洋,1998,17(3):35-42.

    Google Scholar

    CHEN Shenliang. Coastal dynamic geomorphological researches on south coast of Qiongzhou Strait[J]. Tropic Oceanology,1998,17(3):35-42.

    Google Scholar

    [10] 李占海,柯贤坤. 琼州海峡潮流沉积物通量初步研究[J]. 海洋通报,2000,19(6):42-49. doi: 10.3969/j.issn.1001-6392.2000.06.007

    CrossRef Google Scholar

    LI Zhanhai,KE Xiankun. Prelimary study on tidally-induced sediment fluxes of the Qiongzhou Strait[J]. Marine Science Bulletin,2000,19(6):42-49. doi: 10.3969/j.issn.1001-6392.2000.06.007

    CrossRef Google Scholar

    [11] 刘振夏,夏东兴. 中国近海潮流沉积沙体[M]. 北京:海洋出版社,2004 :185-189.

    Google Scholar

    LIU Zhenxia,XIA Dongxing. Tidal sands in the China seas[M]. Beijing:Ocean Press,2004 :42-63.

    Google Scholar

    [12] 赵焕庭,王丽荣,袁家义. 琼州海峡成因与时代[J]. 海洋地质与第四纪地质,2007,27(2):33-40.

    Google Scholar

    ZHAO Huanting,WANG Lirong,YUAN Jiayi. Origin and time of Qiongzhou Strait[J]. Marine Geology & Quaternary Geology,2007,27(2):33-40.

    Google Scholar

    [13] 刘振夏,夏东兴,王揆洋. 中国陆架潮流沉积体系和模式[J]. 海洋与湖沼,1998,29(2):141-147. doi: 10.3321/j.issn:0029-814X.1998.02.006

    CrossRef Google Scholar

    LIU Zhenxia,XIA Dongxing,WANG Kuiyang. Tidal depositional system and patterns of China’s continental shelf[J]. Oceanologia et Limnologia Sinica,1998,29(2):141-147. doi: 10.3321/j.issn:0029-814X.1998.02.006

    CrossRef Google Scholar

    [14] 仝长亮,陈飞,张匡华. 海南岛东北部海域海砂资源分布特征及开发前景分析[J]. 中国矿业,2019,28(1):58-65.

    Google Scholar

    TONG Changliang,CHEN Fei,ZHANG Kuanghua. Analysis on the distribution and development of marine sand resources in the northeast sea of Hainan Island[J]. China Mining Magzine,2019,28(1):58-65.

    Google Scholar

    [15] 仝长亮,张匡华,陈飞,等. 海南岛北部海域海砂资源潜力评价[J]. 中国地质,2020,47(5):1567-1576.

    Google Scholar

    TONG Changliang,ZHANG Kuanghua,CHEN Fei,et al. The potential evaluation of marine sand resources in the northern sea areas of Hainan Island[J]. Geology in China,2020,47(5):1567-1575.

    Google Scholar

    [16] CHENG H Q,LI J F,YIN D W,et al. Nearshore bedform instability in the eastern entrance to the Qiongzhou Strait,South China Sea[J]. Frontiers of Earth Science,2008,2(3):283-291. doi: 10.1007/s11707-008-0047-4

    CrossRef Google Scholar

    [17] NI Y G,ENDLER R,XIA Z,et al. The “butterfly delta” system of Qiongzhou Strait:morphology,seismic stratigraphy and sedimentation[J]. Marine Geology,2014,355:361-368. doi: 10.1016/j.margeo.2014.07.001

    CrossRef Google Scholar

    [18] 仝长亮,黎刚,陈飞,等. 海南岛东北部海域海砂资源特征及成因[J]. 海洋地质前沿,2018,34(1):12-19.

    Google Scholar

    TONG Changliang, LI Gang,CHEN Fei, et al. Geological characteristics and origin of marine sands in the northeast sea off Hainan Island[J]. Marine Geology Frontiers,2018,34(1):12-19.

    Google Scholar

    [19] 仝长亮,王华强,覃茂刚,等. 琼州海峡东口潮流沙脊表层沉积物特征及沉积环境划分[J]. 应用海洋学学报,2022,41(4):625-636.

    Google Scholar

    TONG Changliang, WANG Huangqiang,QIN Maogang,et al. Sediment characteristics and sedimentary environment division of tidal sand ridge at the east entrance of Qiongzhou Strait [J]. Journal of Applied Oceanography,2018,41(4):625-636.

    Google Scholar

    [20] 侍茂崇. 北部湾环流研究述评[J]. 广西科学,2014,21(4):313-324.

    Google Scholar

    SHI Maochong. Study comments on circulation of Beibu Gulf[J]. Guangxi Science,2014,21(4):313-324.

    Google Scholar

    [21] 高抒,贾建军,于谦. 沉海岸冲淤动态的理论分析:物质收支、剖面形态、岸线进退[J]. 海洋地质与第四纪地质,2023,43(2):1-17.

    Google Scholar

    GAO Shu,JIA Jianjun,YU Qian. Theoretical framework for coastal accretion-erosion analysis:material budgeting,profile morphology,shoreline change[J]. Marine Geology & Quaternary Geology,2023,43(2):1-17.

    Google Scholar

    [22] TONG C L,QIN M G,WANG X M,et al. Estimation of the spring tide bedload transport at the eastern entrance of the Qiongzhou Strait[J]. Water,2023,15:724. doi: 10.3390/w15040724

    CrossRef Google Scholar

    [23] HARDISTY J. An assessment and calibration of formulations for Bagnold's bedload equation[J]. Journal of Sedimentary Petrology,1983,53:1007-1010.

    Google Scholar

    [24] SOULSBY R L. Dynamics of Marine Sands[M]. London:Thomas Telford Services Limited,1997:249.

    Google Scholar

    [25] MILLER M C,MCCAVE I N,KOMAR P D. Threshold of sediment motion under unidirectional currents[J]. Sedimentology,1977,24:507-527. doi: 10.1111/j.1365-3091.1977.tb00136.x

    CrossRef Google Scholar

    [26] WANG Y P,GAO S. Modification to the Hardisty equation,regarding the relationship between sediment transport rate and particle size[J]. Journal of Sedimentary Research,2001,71(1):118-121. doi: 10.1306/032100710118

    CrossRef Google Scholar

    [27] FOLK R L,ANDREWS P B,LEWIS D W. Detrital sedimentary rock classification and nomenclature for use in New Zealand[J]. New Zealand Journal of Geology and Geophysics,1970,13(4):937-968. doi: 10.1080/00288306.1970.10418211

    CrossRef Google Scholar

    [28] ZHANG Y,YE F,STANEV E V,et al. Seamless cross-scale modeling with SCHISM[J]. Ocean Modelling,2016,102:64-81. doi: 10.1016/j.ocemod.2016.05.002

    CrossRef Google Scholar

    [29] 仝长亮,朱钰,吴祥柏,等. 基于数值模拟的琼州海峡东口推移质输运量估算[J]. 地学前缘,2023,30(5):553-566.

    Google Scholar

    TONG Changliang,ZHU Yu,WU Xiangbo,et al. Bedload transport estimation at the east entrance of Qiongzhou Strait based on numerical simulation[J]. Earth Science Frontiers,2023,30(5):553-566.

    Google Scholar

    [30] 仝长亮,王华强,张匡华,等. 海洋测绘在西南浅滩海砂资源探测中的应用[J]. 海洋测绘,2022,42(3):38-42.

    Google Scholar

    TONG Changliang,WANG Huaqiang,ZHANG Kuanghua,et al. Application of marine surveying and mapping in marine sand resource exploration in southwest shoal of Hainan Province[J]. Hydrographic Surveying and Charting,2022,42(3):38-42.

    Google Scholar

    [31] 陈达森,陈波,严金辉,等. 琼州海峡余流场季节性变化特征[J]. 海洋湖沼通报,2006,28(2):12-17. doi: 10.3969/j.issn.1003-6482.2006.02.003

    CrossRef Google Scholar

    CHEN Dasen,CHEN Bo,YAN Jinhui,et al. The seasonal variation characteristics of residual currents in the Qiongzhou Strait[J]. Transactions of Oceanology and Limnology,2006,28(2):12-17. doi: 10.3969/j.issn.1003-6482.2006.02.003

    CrossRef Google Scholar

    [32] 赵昌,吕新刚,乔方利. 北部湾潮波数值研究[J]. 海洋学报,2010,32(4):1-11.

    Google Scholar

    ZHAO Chang,LYU Xingang,QIAO Fangli. Numerical study of the tidal waves in the Gulf of Tonkin[J]. Acta Oceanologica Sinica,2010,32(4):1-11.

    Google Scholar

    [33] 夏综万,廖世智,冯砚青. 粤东甲子海域潮波异常和南海北部潮波的传播[J]. 海洋学报,2013,35(1):1-8. doi: 10.3969/j.issn.0253-4193.2013.01.001

    CrossRef Google Scholar

    XIA Zongwan,LIAO Shizhi,FENG Yanqing. Traveling of tidal wave in the north part of the South China Sea and the tidal energy divergence appearing in the area of Jiazi Station[J]. Acta Oceanologica Sinica,2013,35(1):1-8. doi: 10.3969/j.issn.0253-4193.2013.01.001

    CrossRef Google Scholar

    [34] 任叙合,尤启明,郭静,等. 海南岛东北海域海流和余流特征分析[J]. 广西科学,2018,25(4):418-422.

    Google Scholar

    REN Xuhe,YOU Qiming,GUO Jing,et al. Characteristics analysis of current and residual current in the northeastern sea area of Hainan Island[J]. Guangxi Sciences,2018,25(4):418-422.

    Google Scholar

    [35] 侍茂崇,陈春华,黄方,等. 琼州海峡冬末春初潮余流场特征[J]. 海洋学报,1998,20(1):1-10. doi: 10.3321/j.issn:0253-4193.1998.01.001

    CrossRef Google Scholar

    SHI Maochong,CHEN Chunhua,HUANG Fang,et al. Characteristics of tidal current and residual current in the Qiongzhou Straits in period between end of winter and beginning of spring[J]. Acta Oceanologica Sinica,1998,20(1):1-10. doi: 10.3321/j.issn:0253-4193.1998.01.001

    CrossRef Google Scholar

    [36] 陈妙红,高抒,邹欣庆,等. 海南博鳌港枯水期海底活动性的初步研究[J]. 海洋通报,2002,21(6):39-46. doi: 10.3969/j.issn.1001-6392.2002.06.006

    CrossRef Google Scholar

    CHEN Miaohong,GAO Shu,ZOU Xinqing,et al. Preliminary study on seabed mobility during low river discharge periods,Boao Harbour,Hainan Island[J]. Marine Science Bulletin,2002,21(6):39-46. doi: 10.3969/j.issn.1001-6392.2002.06.006

    CrossRef Google Scholar

    [37] 田壮才,郭秀军,乔路正,等. 南海北部海底沉积物临界起动流速空间分布特征分析[J]. 岩石力学与工程学报,2016,35(S2):4287-4294.

    Google Scholar

    TIAN Zhuangcai,GUO Xiujun,QIAO Luzheng,et al. Analysis of spatial distribution characteristics of seabed sediments critical starting velocity in the northern South China Sea[J]. Chinese Journal of Rock Mechanics and Engineering,2016,35(S2):4287-4294.

    Google Scholar

    [38] 郑淑贤. 基于FVCOM的琼州海峡潮汐潮流数值模拟与研究[D]. 青岛:中国海洋大学,2015.

    Google Scholar

    ZHENG Shuxian. Numerical simulation of tide and tidal currents in the Qiongzhou Strait based on FVCOM[D]. Qingdao:Ocean University of China,2015.

    Google Scholar

    [39] CHEN C L,LI P L,SHI M C,et al. Numerical study of the tides and residual currents in the Qiongzhou Strait[J]. Chinese Journal of Oceanology and Limnology,

    Google Scholar

    [40] 储鏖,徐怡,陈永平,等. 潮致泥沙全沙净输运解析模式[J]. 海洋工程,2020,38(4):61-72.

    Google Scholar

    CHU Ao,XU Yi,CHEN Yongping,et al. Analytical model for tidal-induced net sediment transport[J]. The Ocean Engineering,2020,38(4):61-72.

    Google Scholar

    [41] 程和琴,胡红兵,蒋智勇,等. 琼州海峡东口底形平衡域谱分析[J]. 海洋工程,2003,21(4):97-103. doi: 10.3969/j.issn.1005-9865.2003.04.016

    CrossRef Google Scholar

    CHENG Heqin,HU Hongbing,JIANG Zhiyong,et al. Equilibrium range spectra analysis of nearshore bedforms in the East Qiongzhou Strait[J]. The Ocean Engineering,2003,21(4):97-103. doi: 10.3969/j.issn.1005-9865.2003.04.016

    CrossRef Google Scholar

    [42] 肖政,蒋昌波,夏波. 琼州海峡罗斗沙岛岸滩演变分析[J]. 水道港口,2007,28(1):16-19. doi: 10.3969/j.issn.1005-8443.2007.01.004

    CrossRef Google Scholar

    XIAO Zheng,JIANG Changbo,XIA Bo. Analysis of the beach evolvement near Luodousha Island in Qiongzhou Strait[J]. Journal of Waterway and Harbor,2007,28(1):16-19. doi: 10.3969/j.issn.1005-8443.2007.01.004

    CrossRef Google Scholar

    [43] 董志华. 台风对东方岸外沙波沙脊和海底地貌的影响[D]. 青岛:中国海洋大学,2004.

    Google Scholar

    DONG Zhihua. The influence on current ridge,sand wave and topography of Dongfang offshore by typhoon[D]. Qingdao:Ocean University of China,2004.

    Google Scholar

    [44] 陈宜展. 南海海洋响应台风过程数值研究[D]. 广州:中山大学,2010.

    Google Scholar

    CHEN Yizhan. Numerical study of the response of the South China Sea to typhoon[D]. Guangzhou:Sun Yat-sen University,2010.

    Google Scholar

    [45] 周其坤,孙永福,胡光海,等. 南海北部海底沙波迁移规律及其在台风作用下的响应研究[J]. 海洋学报,2018,40(9):78-89. doi: 10.3969/j.issn.0253-4193.2018.09.007

    CrossRef Google Scholar

    ZHOU Qikun,SUN Yongfu,HU Guanghai,et al. Research on the migration rule and the typhoon impact on the submarine sand waves of the northern South China Sea[J]. Haiyang Xuebao,2018,40(9):78-89. doi: 10.3969/j.issn.0253-4193.2018.09.007

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(3)

Article Metrics

Article views(681) PDF downloads(50) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint