2024 Vol. 40, No. 9
Article Contents

MA Yue, CHEN Jianbin, YU Yongqing, WANG Yamei, WANG Guoyang, HUANG Yuanyuan, LYU Yanling, DING Dong. Response of Yellow River subaerial delta erosion and accretion to climate change and human activities in the past 30 years[J]. Marine Geology Frontiers, 2024, 40(9): 49-62. doi: 10.16028/j.1009-2722.2023.248
Citation: MA Yue, CHEN Jianbin, YU Yongqing, WANG Yamei, WANG Guoyang, HUANG Yuanyuan, LYU Yanling, DING Dong. Response of Yellow River subaerial delta erosion and accretion to climate change and human activities in the past 30 years[J]. Marine Geology Frontiers, 2024, 40(9): 49-62. doi: 10.16028/j.1009-2722.2023.248

Response of Yellow River subaerial delta erosion and accretion to climate change and human activities in the past 30 years

More Information
  • In the past 30 years, affected by global climate change and intensified human activities in the basin, the response of the Yellow River Delta land erosion-accretion process to the water circulation system of the Yellow River Basin has become more significant. Based on Google Earth Engine and long-term series of Landsat images, combined with long-term meteorological and hydrological measurement data in the basin, this research quantitatively studies the response of the Yellow River subaerial delta erosion and accretion to climate change and human activities in the past 30 years. The research found that in the 30 years from 1993 to 2022, the land area of the Yellow River Delta experienced a stage of first increasing, then decreasing and then fluctuating increase. The current river mouth bank section is the main accretion area, and the land area increases by about 1.67 km2 per year. The Diaokou river bank section is the main erosion area. area, the land area decreases by about 2.15 km2 per year; there is a negative phase relationship with a period of 4~5 years between the changes in sediment loads and river mouth area during the natural water and sediment transport period (1993-2001); multiple regression analysis shows that the natural water and sediment during the period (1993-2001), climate change dominated the erosion and accretion of the river mouth. During the artificial Water-Sediment Regulation Scheme period (2002-2022), the impact of human activities was far greater than climate change.

  • 加载中
  • [1] OVEREEM I,SYVITSKI J P M. Dynamics and vulnerability of delta systems[R]. Geesthacht:GKSS Research Center,2009.

    Google Scholar

    [2] SYVITSKI J P M. Deltas at risk[J]. Sustainability Science,2008,3(1):23-32. doi: 10.1007/s11625-008-0043-3

    CrossRef Google Scholar

    [3] WRIGHT L D. Sediment transport and deposition at river mouths:a synthesis[J]. Geological Society of America Bulletin,1977,88(6):857. doi: 10.1130/0016-7606(1977)88<857:STADAR>2.0.CO;2

    CrossRef Google Scholar

    [4] SAITO Y,YANG Z,HORI K. The Huanghe (Yellow River) and Changjiang (Yangtze River) deltas:a review on their characteristics,evolution and sediment discharge during the Holocene[J]. Geomorphology,2001,41(2):219-231.

    Google Scholar

    [5] GALAL E M,TAKEWAKA S. The influence of alongshore and cross-shore wave energy flux on large- and small-scale coastal erosion patterns[J]. Earth Surface Processes and Landforms,2011,36(7):953-966. doi: 10.1002/esp.2125

    CrossRef Google Scholar

    [6] XU J. Response of land accretion of the Yellow River Delta to global climate change and human activity[J]. Quaternary International,2008,186(1):4-11. doi: 10.1016/j.quaint.2007.08.032

    CrossRef Google Scholar

    [7] RENAUD F G,SYVITSKI J P,SEBESVARI Z,et al. Tipping from the Holocene to the Anthropocene:how threatened are major world deltas?[J]. Current Opinion in Environmental Sustainability,2013,5(6):644-654. doi: 10.1016/j.cosust.2013.11.007

    CrossRef Google Scholar

    [8] SYVITSKI J P M,KETTNER A J,OVEREEM I,et al. Sinking deltas due to human activities[J]. Nature Geoscience,2009,2(10):681-686. doi: 10.1038/ngeo629

    CrossRef Google Scholar

    [9] SYVITSKI J P M,SAITO Y. Morphodynamics of deltas under the influence of humans[J]. Global and Planetary Change,2007,57(3):261-282.

    Google Scholar

    [10] WANG H,WU X,BI N,et al. Impacts of the dam-orientated water-sediment regulation scheme on the lower reaches and delta of the Yellow River (Huanghe):a review[J]. Global and Planetary Change,2017,157:93-113. doi: 10.1016/j.gloplacha.2017.08.005

    CrossRef Google Scholar

    [11] ZHANG X,LU Z,JIANG S,et al. The progradation and retrogradation of two newborn Huanghe (Yellow River) Delta lobes and its influencing factors[J]. Marine Geology,2018,400:38-48. doi: 10.1016/j.margeo.2018.03.006

    CrossRef Google Scholar

    [12] KUENZER C,OTTINGER M,LIU G,et al. Earth observation-based coastal zone monitoring of the Yellow River Delta:dynamics in China’s second largest oil producing region over four decades[J]. Applied Geography,2014,55:92-107. doi: 10.1016/j.apgeog.2014.08.015

    CrossRef Google Scholar

    [13] KONG D,MIAO C,BORTHWICK A G L,et al. Evolution of the Yellow River Delta and its relationship with runoff and sediment load from 1983 to 2011[J]. Journal of Hydrology,2015,520:157-167. doi: 10.1016/j.jhydrol.2014.09.038

    CrossRef Google Scholar

    [14] YU J,FU Y,LI Y,et al. Effects of water discharge and sediment load on evolution of modern Yellow River Delta,China,over the period from 1976 to 2009[J]. Biogeosciences,2011,8(9):2427-2435. doi: 10.5194/bg-8-2427-2011

    CrossRef Google Scholar

    [15] ZHOU Y,HUANG H Q,NANSON G C,et al. Progradation of the Yellow (Huanghe) River Delta in response to the implementation of a basin-scale water regulation program[J]. Geomorphology,2015,243:65-74. doi: 10.1016/j.geomorph.2015.04.023

    CrossRef Google Scholar

    [16] JIANG C,PAN S,CHEN S. Recent morphological changes of the Yellow River (Huanghe) submerged delta:causes and environmental implications[J]. Geomorphology,2017,293:93-107. doi: 10.1016/j.geomorph.2017.04.036

    CrossRef Google Scholar

    [17] WANG S,HASSAN M.A, XIE X. Relationship between suspended sediment load, channel geometry and land area increment in the Yellow River Delta[J]. CATENA,2006,65(3):302-314.

    Google Scholar

    [18] MILLIMAN J D,MEADE R H. World-wide delivery of river sediment to the oceans[J]. The Journal of Geology,1983,91(1):1-21. doi: 10.1086/628741

    CrossRef Google Scholar

    [19] LIU F,CHEN S,DONG P,et al. Spatial and temporal variability of water discharge in the Yellow River Basin over the past 60 years[J]. Journal of Geographical Sciences,2012,22(6):1013-1033. doi: 10.1007/s11442-012-0980-8

    CrossRef Google Scholar

    [20] MILLIMAN J D,SYVITSKI J P M. Geomorphic/tectonic control of sediment discharge to the ocean:the importance of small mountainous rivers[J]. The Journal of Geology,1992,100(5):525-544. doi: 10.1086/629606

    CrossRef Google Scholar

    [21] 栗云召,于君宝,韩广轩,等. 基于遥感的黄河三角洲海岸线变化研究[J]. 海洋科学,2012,36(4):99-106.

    Google Scholar

    LI Yunzhao,YU Junbao,HAN Guangxuan,et al. Research on the changes of the coastline in the Yellow River Delta based on remote sensing[J]. Marine Science,2012,36(4):99-106.

    Google Scholar

    [22] 牛明香,王俊. 基于Landsat遥感影像的黄河三角洲东营段海岸线变化分析[J]. 水资源保护,2020,36(4):26-33. doi: 10.3880/j.issn.1004-6933.2020.04.005

    CrossRef Google Scholar

    NIU Mingxiang,WANG Jun. Analysis of coastline changes in the Dongying Section of the Yellow River Delta based on landsat remote sensing images[J]. Water Resources Protection,2020,36(4):26-33. doi: 10.3880/j.issn.1004-6933.2020.04.005

    CrossRef Google Scholar

    [23] 薛允传,马圣媛,周成虎. 基于遥感和GIS的现代黄河三角洲岸线变迁及发育演变研究[J]. 海洋科学,2009,33(5):36-40.

    Google Scholar

    XUE Yunchuan,MA Shengyuan,ZHOU Chenghu. Research on the modern changes and development evolution of the coastline in the Yellow River Delta based on remote sensing and GIS[J]. Marine Science,2009,33(5):36-40.

    Google Scholar

    [24] JIANG C,CHEN S,PAN S,et al. Geomorphic evolution of the Yellow River Delta:quantification of basin-scale natural and anthropogenic impacts[J]. CATENA,2018,163:361-377. doi: 10.1016/j.catena.2017.12.041

    CrossRef Google Scholar

    [25] 徐涵秋. 利用改进的归一化差异水体指数(MNDWI)提取水体信息的研究[J]. 遥感学报,2005(5):589-595. doi: 10.11834/jrs.20050586

    CrossRef Google Scholar

    XU Hanqiu. Research on extracting water information using Modified Normalized Difference Water Index (MNDWI)[J]. Journal of Remote Sensing,2005(5):589-595. doi: 10.11834/jrs.20050586

    CrossRef Google Scholar

    [26] FEYISA G L,MEILBY H,FENSHOLT R,et al. Automated Water Extraction Index:a new technique for surface water mapping using Landsat imagery[J]. Remote Sensing of Environment,2014,140:23-35. doi: 10.1016/j.rse.2013.08.029

    CrossRef Google Scholar

    [27] FISHER A,FLOOD N,DANAHER T. Comparing Landsat water index methods for automated water classification in eastern Australia[J]. Remote Sensing of Environment,2016,175:167-182. doi: 10.1016/j.rse.2015.12.055

    CrossRef Google Scholar

    [28] OTSU N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems,Man,and Cybernetics,1979,9(1):62-66. doi: 10.1109/TSMC.1979.4310076

    CrossRef Google Scholar

    [29] NAUSHEEN N,SEAL A,KHANNA P,et al. A FPGA based implementation of Sobel edge detection[J]. Microprocessors and Microsystems,2018,56:84-91. doi: 10.1016/j.micpro.2017.10.011

    CrossRef Google Scholar

    [30] HOU X,WU T,HOU W,et al. Characteristics of coastline changes in mainland China since the early 1940s[J]. Science China Earth Sciences,2016,59(9):1791-1802. doi: 10.1007/s11430-016-5317-5

    CrossRef Google Scholar

    [31] KENDALL M G. Rank Correlation Methods[M]. Oxford:Griffin,1948.

    Google Scholar

    [32] MANN H B. Nonparametric tests against trend[J]. Econometrica,1945,13(3):245. doi: 10.2307/1907187

    CrossRef Google Scholar

    [33] 王延贵,刘茜,史红玲. 江河水沙变化趋势分析方法与比较[J]. 中国水利水电科学研究院学报,2014,12(2):190-195,201.

    Google Scholar

    WANG Yangui,LIU Qian,SHI Hongling. Analysis methods and comparison of trends in river sediment changes[J]. Journal of China Institute of Water Resources and Hydropower Research,2014,12(2):190-195,201.

    Google Scholar

    [34] WANG H,YANG Z,SAITO Y,et al. Stepwise decreases of the Huanghe (Yellow River) sediment load (1950-2005):impacts of climate change and human activities[J]. Global and Planetary Change,2007,57(3):331-354.

    Google Scholar

    [35] 章诞武,丛振涛,倪广恒. 基于中国气象资料的趋势检验方法对比分析[J]. 水科学进展,2013,24(4):490-496.

    Google Scholar

    ZHANG Danwu,CONG Zhentao,NI Guangheng. Comparative analysis of trend test methods based on Chinese meteorological data[J]. Advances in Water Science,2013,24(4):490-496.

    Google Scholar

    [36] 苏志明,孙永福,宋玉鹏,等. 基于GEE和GIS的黄河三角洲面积多尺度时间序列分析[J]. 海洋科学进展,2022,40(1):90-101. doi: 10.12362/j.issn.1671-6647.2022.01.008

    CrossRef Google Scholar

    SU Zhiming,SUN Yongfu,SONG Yupeng,et al. Multi-scale time series analysis of the area of the Yellow River Delta based on GEE and GIS[J]. Progress in Ocean Science,2022,40(1):90-101. doi: 10.12362/j.issn.1671-6647.2022.01.008

    CrossRef Google Scholar

    [37] 刘志方,刘友存,郝永红,等. 黑河出山径流过程与气象要素多尺度交叉小波分析[J]. 干旱区地理,2014,37(6):1137-1146.

    Google Scholar

    LIU Zhifang,LIU Youcun,HAO Yonghong,et al. Multi-scale cross wavelet analysis of the Heihe River runoff process and meteorological factors[J]. Arid Land Geography,2014,37(6):1137-1146.

    Google Scholar

    [38] TORRENCE C,WEBSTER P J. Interdecadal changes in the ENSO-monsoon system[J]. Journal of Climate,1999,12(8):2679-2690. doi: 10.1175/1520-0442(1999)012<2679:ICITEM>2.0.CO;2

    CrossRef Google Scholar

    [39] LI H,HUANG C,ZHANG C,et al. Coastal erosion and sediment dynamics of the Yellow River Delta and their responses to the runoff-sediment flux since 1976[J]. Resources Science,2020,42(3):486-498.

    Google Scholar

    [40] FAN Y,CHEN S,ZHAO B,et al. Shoreline dynamics of the active Yellow River Delta since the implementation of Water-Sediment Regulation Scheme:a remote-sensing and statistics-based approach[J]. Estuarine,Coastal and Shelf Science,2018,200:406-419. doi: 10.1016/j.ecss.2017.11.035

    CrossRef Google Scholar

    [41] CLEVELAND W S,DEVLIN S J. Locally weighted regression:an approach to regression analysis by local fitting[J]. Journal of the American Statistical Association,1988,83(403):596-610. doi: 10.1080/01621459.1988.10478639

    CrossRef Google Scholar

    [42] COLEMAN J M,WRIGHT L D. Modern river deltas:variability of processes and sand bodies[M]//BROUSSARD M L. Deltas:Models for Exploration. Houston:Houston Geological Society,1975:99-149.

    Google Scholar

    [43] YANG S L,BELKIN I M,BELKINA A I,et al. Delta response to decline in sediment supply from the Yangtze River:evidence of the recent four decades and expectations for the next half-century[J]. Estuarine,Coastal and Shelf Science,2003,57(4):689-699. doi: 10.1016/S0272-7714(02)00409-2

    CrossRef Google Scholar

    [44] 陈俊卿,范勇勇,吴文娟,等. 2016—2017年调水调沙中断后黄河口演变特征[J]. 人民黄河,2019,41(8):6-9,116. doi: 10.3969/j.issn.1000-1379.2019.08.002

    CrossRef Google Scholar

    CHEN Junqing,FAN Yongyong,WU Wenjuan,et al. Evolution characteristics of the Yellow River Estuary after the water and sediment regulation interruption from 2016 to 2017[J]. People's Yellow River,2019,41(8):6-9,116. doi: 10.3969/j.issn.1000-1379.2019.08.002

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(14)

Article Metrics

Article views(1420) PDF downloads(81) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint