2024 Vol. 40, No. 12
Article Contents

LI Yufei, CHEN Guanjun, XIE Botao, FENG Xiangzi, SUN Hang. Sandwave characteristic, evolution and erosion protection of wind farm in the western South China Sea[J]. Marine Geology Frontiers, 2024, 40(12): 64-75. doi: 10.16028/j.1009-2722.2023.268
Citation: LI Yufei, CHEN Guanjun, XIE Botao, FENG Xiangzi, SUN Hang. Sandwave characteristic, evolution and erosion protection of wind farm in the western South China Sea[J]. Marine Geology Frontiers, 2024, 40(12): 64-75. doi: 10.16028/j.1009-2722.2023.268

Sandwave characteristic, evolution and erosion protection of wind farm in the western South China Sea

More Information
  • The development of seabed sand waves has many adverse effects on the installation, construction, and subsequent operation and maintenance of offshore wind farms. Based on the survey results of a wind farm in the South China Sea, we analyzed the developmental characteristics, migration pattern, and control mechanism of seabed sand ridge in the field. Results show that there are spatial differences in the development of linear sand waves in the study area. Linear sand waves usually develop on the top and tail of the sand ridge; crescent sand waves and curved sand waves develop on the flat terrain in the sand ridge trough; and forked sand waves are the predecessor of linear sand waves. The sand waves in the north migrated southward as a whole due to falling tidal flow, while the sand waves in the southern part of the study area migrated northward as a whole due to rising tidal flow, and the transition zone was the area where sediments converged on both sides, reflecting a long-term stable state. The development of sand waves in the study area experienced three evolutionary stages, namely, crescent or curved sand waves, bifurcated sand waves, and linear sand waves. With the evolution of sand waves, the scale of sand waves gradually increased and the mobility gradually weakened. To protect wind turbine pile base from scouring, bionic water grass mats, rocks, or hydraulic fabrics can be applied around the pile foundation to increase the stability of the seabed and reduce the scour around the pile base.

  • 加载中
  • [1] 陶建根,陈怡,黄博远. 海上风电发展现状与趋势分析[J]. 能源工程,2023,43(4):1-9.

    Google Scholar

    TAO J G,CHEN Y,HUANG B Y. Offshore wind development present situation and the trend analysis[J]. Journal of Energy Engineering,2023,43(4):1-9.

    Google Scholar

    [2] 冯文科,黎维峰,石要红. 南海北部海底沙波地貌动态研究[J]. 海洋学报,1994,16(6):92-99,142.

    Google Scholar

    FENG W K,LI W F, SHI Y H. Dynamic study of sea-floor sand wave geomorphology in the northern South China Sea[J]. Acta Oceanologica Sinica,1994,16(6):92-99,142.

    Google Scholar

    [3] 夏东兴,吴桑云,刘振夏,等. 海南东方岸外海底沙波活动性研究[J]. 黄渤海海洋,2001,19(1):17-24.

    Google Scholar

    XIA D X,WU S Y,LIU Z X,et al. Study on submarine sand wave activity off the east coast of Hainan[J]. Huang-bohai Ocean,2001,19(1):17-24.

    Google Scholar

    [4] FLEMMING B W. Zur klassifikation subaquatischer,strömungstransversaler transportkörper[J]. Bochumer geologische und geotechnische Arbeiten,1988,29(93/97):44-47.

    Google Scholar

    [5] 曹立华,徐继尚,李广雪,等. 海南岛西部岸外沙波的高分辨率形态特征[J]. 海洋地质与第四纪地质,2006,26(4):15-22.

    Google Scholar

    CAO L H,XU J S,LI G X,et al. High-resolution morphological characteristics of offshore sand waves in the west of Hainan Island[J]. Marine Geology & Quaternary Geology,2006,26(4):15-22.

    Google Scholar

    [6] 王文介. 南海北部的潮波传播与海底沙脊和沙波发育[J]. 热带海洋,2000,19(1):1-7.

    Google Scholar

    WANG W J. Tidal wave propagation and seabed sand ridge and sand wave development in the northern South China Sea[J]. Tropical Oceans,2000,19(1):1-7.

    Google Scholar

    [7] 马小川. 海南岛西南海域海底沙波沙脊形成演化及其工程意义[D]. 青岛:中国科学院研究生院(海洋研究所),2013.

    Google Scholar

    MA X C. Formation and evolution of seabed sandwave ridge in southwest Hainan Island and its engineering significance [D]. Qingdao:Graduate School of Oceanology,Chinese Academy of Sciences,2013.

    Google Scholar

    [8] 周川,范奉鑫,栾振东,等. 南海北部陆架主要地貌特征及灾害地质因素[J]. 海洋地质前沿,2013,29(1):51-60.

    Google Scholar

    ZHOU C,FAN F X,LUAN Z D,et al. Major geomorphic features and hazard geological factors of the northern shelf of the South China Sea[J]. Marine Geology Frontiers,2013,29(1):51-60.

    Google Scholar

    [9] 李勇航,牟泽霖,倪玉根,等. 海南东方近岸海底活动沙波的地球物理特征及其迁移机制[J]. 海洋地质与第四纪地质,2021,41(4):27-35.

    Google Scholar

    LI Y H,MOU Z L,NI Y G,et al. Geophysical characteristics and migration mechanism of active submarine sand waves off the coast of Dongfang, Hainan[J]. Marine Geology & Quaternary Geology,2021,41(4):27-35.

    Google Scholar

    [10] 单治钢,孙淼军,王振红,等. 海上风电重大工程地质问题与对策研究[C]//中国地质学会. 2021年全国工程地质学术年会论文集. 2021年全国工程地质学术年会论文集,2021:210-219.

    Google Scholar

    SHAN Z G,SUN M J,WANG Z H,et al. Research on major engineering geological problems and countermeasures of offshore wind power [C]//Geological Society of China. Proceedings of the 2021 National Engineering Geology Annual Conference. Proceedings of the 2021 National Engineering Geology Annual Conference,2021:210-219.

    Google Scholar

    [11] 郭立,马小川,阎军. 北部湾东南海域海底沙波发育分布特征及控制因素[J]. 海洋地质与第四纪地质,2017,37(1):67-76.

    Google Scholar

    GUO L,MA X C,YAN J. Distribution pattern and control factors of sand waves in southeast Beibu Gulf[J]. Marine Geology & Quaternary Geology,2017,37(1):67-76.

    Google Scholar

    [12] 甘雨,马小川,阎军. 空间互相关方法在分析海底沙波迁移规律中的应用[J]. 海洋学报,2019,41(4):42-52.

    Google Scholar

    GAN Y,MA X C,YAN J. The application of spatial cross correlation in analyzing the migration of submarine sand waves[J]. Acta Oceanologica Sinica,2019,41(4):42-52.

    Google Scholar

    [13] 史卜涛,苗运赞,迟洪明,等. 海上风机单桩基础海床冲刷模拟及防冲刷结构设计[J]. 建筑结构,2023,53(S1):2988-2991.

    Google Scholar

    SHI P T,MIAO Y Z,CHI H M,et al. Sea bed scour simulation and anti-scour structure design of single pile foundation of offshore wind turbine[J]. Building Structure,2023,53(S1):2988-2991.

    Google Scholar

    [14] 王玉芳,张颖,贺广零,等. 海上风电基础冲刷防护措施探讨[J]. 武汉大学学报(工学版),2020,53(S1):137-141.

    Google Scholar

    WANG Y F,ZHANG Y,HE G L,et al. Discussion on erosion protection measures for offshore wind power foundation[J]. Journal of Wuhan University (Engineering and Technology Edition),2020,53(S1):137-141.

    Google Scholar

    [15] 王楠,徐永臣,宋玉鹏等. 冲刷作用下桩基承载能力分析[J]. 海洋地质前沿,2013,29(9):54-58.

    Google Scholar

    WANG N,XU Y C,SONG Y P,et al. Analysis of load bearing capacity of pile foundation under erosion[J]. Marine Geology Frontiers,2013,29(9):54-58.

    Google Scholar

    [16] 夏冰,苗得胜,张敏,等. 海上风机单桩基础稳流冲刷数值模拟[J]. 南方能源建设,2023,10(1):81-87.

    Google Scholar

    XIA B,MIAO D S,ZHANG M,et al. Numerical simulation of scour process around offshore wind turbine monopile foundation in steady flow[J]. Southern Energy Construction,2023,10(1):81-87.

    Google Scholar

    [17] 杜硕,戴国亮,高鲁超,等. 波流作用近海风机单桩基础局部冲刷深度预测[J]. 东南大学学报(自然科学版),2020,50(4):616-622.

    Google Scholar

    DU S,DAI G L,GAO L C,et al. Prediction of local scour depth of offshore fan single pile foundation under wave and current action [J]. Journal of Southeast University (Natural Science Edition),2020,50(4):616-622.

    Google Scholar

    [18] 祁一鸣,陆培东,曾成杰,等. 海上风电桩基局部冲刷试验研究[J]. 水利水运工程学报,2015(6):60-67.

    Google Scholar

    QI Y M,LU P D,ZENG C J,et al. Experimental studies on local scour of offshore wind turbine pile[J]. Hydro-Science and Engineering,2015(6):60-67.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(4)

Article Metrics

Article views(44) PDF downloads(7) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint