Citation: | ZHANG Hua, YE Qing, HUAN Jinlai, ZHANG Chong, CHEN Ruxian. Identification of complex lithofacies based on compositional indicators:a case study of deep-water low-permeability gas reservoir in Baodao Sag, South China Sea[J]. Marine Geology Frontiers, 2024, 40(7): 87-95. doi: 10.16028/j.1009-2722.2023.263 |
Aiming at the problem of complex lithology of deep offshore low-permeability sandstone reservoirs and difficulty in identifying favorable reservoirs, the complex lithology in the area was classified based on lithological laser particle size analysis and thin section identification. Through the analysis of the relationship between lithofacies and well logging curves, the sensitive well logging curves that can identify the lithofacies of the low-permeability reservoir were selected. By utilizing the principle of principal component analysis, component factor curves that can accurately identify three types of lithofacies were constructed. Results show that the lithology of the low-permeability reservoir is complex and variable, ranging from siltstone to gravelly medium and coarse sandstone. In the median particle size, the lithology in the lithofacies of this area could be divided into three types, i.e., coarse-grained lithofacies (median particle size (Ms) >0.1 mm), fine-grained lithofacies (Ms 0.1–0.0625 mm), and very fine-mudstone lithofacies (Ms <0.0625 mm). The coarse-grained lithofacies is the relatively high-quality lithofacies zone. In addition, lithological component indicator factors were constructed with which the accuracy of the lithofacies identification was improved significantly compared to the conventional methods using single well logging curve. The lithofacies identification method we established could better guide the sand entry position of horizontal well in the study area, which has important significance for the development of the low-permeability reservoir in the study area.
[1] | 贾承造,张永峰,赵霞. 中国天然气工业发展前景与挑战[J]. 天然气工业,2014,34(2):8-18. |
[2] | 张迎朝,徐新德,王立锋,等. 南海北部超压低渗气藏成藏过程与成藏模式:以莺歌海盆地XF区XF13-1超压气田为例[J]. 天然气地球科学,2015,26(9):1679-1688. |
[3] | 杨计海,黄保家,陈殿远. 莺歌海盆地坳陷斜坡带低孔特低渗气藏形成条件及勘探潜力[J]. 中国海上油气,2018,30(1):11-21. |
[4] | 袁丙龙,叶青,张连枝,等. 基于多评价参数的海上低渗气藏分类方法[J]. 西南石油大学学报(自然科学版),2020,42(1):111-118. |
[5] | 唐大海,王旭丽,曾琪,等. 四川盆地西南部沙溪庙组致密砂岩低渗储层特征及形成机理[J]. 科学技术与工程,2023,23(1):143-154. |
[6] | 张宪国,张涛,林承焰,等. 塔南凹陷复杂岩性低渗透储层测井岩性识别[J]. 西南石油大学学报(自然科学版),2015,37(1):85-90. |
[7] | 韩红珍,范悦青. 探讨复杂岩性储层识别及评价技术[J]. 企业导报,2012(2):286. |
[8] | 崔维平,杨玉卿,刘建新. 基于岩性相单元和孔隙结构的低孔低渗储层有效性测井识别方法:以西湖凹陷NB1构造为例[J]. 现代地质,2022,36(1):140-148. |
[9] | 国景星,彭雪还,李飞. 交会图和BP神经网络技术在碎屑岩识别中的应用[J]. 甘肃科学学报,2016,28(6):13-17. |
[10] | 马峥,张春雷,高世臣. 主成分分析与模糊识别在岩性识别中的应用[J]. 岩性油气藏,2017,29(5):127-133. |
[11] | 张冲,张占松,张超谟,等. 基于测井相分析技术的复杂岩性识别方法研究[J]. 科学技术与工程,2014,14(29):157-161. |
[12] | 宋秋强,张占松,张冲,等. 测井相-岩相分析技术在复杂岩性中的应用[J]. 石油天然气学报,2013,35(7):78-81. |
[13] | 邹群彩,凌祥,涂善东,基于分形理论的岩相图像识别与分析[J]. 南京化工大学学报(自然科学版),2001,23(1):23-26. |
[14] | 游富粮,柳广弟,孙明亮,等. 鄂尔多斯盆地三叠系延长组7段高伽马砂岩测井识别及其展布特征[J]. 石油实验地质,2023,45(1):99-108. |
[15] | 张迎朝,徐新德,甘军,等. 琼东南盆地深水大气田地质特征、成藏模式及勘探方向研究[J]. 地质学报,2017,91(7):1620-1633. |
[16] | 张远泽,漆家福,吴景富. 南海北部新生代盆地断裂系统及构造动力学影响因素[J]. 地球科学,2019,44(2):603-625. |
[17] | 邓勇,裴健翔,胡林,等. 南海西部海域宝岛21-1气田的发现与成藏模式[J]. 中国海上油气,2022,34(5):13-22. |
[18] | 尤丽,权永彬,庹雷,等. 琼东南盆地深水区宝岛21-1气田天然气来源及输导体系[J]. 石油与天然气地质,2023,44(5):1270-1278. |
[19] | 徐长贵,邓勇,吴克强,等. 南海北部强活动型被动陆缘盆地宝岛21-1大气田的发现及地质意义[J]. 石油学报,2023,44(5):713-729. |
[20] | 李进步,刘子豪,徐振华,等. 苏里格气田岩石相控制的致密砂岩储层质量差异机理[J]. 特种油气藏,2021,28(1):10-17. |
[21] | 赵丁丁,侯加根,王秀杰,等. 致密砂岩气藏不同岩石相孔喉结构对气水相渗特征控制机理:以鄂尔多斯盆地东胜气田J72井区下石盒子组储层为例[J]. 地质科技通报,2023,42(3):163-174. |
[22] | ZHAO D D,HOU J G,SARMA H,et al. Pore throat heterogeneity of different lithofacies and diagenetic effects in gravelly braided river deposits:implications for understanding the formation process of high-quality reservoirs[J]. Journal of Petroleum Science and Engineering,2023,221:111309. |
[23] | 任大忠,孙卫,屈雪峰,等. 鄂尔多斯盆地延长组长6储层成岩作用特征及孔隙度致密演化[J]. 中南大学学报(自然科学版),2016,47(8):2706-2714. |
[24] | 罗静兰,罗晓容,白玉彬,等. 差异性成岩演化过程对储层致密化时序与孔隙演化的影响:以鄂尔多斯盆地西南部长7致密浊积砂岩储层为例[J]. 地球科学与环境学报,2016,38(1):79-92. |
[25] | 高春云,周立发,路萍. 测井曲线标准化研究进展综述[J]. 地球物理学进展,2020,35(5):1777-1783. |
[26] | 牟启博. 测井曲线标准化的方法技术研究[J]. 世界有色金属,2021(2):172-173. |
[27] | 王宵宇,谢然红,毛治国,等. 主成分分析法在致密砂岩岩性识别的应用研究[J]. 天然气与石油,2021,39(1):88-93. |
[28] | 周游,张广智,高刚,等. 核主成分分析法在测井浊积岩岩性识别中的应用[J]. 石油地球物理勘探,2019,54(3):667-675. |
[29] | 高斌,王志坤,付兴深,等. 井控主成分分析技术在储层预测中的应用[J]. 沉积学报,2018,36(1):198-205. |
[30] | 祝鹏,林承焰,吴鹏,等. 基于主成分分析法的成岩相测井定量识别:以五号桩油田桩62-66块沙三下I油组储层为例[J]. 地球物理学进展,2015,30(5):2360-2365. |
[31] | 叶青,张冲,周伟,等. 火成岩基岩潜山复杂岩性识别与预测方法:以琼东南盆地松南低凸起基岩潜山为例[J]. 中国海上油气,2023,35(2):65-77. |
[32] | 叶涛,韦阿娟,黄志,等. 基于主成分分析法与Bayes判别法组合应用的火山岩岩性定量识别:以渤海海域中生界为例[J]. 吉林大学学报(地球科学版),2019,49(3):873-880. |
Structural division of Qiongdongnan Basin and the location of the study area
Photographs of typical cores of the Third Member of Lingshui Formation in the Baodao 2B Gas Field
Typical grain size cumulative probability curve of the Third Mamber of Lingshui Formation in Baodao 2B Gas Field
Typical pore characteristics of the Third Formation of Lingshui Formation in Baodao 2B Gas Field
Distribution of pore types in the Third Member of Lingshui Formation in Baodao 2B Gas Field
Relationship between particle size and permeability in the Third Member of Lingshui Formation in Baodao 2B Gas Field
Typical pore characteristics of the Third Member of Lingshui Formation in Baodao 2B Gas Field
Intersection plot of well logs showing different lithofacies in the Third Member of Lingshui Formation in Block 2B Gas Field
Lithofacies discrimination based on principal component analysis
Assessment of lithofacies logging in B3 Well in the Third Member of Lingshui Formation
Intersection diagram of reservoir lithofacies-permeability-movable fluid saturation in the Third Formation of Lingshui Formation in Baodao 2B Gas Field